JPH06268225A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06268225A
JPH06268225A JP5346493A JP5346493A JPH06268225A JP H06268225 A JPH06268225 A JP H06268225A JP 5346493 A JP5346493 A JP 5346493A JP 5346493 A JP5346493 A JP 5346493A JP H06268225 A JPH06268225 A JP H06268225A
Authority
JP
Japan
Prior art keywords
region
type impurity
layer
film
semiconductor active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5346493A
Other languages
Japanese (ja)
Other versions
JP3316023B2 (en
Inventor
Minoru Takahashi
稔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05346493A priority Critical patent/JP3316023B2/en
Publication of JPH06268225A publication Critical patent/JPH06268225A/en
Application granted granted Critical
Publication of JP3316023B2 publication Critical patent/JP3316023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To control a parasitic transistor, and also to suppress the leakage current generating between a source and a drain by a method wherein a second conductivity type impurity layer region is extended containing the lower region of the outermost circumferential part of a semiconductor active region layer. CONSTITUTION:A pair of first conductivity type impurity diffusion regions 4 and 5, which are separated in the prescribed distance from the semiconductor active region layer, formed through an insulating film 2, a channel region pinched by the above-mentioned pair of diffusion regions 4 and 5, and a gate electrode 7, which is formed on the channel region through a gate insulating film 6, are provided on the surface of a semiconductor substrate 1. Second conductivity type impurity layer regions 15 and 16 are formed on the surface of the semiconductor substrate 1 under the region other than the semiconductor active region, and the second conductivity type impurity layer regions 15 and 16 are extended in such a manner that the lower part region of the outermost circumferential part of the semiconductor active regionlayer is included. As a result, a parasitic transistor is suppressed, and the generation of a leakage current can also be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁膜上に形成された
シリコン膜(SOI膜)にMOSトランジスタを形成し
た半導体装置に関し、特にトランジスタ特性の改善をは
かった半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a MOS film formed on a silicon film (SOI film) formed on an insulating film, and more particularly to a semiconductor device having improved transistor characteristics.

【0002】[0002]

【従来の技術】近年、SOI膜上に形成したMOSトラ
ンジスタが、極微細デバイスの基本素子として注目され
ている。この理由は、特に、動作状態においてチャネル
の領域が全て空乏化するようにSOI膜を薄くすると、
パンチスルー耐性の向上、パンチスルー効果の減少、電
流の増大など、シリコン単結晶基板に作製したMOSト
ランジスタよりも、優れた特性が得られることによる
(IEEE,ED-Vol.36,No.3,p493,1989)。
2. Description of the Related Art In recent years, a MOS transistor formed on an SOI film has attracted attention as a basic element of an ultrafine device. The reason for this is that, in particular, when the SOI film is thinned so that the entire channel region is depleted in the operating state,
Due to improved characteristics such as improved punch-through resistance, reduced punch-through effect, and increased current, compared to MOS transistors fabricated on a silicon single crystal substrate (IEEE, ED-Vol.36, No.3, p493,1989).

【0003】一方、プロセス的な観点から見ても、選択
酸化法などによる素子間の横方向の分離もSOI膜厚が
薄い為に、容易に達成できるなどのメリットがある。図
5(a),(b)はこの種の半導体装置の素子構造を示
す断面図である。図5(a)はソース・ドレイン方向の
断面図、図5(b)はソース・ドレイン方向に対して垂
直な方向における、ゲート電極直下の断面図である。
On the other hand, from a process point of view, there is an advantage that lateral separation between elements by a selective oxidation method can be easily achieved because the SOI film thickness is thin. 5A and 5B are sectional views showing the element structure of this type of semiconductor device. 5A is a sectional view in the source / drain direction, and FIG. 5B is a sectional view immediately below the gate electrode in a direction perpendicular to the source / drain direction.

【0004】図中1はシリコン基板、2は絶縁膜、3は
SOI膜、4はソース拡散層領域、5はドレイン拡散層
領域、6はゲート酸化膜、7はゲート電極、8はフィー
ルド酸化膜、9は素子分離端領域である。
In the figure, 1 is a silicon substrate, 2 is an insulating film, 3 is an SOI film, 4 is a source diffusion layer region, 5 is a drain diffusion layer region, 6 is a gate oxide film, 7 is a gate electrode, 8 is a field oxide film. , 9 are element isolation end regions.

【0005】このような素子の素子特性を調べた結果、
次のような問題が生じることが判明した。即ち、選択酸
化法を用いて素子分離を行った場合、素子分離端領域9
において寄生トランジスタが発生し、サブスレッショー
ルド係数(S係数)の劣化を引き起こした。
As a result of examining element characteristics of such an element,
The following problems were found to occur. That is, when the element isolation is performed using the selective oxidation method, the element isolation end region 9
In the above, a parasitic transistor was generated, which caused deterioration of the subthreshold coefficient (S coefficient).

【0006】このような、素子分離端の寄生トランジス
タの発生を抑制する方法として、例えば、素子分離端の
薄いSOI膜内にチャネルストッパーのイオン注入を行
なう方法、あるいは、基板(バックゲート)バイアスを
印加する方法などが考えられる。
As a method of suppressing the generation of such a parasitic transistor at the element isolation end, for example, a method of ion-implanting a channel stopper into a thin SOI film at the element isolation end, or a substrate (back gate) bias is used. A method of applying the voltage may be considered.

【0007】しかしながら、前者の場合チャネルストッ
パーのイオン注入量を増大させるに伴いソース、ドレイ
ン間のリーク電流が増大し、素子性能を劣化させる問題
が新たに発生した。
However, in the former case, as the ion implantation amount of the channel stopper is increased, the leak current between the source and the drain is increased, which causes a new problem of degrading the device performance.

【0008】また後者の方法においては、相補型(CM
OS)で回路を構成した場合、NMOS、PMOS各々
でバックゲートバイアスをとる必要が生じ、外部電源が
余分に必要になるなど構造が複雑化する問題があった。
In the latter method, the complementary type (CM
When the circuit is configured by OS), the back gate bias needs to be taken for each of the NMOS and the PMOS, and there is a problem that the structure becomes complicated such that an external power source is additionally required.

【0009】[0009]

【発明が解決しようとする課題】このように従来の薄膜
SOI素子においては、素子分離端の寄生トランジスタ
の発生による、サブスレッショールド係数(S係数)の
劣化あるいは、ソース、ドレイン間のリーク電流の増
大、更に構造の複雑化を招き、薄膜SOI素子本来の優
れた性能を容易に引き出すことが困難であった。
As described above, in the conventional thin film SOI device, the subthreshold coefficient (S coefficient) is deteriorated or the leakage current between the source and the drain is caused by the generation of the parasitic transistor at the element isolation end. It is difficult to easily obtain the original excellent performance of the thin film SOI device due to the increase in the number of devices and the complicated structure.

【0010】本発明は、前記問題を解決するためになさ
れたもので、その目的とするところは、寄生トランジス
タの抑制を、素子構造を複雑化せず、またソース、ドレ
イン間のリークが充分に抑えることができ、素子性能を
十分に引き出すことのできる半導体装置を提供すること
にある。
The present invention has been made in order to solve the above problems, and an object of the present invention is to suppress parasitic transistors without complicating the element structure and to sufficiently prevent leakage between the source and drain. It is an object of the present invention to provide a semiconductor device that can be suppressed and can sufficiently bring out the element performance.

【0011】[0011]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、半導体基板表面に絶縁膜を介して形成さ
れた半導体能動領域層に所定距離だけ離間する一対の第
一導電型の不純物拡散領域と、この一対の拡散領域に挟
まれて形成されたチャネル領域と、このチャネル領域上
に、ゲート絶縁膜を介してゲート電極が形成された半導
体装置において、前記半導体能動領域外の領域下の前記
半導体基板表面に第二導電型の不純物層領域が形成さ
れ、少なくとも、この第二導電型の不純物層領域が、前
記半導体能動領域層の最外周部の下部領域を含むように
延在していることを要旨とする。
In order to solve the above problems, the present invention provides a pair of first conductivity type impurities which are separated by a predetermined distance from a semiconductor active region layer formed on the surface of a semiconductor substrate with an insulating film interposed therebetween. In a semiconductor device having a diffusion region, a channel region sandwiched between the pair of diffusion regions, and a gate electrode formed on the channel region via a gate insulating film, a region outside the semiconductor active region is formed. A second-conductivity-type impurity layer region is formed on the surface of the semiconductor substrate, and at least the second-conductivity-type impurity layer region extends so as to include a lowermost outermost region of the semiconductor active region layer. That is the summary.

【0012】[0012]

【作用】本発明によれば、SOI素子を作製する半導体
能動領域層外の領域の下地支持基板表面にソース・ドレ
イン拡散領域の不純物タイプと異なる高濃度不純物層領
域を形成し、少なくとも、この不純物層領域が、半導体
能動領域層の最外周部の下部領域を含むように延在して
いる。
According to the present invention, a high-concentration impurity layer region different from the impurity type of the source / drain diffusion region is formed on the surface of the underlying support substrate in the region outside the semiconductor active region layer in which an SOI device is manufactured, and at least this impurity is formed. The layer region extends to include the lowermost region of the outermost periphery of the semiconductor active region layer.

【0013】これにより、素子分離端部のSOI膜中に
チャネルストップをイオン注入する必要がなく、寄生ト
ランジスタの発生を防止しつつ、チャネルストップのイ
オン注入量の増大に伴うソース、ドレイン間のリーク電
流の増大を抑制することが可能となる。
With this, it is not necessary to ion-implant a channel stop into the SOI film at the element isolation end, and while preventing generation of a parasitic transistor, leakage between the source and drain accompanying an increase in the ion implantation amount of the channel stop. It is possible to suppress an increase in current.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づき説明
する。図1は本発明の一実施例にかかわる半導体装置の
概略構成を示す断面図である。図2(a)〜(c),図
3(a)〜(c)は、本発明の一実施例に係わる、Nチ
ャネルSOI・MOSトランジスタの製造方法の概略を
示す工程断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing a schematic configuration of a semiconductor device according to an embodiment of the present invention. 2A to 2C and 3A to 3C are process cross-sectional views schematically showing a method for manufacturing an N-channel SOI MOS transistor according to an embodiment of the present invention.

【0015】まず単結晶シリコン基板1に、酸素イオン
を例えば加速電圧150KeV、ドーズ量0.4×10
18cm-2で打ち込み、1300℃、6時間のアニールで厚
さ500ÅのSiO2 層2と厚さ2000ÅのSOI膜
3を形成する(図2(a))。
First, oxygen ions are applied to the single crystal silicon substrate 1, for example, an acceleration voltage of 150 KeV and a dose of 0.4 × 10.
Implanting is performed at 18 cm -2 and annealing is performed at 1300 ° C. for 6 hours to form a SiO 2 layer 2 having a thickness of 500 Å and an SOI film 3 having a thickness of 2000 Å (FIG. 2A).

【0016】次に、SOI膜3表面に図示しない酸化膜
を例えば厚さ2000Åで形成し、その後、沸化アンモ
ニウム水溶液で酸化膜を除去した。この段階でSOI膜
厚は1000Åまで薄膜化される。
Next, an oxide film not shown is formed on the surface of the SOI film 3 with a thickness of 2000 liters, for example, and then the oxide film is removed with an ammonium fluoride aqueous solution. At this stage, the SOI film thickness is reduced to 1000 Å.

【0017】次に、SOI膜表面に、熱酸化膜10/シ
リコン窒化膜11/多結晶シリコン膜12の順番で各々
例えば厚さ500Å/1500Å/4000Åで形成
し、しかる後、周知のリソグラフィーにより素子能動領
域の多結晶シリコン12を図2(b)に示す如く、パタ
ーニングした。
Next, a thermal oxide film 10, a silicon nitride film 11 and a polycrystalline silicon film 12 are formed on the surface of the SOI film in the order of, for example, a thickness of 500Å / 1500Å / 4000Å, and thereafter, the element is formed by a well-known lithography. The polycrystalline silicon 12 in the active region was patterned as shown in FIG.

【0018】その後、図2(c)に示すように多結晶シ
リコンを水素燃焼酸化法により全て酸化し、厚さ800
0Åの熱酸化膜13を形成した。この酸化により形成さ
れる熱酸化膜13の横方向の寸法幅は、多結晶シリコン
12のパターン幅よりも多少大きくなる。次に熱酸化膜
13をマスクとして、シリコン窒化膜11をエッチング
し除去した。しかる後、酸化膜13をマスクとしてボロ
ンイオン14を例えば加速電圧100KeV、ドーズ量
5×1012cm-2でイオン注入し、シリコン基板上にボロ
ン不純物層15を形成した。
After that, as shown in FIG. 2C, the polycrystalline silicon is entirely oxidized by the hydrogen combustion oxidation method to obtain a thickness of 800.
A thermal oxide film 13 of 0Å was formed. The lateral width of the thermal oxide film 13 formed by this oxidation is slightly larger than the pattern width of the polycrystalline silicon 12. Next, using the thermal oxide film 13 as a mask, the silicon nitride film 11 was etched and removed. Thereafter, using the oxide film 13 as a mask, boron ions 14 are ion-implanted at an acceleration voltage of 100 KeV and a dose amount of 5 × 10 12 cm −2 to form a boron impurity layer 15 on the silicon substrate.

【0019】次に図3(a)に示す如く、熱酸化膜13
を沸化アンモニウム水溶液で全て除去した。次いで図3
(b)に示す如く水素燃焼酸化法により、シリコン窒化
膜11をマスクとしてフィールド領域のSOI膜3を全
て酸化しフィールド酸化膜8を形成した。このフィール
ド酸化膜8は、酸化によりシリコン窒化膜11の下部ま
で潜り込むように形成される。
Next, as shown in FIG. 3A, the thermal oxide film 13 is formed.
Was completely removed with an aqueous solution of ammonium fluoride. Then Fig. 3
As shown in (b), the silicon oxide film 11 was used as a mask to oxidize the entire SOI film 3 in the field region to form a field oxide film 8 by the hydrogen combustion oxidation method. The field oxide film 8 is formed so as to penetrate under the silicon nitride film 11 by oxidation.

【0020】しかしながら、前述したように、熱酸化膜
13多少大きく形成しているので、シリコン窒化膜11
も大きくパターニングされ、寸法変換差の問題は生じる
ことがない。さらに、前述したフィールド酸化膜8の潜
り込みと共に、ボロン不純物層15は拡散により横方向
へ延び、この結果ソース、ドレインチャネル形成領域
(SOI膜3)の最外周領域下へ延在するようになる。
However, as described above, since the thermal oxide film 13 is formed slightly larger, the silicon nitride film 11 is formed.
Is also greatly patterned, and the problem of dimensional conversion difference does not occur. Further, as the field oxide film 8 goes under, the boron impurity layer 15 extends laterally due to diffusion, and as a result, extends below the outermost peripheral region of the source / drain channel formation region (SOI film 3).

【0021】その後、シリコン窒化膜11及びSOI膜
3表面の熱酸化膜10をドライエッチングにより除去
し、しかる後に例えば厚さ100Åのゲート酸化膜6を
形成し、更に周知の方法で、ゲート電極7、ソース領域
4・ドレイン領域5を形成した。ソース領域4及びドレ
イン領域5は、燐のイオン注入により形成した。
After that, the silicon nitride film 11 and the thermal oxide film 10 on the surface of the SOI film 3 are removed by dry etching, and then a gate oxide film 6 having a thickness of 100 Å is formed, and the gate electrode 7 is formed by a known method. A source region 4 and a drain region 5 are formed. The source region 4 and the drain region 5 were formed by phosphorus ion implantation.

【0022】その後、通常のMOSトランジスタ作製方
法により、層間絶縁膜の形成、コンタクトホールの開
孔、アルミニウム配線の形成を行いMOSトランジスタ
を完成した(図3(c))。
After that, an MOS transistor was completed by forming an interlayer insulating film, forming a contact hole, and forming an aluminum wiring by a usual MOS transistor manufacturing method (FIG. 3C).

【0023】かくして得られた素子と従来素子とで、サ
ブスレッショールド特性の比較を行った結果を図4に示
す。図中実線で示す本実施例素子では、破線で示す従来
例で見られた寄生トランジスタによる特性の折れ曲がり
が抑制され、理想的な特性を示した。
FIG. 4 shows the result of comparison of subthreshold characteristics between the element thus obtained and the conventional element. In the element of this example shown by the solid line in the figure, the characteristic bending due to the parasitic transistor seen in the conventional example shown by the broken line was suppressed, and the ideal characteristic was exhibited.

【0024】なお、製造工程は図2,3に限定されるも
のではなく、適宜変更可能である。また、P型、N型を
入れ換えて形成することも可能である。従って、図1に
示す相補型MOSトランジスタを形成することが可能で
ある。ここで、4,5は、それぞれボロンのイオン注入
により形成したソース・ドレイン領域、16は燐不純物
層である。
The manufacturing process is not limited to those shown in FIGS. 2 and 3, but can be changed as appropriate. It is also possible to replace the P type and the N type. Therefore, it is possible to form the complementary MOS transistor shown in FIG. Here, 4 and 5 are source / drain regions formed by ion implantation of boron, respectively, and 16 is a phosphorus impurity layer.

【0025】さらに、本発明の要旨を逸脱しない範囲で
種々変形して実施できる。
Further, various modifications can be made without departing from the scope of the present invention.

【0026】[0026]

【発明の効果】本発明によれば、寄生トランジスタの抑
制を、素子構造を複雑化、及びソース、ドレイン間のリ
ーク発生を招くことなく抑制することが可能となる。
According to the present invention, the suppression of the parasitic transistor can be suppressed without complicating the element structure and causing the leakage between the source and the drain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の概略構成断面図。FIG. 1 is a schematic configuration sectional view of the present invention.

【図2】本発明の一実施例に係わる工程断面図。FIG. 2 is a process sectional view according to an embodiment of the present invention.

【図3】図2に続く工程断面図。FIG. 3 is a process sectional view subsequent to FIG. 2;

【図4】本発明による半導体装置と従来装置において、
ドレイン電流とゲート電圧の関係を比較した特性図。
FIG. 4 shows a semiconductor device according to the present invention and a conventional device,
The characteristic diagram which compared the relationship of drain current and gate voltage.

【図5】従来技術を用いた素子断面図。FIG. 5 is a sectional view of an element using a conventional technique.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 絶縁膜(SiO2 層) 3 単結晶半導体薄膜層(SOI膜) 4 ソース拡散層領域 5 ドレイン拡散層領域 6 ゲート酸化膜 7 ゲート電極 8 素子分離酸化膜 9 素子分離端領域 10 絶縁膜(SiO2 層) 11 シリコン窒化膜 12 多結晶シリコン膜 13 絶縁膜(SiO2 膜) 14 ボロンイオン 15 ボロン不純物層 16 燐不純物層1 semiconductor substrate 2 insulating film (SiO 2 layer) 3 single crystal semiconductor thin film layer (SOI film) 4 source diffusion layer region 5 drain diffusion layer region 6 gate oxide film 7 gate electrode 8 device isolation oxide film 9 device isolation edge region 10 insulation Film (SiO 2 layer) 11 Silicon nitride film 12 Polycrystalline silicon film 13 Insulating film (SiO 2 film) 14 Boron ion 15 Boron impurity layer 16 Phosphorus impurity layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面に絶縁膜を介して形成さ
れた半導体能動領域層に所定距離だけ離間する一対の第
一導電型の不純物拡散領域と、 この一対の拡散領域に挟まれて形成されたチャネル領域
と、 このチャネル領域上に、ゲート絶縁膜を介してゲート電
極が形成された半導体装置において、 前記半導体能動領域外の領域下の前記半導体基板表面に
第二導電型の不純物層領域が形成され、少なくとも、こ
の第二導電型の不純物層領域が、前記半導体能動領域層
の最外周部の下部領域を含むように延在していることを
特徴とする半導体装置。
1. A pair of first-conductivity-type impurity diffusion regions spaced apart by a predetermined distance from a semiconductor active region layer formed on a surface of a semiconductor substrate with an insulating film interposed therebetween, and formed between the pair of diffusion regions. A channel region and a gate electrode formed on the channel region via a gate insulating film, a second conductivity type impurity layer region is formed on the surface of the semiconductor substrate below the region outside the semiconductor active region. A semiconductor device, wherein at least the second-conductivity-type impurity layer region is formed so as to extend so as to include the lowermost outermost region of the semiconductor active region layer.
JP05346493A 1993-03-15 1993-03-15 Semiconductor device Expired - Fee Related JP3316023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05346493A JP3316023B2 (en) 1993-03-15 1993-03-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05346493A JP3316023B2 (en) 1993-03-15 1993-03-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH06268225A true JPH06268225A (en) 1994-09-22
JP3316023B2 JP3316023B2 (en) 2002-08-19

Family

ID=12943590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05346493A Expired - Fee Related JP3316023B2 (en) 1993-03-15 1993-03-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3316023B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077460A1 (en) 2010-12-07 2012-06-14 ルビコン株式会社 Capacitor, capacitor case, and substrate provided with circuit
JPWO2019135338A1 (en) * 2018-01-05 2021-01-07 株式会社Adeka Composition and etching method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077460A1 (en) 2010-12-07 2012-06-14 ルビコン株式会社 Capacitor, capacitor case, and substrate provided with circuit
JPWO2019135338A1 (en) * 2018-01-05 2021-01-07 株式会社Adeka Composition and etching method

Also Published As

Publication number Publication date
JP3316023B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
JP4952874B2 (en) Semiconductor device having CMOS and method for manufacturing the same
JP5605134B2 (en) Semiconductor device and manufacturing method thereof
JPH10335480A (en) Semiconductor device and its manufacture
JPH11297984A (en) Structure of ldd type mos transistor and forming method
JP2012079743A (en) Semiconductor device and manufacturing method for the same
JP4368095B2 (en) Semiconductor device and manufacturing method thereof
JPH10223771A (en) Semiconductor device and fabrication thereof
JPH098135A (en) Manufacture of semiconductor device
JP2633104B2 (en) Method for manufacturing semiconductor device
JP3316023B2 (en) Semiconductor device
JPH05110003A (en) Semiconductor integrated circuit device and manufacture thereof
JPH06268057A (en) Manufacture of semiconductor device
JPH09223793A (en) Semiconductor device and its manufacture
JPH0637106A (en) Manufacture of semiconductor device
JP3038740B2 (en) Method for manufacturing semiconductor device
JP2000332255A (en) Thin-film transistor and manufacture thereof
JPH0661482A (en) Mos-type transistor and its manufacture
JPH08186252A (en) Semiconductor device
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
JPH07135313A (en) Fet transistor and its fabrication
JPH06163890A (en) Manufacture of semiconductor device
JP2633525B2 (en) Method for manufacturing semiconductor device
JPH10270441A (en) Semiconductor device and manufacture of semiconductor device
JPH0582784A (en) Manufacture of mis-type semiconductor device
JPH10242460A (en) Semiconductor integrated circuit device and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees