JPH06163592A - 非晶質シリコン薄膜トランジスタの製造法 - Google Patents

非晶質シリコン薄膜トランジスタの製造法

Info

Publication number
JPH06163592A
JPH06163592A JP5185051A JP18505193A JPH06163592A JP H06163592 A JPH06163592 A JP H06163592A JP 5185051 A JP5185051 A JP 5185051A JP 18505193 A JP18505193 A JP 18505193A JP H06163592 A JPH06163592 A JP H06163592A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
amorphous silicon
gas
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5185051A
Other languages
English (en)
Other versions
JP2690446B2 (ja
Inventor
Yoshiyuki Osada
芳幸 長田
Masao Sugata
正夫 菅田
Katsunori Hatanaka
勝則 畑中
Yukitoshi Okubo
幸俊 大久保
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3925180A external-priority patent/JPS56135968A/ja
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5185051A priority Critical patent/JP2690446B2/ja
Publication of JPH06163592A publication Critical patent/JPH06163592A/ja
Application granted granted Critical
Publication of JP2690446B2 publication Critical patent/JP2690446B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

(57)【要約】 【目的】 VD−ID特性曲線に歪みのない好ましいトラ
ンジスタ特性を示す非晶質シリコン(a−Si)TFT
の製造法を提供すること。 【構成】 ゲート電極と電気的な絶縁層とが形成された
非晶質シリコン薄膜トランジスタ形成用の基板を、減圧
にし得る堆積室内に設置し、前記堆積室内を所定の真空
度として、前記絶縁層上に水素化非晶質シリコンからな
る半導体層を形成した後、該半導体層に電気的に接続す
るソース電極及びドレイン電極を形成して非晶質シリコ
ン薄膜トランジスタを製造する非晶質シリコン薄膜トラ
ンジスタの製造方法であって、シリコン原子を含有する
ガスを水素ガスにより希釈して前記堆積室に導入し、該
堆積室内にグロー放電を生起させて前記半導体層を形成
することを特徴とする非晶質薄膜トランジスタの製造
法。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、非晶質シリコンを用い
たトランジスタ及びその製造法に関する。
【0002】
【従来の技術】最近、水素化非晶質シリコン(a−S
i:H)を用いた薄膜トランジスタ(TFT)が液晶素
子駆動用のトランジスタとして有用である事がP.G.
LeComber等によって提示されたElectro
nic Letters,179〜181(197
9)。
【0003】その構造は、基板上に、ゲート電極、該ゲ
ート電極を覆う様に設けられた窒化シリコンから成る絶
縁層及び該層上にa−Si:Hから成る半導体層、該半
導体層上に並置してアルミニウムから成るソース電極及
びドレイン電極とを設けたものである。
【0004】この様な構造のa−Si:H−TFTはゲ
ート電極に一定電圧(VG )を印加し、ソース電極とド
レイン電極間の電圧(VD )を変化させた際のソース電
極とドレイン電極間を流れる電極(ID )は、VD が小
さい領域で殆んど変わらず、増加する傾向を示さない。
即ち、所謂VD −ID 特性がVD の小さい領域に於いて
線型的にならずにVD −ID 特性曲線が歪んだものと成
り好ましいトランジスタ特性を示さない。これ等は、a
−Si:Hから成る半導体層と電極との間に充分なるオ
ーミック接触が形成されていない事に起因している。
【0005】
【課題を解決するための手段及び作用】本発明は、斯か
る点に鑑み成されたものであって、VD −ID 特性曲線
に歪みのない好ましいトランジスタ特性を示す非晶質シ
リコン(a−Si)TFTの製造法を提供することを目
的とする。
【0006】本発明の非晶質シリコン薄膜トランジスタ
の製造法は、ゲート電極と電気的な絶縁層とが形成され
た非晶質シリコン薄膜トランジスタ形成用の基板を、減
圧にし得る堆積室内に設置し、前記堆積室内を所定の真
空度として、前記絶縁層上に水素化非晶質シリコンから
なる半導体層を形成した後、該半導体層に電気的に接続
するソース電極及びドレイン電極を形成して非晶質シリ
コン薄膜トランジスタを製造する非晶質シリコン薄膜ト
ランジスタの製造方法であって、シリコン原子を含有す
るガスを水素ガスにより希釈して前記堆積室に導入し、
該堆積室内にグロー放電を生起させて前記半導体層を形
成することを特徴とする。
【0007】本発明の非晶質薄膜トランジスタの製造法
においては、シリコン原子を含有するガスを水素ガスに
より希釈して堆積室内に導入し、グロー放電を生起させ
て水素化非晶質シリコンからなる半導体層を形成するた
め、半導体層は水素により十分ダングリングボンドが補
償された欠陥の極めて少ないものとなり、得られるトラ
ンジスタは非常に優れた特性を示す。
【0008】本発明においては、更に、減圧にし得る堆
積室に設置され、ゲート電極と電気的な絶縁層とが形成
されてある非晶質シリコン薄膜トランジスタ形成用の基
板上で、且つ前記絶縁上に前記堆積室内を所定の真空度
に成して水素化又は/及び弗素化非晶質シリコンから成
る半導体層を形成した後、引続き、非晶質シリコンを母
体とするn+層を形成する事;該n+層を2つの互いに離
隔された第1のn+層と第2のn+層とに分離する事;そ
の後、前記第1のn+層にソース電極を前記第2のn+
上にドレイン電極を形成する事;を行なえばより好まし
い。
【0009】本発明の方法を適用することにより、例え
ば、水素化又は/及び弗素化非晶質シリコンからなる半
導体層、該半導体層に接して設けた電気的な絶縁層、該
絶縁層に接し、且つ前記半導体層とは反対側に配置させ
たゲート電極、前記半導体層をはさんで前記ゲート電極
とは反対側に、互いに離隔されて並列的に配置された非
晶質シリコンを母体とした第1のn+層及び第2のn
+層、該第1のn+層に接して設けたソース電極、前記第
2のn+層に接して設けたドレイン電極、とを有する非
晶質シリコン薄膜トランジスタであって、前記ゲート電
極が前記第1のn+層と第2のn+層とにまたがって重な
りを形成するゲート電極幅をもち、前記半導体層がドー
ピング材料によりドーピングされていないノンドープ半
導体層からなり、且つ前記ゲート電極幅にわたって設け
られている非晶質薄膜トランジスタを製造できる。
【0010】以下、本発明を図面に従って具体的に説明
する。
【0011】図1は、本発明の方法によって得られる非
晶質シリコン薄膜トランジスタの1例を示す模式的な斜
視部分図である。
【0012】図1には、水素化又は/及び弗素化非晶質
シリコンからなる半導体層、該半導体層に接して設けた
電気的な絶縁層、該絶縁層に接し、且つ前記半導体層と
は反対側に配置させたゲート電極、前記半導体層をはさ
んで前記ゲート電極とは反対側に、互いに離隔されて並
列的に配置された非晶質シリコンを母体とした第1のn
+層及び第2のn+層、該第1のn+層に接して設けたソ
ース電極、前記第2のn+層に接して設けたドレイン電
極、とを有する非晶質シリコン薄膜トランジスタであっ
て、前記ゲート電極が前記第1のn+層と第2のn+層と
にまたがって重なりを形成するゲート電極幅をもち、前
記半導体層がドーピング材料によりドーピングされてい
ないノンドープ半導体層からなり、且つ前記ゲート電極
幅にわたって設けられている非晶質薄膜トランジスタが
示されている。
【0013】図1に示されるa−Si−TFT100
は、ガラス、セラミックス等から成る基板106上に、
ゲート電極101、該ゲート電極101を覆う様に電気
的な絶縁層104及び水素化又は/及び弗素化非晶質シ
リコンから成る半導体層105を順次積層して形成さ
れ、半導体層105の面108上には並置的関係で離隔
されて、第1のn+層107−1、第2のn+層107−
2が設けられ、更に、第1のn+層107−1上にはソ
ース電極102、第2のn+層107−2上にはドレイ
ン電極103が各々設けられた構造を有した構成とされ
てある。
【0014】半導体層105上の表面(クリーンサーフ
ェス)108に接触して設けられる第1のn+層107
−1及び第2のn+層107−2は、半導体層105を
形成した後、該層表面108を大気又は酸素に晒すこと
なく形成されている。シリコン原子を含有するガスを水
素ガスにより希釈して堆積室内に導入して、グロー放電
を生起させて半導体層105を形成することに加え、こ
のようにすることにより非常に優れた特性を有するトラ
ンジスタが得られる。
【0015】この様に、半導体105の表面108が層
形成直後のクリーンな状態の中に、n+層を形成する事
によって半導体層105とn+層107との界面に於い
て、良好なオーミック接触が形成され、VD −ID 特性
曲線に歪みのない優れたトランジスタ特性を示すa−S
i−TFTが得られる。
【0016】本発明に於いて、ゲート電極101、ソー
ス電極102及びドレイン電極103の各電極を構成す
る材料としては、Al,Au又はこれ等の合金Mo,P
t,Pd等が有効なものとして使用され得、各電極の層
厚としては通常1.01〜0.02μとされ、真空蒸着
法等の通常の電極形成法に従って形成される。
【0017】電気的な絶縁層104は、スパッタ法によ
るSiO2 膜、グロー放電堆積法による窒化シリコン膜
等で構成され、この外、Al23等も有効な材料として
使用される。
【0018】半導体層105及びn+層107は、H又
は/及びFでダングリングボンド(不飽和電子対)が補
償された非晶質シリコンを母体として形成される。
【0019】上記の補償された非晶質シリコンの形成に
は、水素又は/及び弗素とシリコンとの化合物を使用し
所謂グロー放電分解法に従って行われる。
【0020】本発明に於いて、使用される水素又は/及
び弗素とシリコンとの化合物としては、シラン類、弗化
シラン類、弗化シリコン類等で比較的容易にガス状態に
成り得るものが好ましい材料として挙げられ、その中で
例えば、SiH4 ,Si26 ,SiF4 等が殊に有効
なものとして挙げる事が出来る。
【0021】これ等の化合物は、半導体層及びn+層を
形成する際にH2 ガスを稀釈ガスとして所定の稀釈度合
いでガス状態で減圧にし得る堆積室内に所定の圧力の下
に導入される。
【0022】n+層を形成する際には、上記の化合物の
他にドーパント導入用の化合物として、燐と水素との化
合物又は/及び砒素と水素との化合物を堆積室内に共存
させてグロー放電を起してn+層を形成する。この時形
成される層には、ドーパント導入用化合物の堆積室内へ
の導入量及び共存割合に従ってドーパントとしての燐又
は/及び砒素が導入され、n+層特性の強弱が制御され
る。
【0023】本発明において、有効に使用される燐と水
素との化合物としては、具体的には例えばPH3 が、砒
素と水素との化合物としてはAsH3 を挙げる事が出来
る。この他、容易にガス化し得る化合物であれば、分子
量の大きいものも採用し得るものである。
【0024】本発明に於いて、その目的を効果的に達成
する為には、n+層107を形成する際に、既に形成さ
れてある半導体層105の表面を例えば堆積室内の真空
を破る等して大気に晒す様なことはせず、形成直後の新
鮮な状態の表面にn+層を形成するのが望ましい。
【0025】更には、n+層107の形成に際し、母体
ガスとしてのシリコンと水素又は/及び弗素との化合物
とドーパント導入用のガスとしてのドーパントガスであ
るシリコンと燐の化合物又は/及びシリコンと砒素との
化合物の堆積室内への導入の割合を正確に制御する必要
がある。本発明におけるその割合は、シリコンと水素の
化合物を母体ガスとして使用する場合には、母体ガスに
対してドーパントガスを通常は50〜5×104 pp
m、好適には102 〜104 ppmとされるのが望まし
いものである。シリコンと弗素との化合物を母体ガスと
して使用する場合には、母体ガスに対してドーパントガ
スは通常30〜3×104 ppm、好ましくは50〜1
4 ppmの割合で混合されるのが望ましいものであ
る。
【0026】この様な混合割合に従って、所定量のガス
をグロー放電を生起させる堆積室内に導入して共存させ
ることで形成された雰囲気中でグロー放電を生起させ、
該グロー放電を利用して前記の半導体層105の新鮮な
表面上に直に第1のn+層107−1と第2のn+層10
7−2とを離隔させて並置的関係に設けることにより、
良好なトランジスタ特性を示す非晶質シリコンTFTを
得ることが出来る。
【0027】半導体層105を形成する際の母体ガスと
しての水素又は/及び弗素とシリコンの化合物はそれ等
だけで堆積室内に存在させてもよいが、好ましくはHe
ガス又は/及びH2 ガスによって稀釈されて堆積室内に
存在させられる。この際の稀釈ガスとしての割合は、水
素とシリコンの化合物からなる母体ガスに対して、通常
は99.9:1〜1:9、好適には99:1〜7:3と
されるのが望ましいものである。また弗素とシリコンの
化合物からなる母体ガスに対して、通常は2:1〜5
0:1、好適には5:1〜20:1とされるのが望まし
いものである。
【0028】本発明においては、稀釈ガスとしては、殊
にH2 ガスが好ましいものとして挙げる事が出来る。殊
に、弗素とシリコンとの化合物を使用する場合には、H
2 ガスを稀釈ガスとして使用する方が良い結果を得るこ
とが出来る。
【0029】上記の層作成条件の他、形成される半導体
層105の特性に及ぼす重要な因子としては、特に基板
温度、層形成時の圧力、及びグロー放電電力を挙げる事
が出来る。
【0030】これ等の因子は、本発明に於いては、その
目的をより効果的に達成する為に、次の数値範囲内に制
御されて、層形成が成される。
【0031】水素化非晶質シリコン(a−Si:H)の
場合には基板温度として通常は100℃〜300℃、全
圧力としては通常0.10〜1.0Torr、放電電力
としては通常0.005〜0.1W/cm2 とされるの
が望ましい。
【0032】弗素化非晶質シリコン(a−Si:F)、
及び水素弗素化非晶質シリコン(a−Si:F,H)で
は基板温度は通常200℃〜500℃、全圧力は通常
0.10〜1.0Torr、放電電力は通常0.1〜1
W/cm2 とされるのが望ましい。
【0033】本発明においては、形成されるn+層10
7の比抵抗値はより効果的に本発明の目的を達成する為
に103 Ωcm以下にされるのが望ましいものである。
【0034】この様にn+層107の比抵抗値を103
Ωcm以下とするには、前記の層形成条件の他に基板温
度、全ガス圧力、グロー放電電力の条件を精確に設定し
て行う必要がある。その様な条件は、シリコンと水素の
化合物を母体ガスに使用する場合には基板温度として
は、通常100℃〜300℃、全圧力としては通常0.
10〜1.0Torr、放電電力としては通常0.01
〜0.1W/cm2 の範囲を好ましいものとして挙げる
ことが出来る。
【0035】母体ガスとして、シリコンと弗素との化合
物を使用する場合には、基板温度としては、通常200
℃〜500℃、全ガス圧力としては通常0.10〜1.
0Torr、放電電力としては通常0.1〜1W/cm
2 の範囲内で制御する必要がある。
【0036】n+層を形成する際に、母体ガスとしての
シリコンと水素との化合物又は/及びシリコンと弗素と
の化合物と、ドーパントガスとしてのシリコンと燐との
化合物又は/及びシリコンと砒素との化合物の他に望ま
しくは稀釈ガスとしてHe,H2 等のガスを用いて所定
の割合に稀釈するのが好ましいものであり、殊にH2
スの使用は良好な結果を得ることが出来、好ましいもの
である。
【0037】この際、稀釈ガスの混合割合は、水素とシ
リコンの化合物からなる母体ガスに対しては稀釈ガス以
外の残余ガスの割合との比で、通常は99.9:1〜
1:9、好ましくは99:1〜7:3とされるのが望ま
しいものである。
【0038】また弗素とシリコンの化合物からなる母体
ガスに対しては、稀釈ガス以外の残余ガスの割合との比
で2:1〜50:1、好ましくは5:1〜20:1とさ
れるのが望ましいものである。
【0039】半導体層105及びn+層の層厚としては
所望されるトランジスタ特性が得られる様に所望に従っ
た設計に基づいて適宜決定されるものであるが、半導体
層105は通常500Å〜5μ、好ましくは1000Å
〜1μとされn+層107は通常200Å〜0.2μ、
好ましくは500Å〜1000Åとされるのが望ましい
ものである。
【0040】以上の説明及び以下の実施例においては、
所謂スターガー型の構造TFTに就いて記したが、本発
明は、これに限定されることなく、コプレーナー型の構
造のTFTも含むものである。
【0041】而乍ら、スターガー型、コプレーナー型の
いずれかにしても、半導体層とn+層とを連続的に形成
する点及びソース電極、ドレイン電極間のチャンネルの
抵抗はゲート電圧によって変調されねばならないのでチ
ャンネル部分のn+層は除去する必要があるためエッチ
ング法等によるチャンネル部のn+層の除去の点からみ
てソース電極、ドレイン電極がn+層の上部にある層構
成が望ましい。
【0042】本発明におけるコプレーナー型の構造TF
Tを作成する場合、各電極、n+層、半導体層、及び絶
縁層の作成条件は前記したスターガー型の構造のTFT
の場合と本質的には同じであって、ただ、それ等の作成
順が異なるだけである。
【0043】コプレーナー型TFTを作成する場合に
は、先ず、所定通りの洗滌処理を施した基板を用意し、
該基板を堆積室内の所定位置に設置して、グロー放電法
によって半導体層を形成する。半導体層の形成後、引続
き堆積室内の真空を破ることなく、グロー放電を維持し
乍ら層形成の原料ガスを変えてn+層を前記半導体層上
に形成する。n+層の形成後、該n+層を所定のパターニ
ング及びエッチング処理に従って一部分を除去して2つ
の離隔された部分に分離し、第1のn+層及び第2のn+
層を半導体層の表面上に並列的に形成する。
【0044】その後、グロー放電法、スパッターリング
法或いは真空蒸着法によって前記n+層の除去された部
分に絶縁層を設ける。
【0045】次いで、第1のn+層上にはソース電極
を、第2のn+層上にはドレイン電極を、絶縁層上には
ゲート電極を作成する。
【0046】上記において、絶縁層と各電極の形成順は
逆にしても良いもので、都合に応じて種々の順序で、そ
れ等は形成されても良いものである。
【0047】
【実施例】
実施例1 図1に示す層構成で、以下のA〜Dの4種類の試料を作
成して、各々のトランジスタ特性を測定した。
【0048】(試料A)図1の構造に於いて、n+層1
07のないもの (試料B)図1の構造において、半導体層105を形成
した後、該層105の表面を大気に晒し、その後に、そ
の表面上に直にn+層107を設けたもの (試料C)図1の構造において、半導体層105を形成
した後、該層105の表面を大気に晒さないが、グロー
放電を一旦止め、その後に、前記表面上に直にn+層1
07を形成したもの (試料D)図1の構造において、グロー放電を止めるこ
となく(略々一定の放電電圧を維持した状態で)半導体
層105とn+層107とを連続的に形成したもの (その他の共通の条件及び作成手順)基板106は厚さ
1.2mm、大きさ70×70mmのコーニング社製 #
7059ガラスを用いた。該ガラス基板は中性洗剤を用
い超音波洗滌を30分行い、次いで蒸留水、イオン交換
水の順に充分洗滌したのち真空赤外乾燥機にて充分乾燥
した。続いて弗酸、硝酸、酢酸が1:1:80の割合で
混合された液により15sec間エッチングを施したの
ち酢酸、水により充分洗滌し、引続きイソプロパノール
で超音波洗滌を30分行い真空赤外乾燥機で乾燥させて
表面を清浄化処理した。このように表面化処理したガラ
ス基板106上にアルミニウムを圧力1.5×10-4
aの下で真空蒸着しガラス基板106上に一様に150
0Å付着させた後、幅200μ、長さ20mmのゲート
電極を形成させるため電極のパターニング、エッチング
をAZ1350J(Ship−ley社製)のフォトレ
ジストを用い通常の方法で行った。
【0049】パターニングされたアルミニウムゲート電
極上に図2に示される装置を用い以下の様にして絶縁層
104としての窒化シリコン層を形成した。
【0050】前記の様にゲート電極101の形成された
ガラス基板106を厚さ0.5cm、大きさ20cmφ
のSUS 304製の基板ホルダに装填して、堆積室2
01内に配設されてある、加熱機構及び上下動機構を有
する大きさ20cmφのSUS304製のアノード電極
202の所定位置に堅固に固定した。
【0051】又、厚さ3mm、大きさ17cmφのSU
S 304製のカソード電極203上には、厚さ3m
m、大きさ17cmφの、前記ガラス基板と同様に清浄
化処理を施した石英板205を設置した。
【0052】次に、ヒーター204をON状態にして、
ガラス基板を均一にして250〜260℃に保温し乍
ら、堆積室201内をB−Aゲージ(ANELVA製)
の指示が圧力1.0×10-4Paになるまで排気した。
【0053】この時、ストップバルブ209−1〜20
9−8は全て閉じた状態を維持した。又、ガス流量制御
装置(MFC)210−1〜110−8としてはサーマ
ルマスクローコントローラ(Tylan Corpor
ation製 FC−260)を使用した。
【0054】次に、N2 ガスライン211−1のMFC
210−1の指示を100SCCMに設定し、次いで水
素ベースシランガス(SiH4 濃度10vol%)ライ
ン211−2のMFC210−2の指示を5SCCMに
設定した。その後、ストップバルブ209−1,209
−2を開き、図3に模式的に示した如き、管内径2.5
mmで、0.1mmφのガス流出口を11個設けた環径
21cmφり環状ガス導入管206より前記のガスを流
出させ、堆積室201内の圧力が隔膜型真空計(MKS
バラトロン製 211AHS)で15Paになるように
排気系を調整した。続いて、アノード電極202とカソ
ード電極203間を50mmに保ち、環状のガス導入管
206をアース電位に接地すると共にガス導入管206
のガス流出口とカソード電極203間を40mmに保
ち、アノード電極202とカソード電極203間に高周
波電界を印加し堆積室201内にプラズマを発生させ
た。
【0055】この場合、投入される高周波電圧を0.4
KV、高周波電力を5Wにした。この様な条件でプラズ
マを1時間維持させてゲート電極101を覆う様にして
基板106上に窒化シリコンを堆積させて0.12μ厚
の絶縁層104を形成した。
【0056】次に前記絶縁層106上に該層106作成
装置と同一装置を用い次の様にして水素化非晶質シリコ
ン(a−Si:H)を堆積させた半導体層105を形成
した。絶縁層106形成後ストップバルブ209−1を
閉じ、ドーピングガスを堆積室201内に導入させずに
水素ベースシランガスライン211−2のストップバル
ブ209−2は開いた状態としてMFC210−1の指
示を60SCCMに設定し、アノード電極202とカソ
ード電極203間に高周波電界を印加して堆積室201
内にプラズマを発生させて、ドーパント材料によりドー
ピングされていないa−Si−Hを堆積させた。このと
きの投入される高周波電圧は0.4KV、高周波電力は
5Wであった。プラズマは2時間維持させて0.4μ厚
の半導体層105を形成した。
【0057】このときの半導体層105の比抵抗は2.
0×1011Ω・cmであった。
【0058】(各試料個別の条件及び作成手順) (A):上記の様にして半導体層105の形成された基
板106を真空を破って堆積室201の外に取出し、ソ
ース電極102、ドレイン電極103を半導体層105
表面上に形成する為に、ゲート電極101の形成と同様
に半導体層105の表面にAlを蒸着した。
【0059】次いで、ソース電極102とドレイン電極
103との間の距離L(チャンネル部分)が50μ、ソ
ース電極102及びドレイン電極の長さZが10mmに
なる様にパターニングとエッチング処理を施して試料A
を作成した。
【0060】(B):試料Aと同様に、半導体層105
までを形成した後、一旦真空を破って、基板106を堆
積室201内に取出した後、再び堆積室201の所定位
置に設置した。その後、n+層107を次の様にして形
成し、次いで試料Aと同様の条件と手順でソース電極1
02及びドレイン電極103をn+層107表面上に形
成し試料Bを作成した。
【0061】水素ベースシランガス(SiH4 濃度1v
ol%)ライン211−2MFC210−2の指示を4
0SCCMに、水素ベースフォスクインガス(PH3
度100ppm)ライン211−4のMFC210−4
の指示を20SCCMに設定した状態でアノード電極2
02とカソード電極203間に高周波電界を印加し堆積
室201内にプラズマを発生させn+層107を形成し
た。
【0062】このときの投入される高周波電圧は0.4
KV、高周波電力は5Wでありプラズマは1時間維持さ
せて0.1μ厚のn+層107が形成された。
【0063】次に試料Aと同様にして、ソース電極10
2、ドレイン電極103とを電極間距離Lが50μ、電
極の長さZが10mmになる様にパターニング及びエッ
チング処理を施した。この際AlのエッチングはH3
4 :CH3 COOH:HNO3 :H2 O=25:5:
1:4からなる液にて行った。
【0064】チャンネル部分のn+層のエッチングはH
F:HNO3 :CH3 COOH=1:20:30からな
る組成液にて行い、20sec間浸漬することによりn
+層を完全に除去した。
【0065】(C):試料Aと同様に半導体層105ま
でを形成した後、一旦グロー放電を起こす為の高周波電
界を0にし(グロー放電を一旦中止し)ストップバルブ
209−2を閉じた。
【0066】次に、MFC210−3及び210−4の
指示を各々40SCCM、20SCCMに設定した後、
速やかにストップバルブ209−3,209−4を全開
して混合ガスを環状ガス導入管6から堆積室201内に
流出させ投入される高周波電圧を、0.4KV、高周波
電力を5Wとしてグロー放電を再開させn+層107を
形成した。この際、プラズマは1時間維持させて0.1
μ厚のn+層を得た。次に大気中に取出してAlを真空
蒸着しパターニング、エッチング処理を施した。Alの
エッチング液は試料A,Bと同一であり、チャンネル部
分のn+層のエッチング液はHF:HNO3 :CH3
OOH=1:20:30からなる液で除去した。ソース
・ドレイン間距離L、ソース、ドレイン電極長Zは試料
A,Bと同一である。この様にして作成した試料を試料
Cとした。
【0067】(D):試料Cと比べ、半導体層105形
成後高周波電界を0とせず、グロー放電が生じた状態で
速やかに、ストップバルブ209−2を閉じ、次に予め
MFC210−3,210−4の指示をそれぞれ40S
CCM,20SCCMに設定して置いてストップバルブ
209−3,209−4を開いた。このとき堆積室20
1内の圧力は15Paから若干変動したが放電は維持さ
れ、約1分後15paになった。このときの高周波電力
は半導体層105の形成の場合と同じ5Wであった。
【0068】この様な条件でグロー放電を1時間維持さ
せ0.1μ厚のn+層107を形成し、その後試料Cと
同様なパターニング、エツチング処理を施し同一形状の
ソース電極102、ドレイン電極103を形成した。こ
れを試料Dとした。
【0069】なお上記条件で作成したn+層107の比
抵抗値は試料B,C,Dともに0.4Ω・cmであっ
た。
【0070】この様にして作成した試料A,B,C,D
に関しゲート、ソース、ドレインの各電極に対しリード
線とり出しのためAlのワイヤーボンディングを施し、
図4に示す如くソース電極102はエレクトロメーター
K(Keithley製616型)に接続し、ドレイン
電極103はソース、ドレイン間に電界を印加する為に
電源VD に、ゲート電極101はチャンネル部に電荷を
誘起させる為の電源VG に接続しVG をパラメータと
し、VD を変化させてソース・ドレイン間に流れる電流
D をエレクトロメーターKにて読み取った。
【0071】図5にVG =1.5Vのときの試料A,
B,C,DのVD に対するID の変化の振るまいを示
す。
【0072】VD =1.0Volt以下の低電圧領域で
明らかなようにオーミック接触が充分にとれている即ち
D に対しID が線型に変化しているのは試料Dだけで
あった。又オーミック性はD,C,B,Aの順に良好で
なくなることもこの図から直ちに判る。
【0073】ゲート電圧を変えてもVD-D 特性におけ
る低いVD 領域では図5と同様の傾向を示した。
【0074】実施例2 半導体層105及びn+層107を下記に示す方法で形
成し、その他層構成及び形状等は全て実施例1と同一条
件で作成して4種類のTFT素子(試料A−2,B−
2,C−2,D−2)を形成しオーミック接触について
検討した。
【0075】半導体105はSiF4 ガスをMFC21
0−6の指示を4SCCMに、水素ガスをMFC210
−7の指示を4SCCMに設定し、各々のストップバル
ブ209−6,209−7を開き環状ガス導入管206
から堆積室201内に流出させ堆積室201内の圧力が
隔膜型真空計(MKSバラトロン製221AHS)で8
0Paになるよう排気系を調整した。又ヒーター204
をON状態にしてガラス基板の温度が350℃になるよ
うにした。なおアノード電極202、カソード電極20
3間距離などは実施例1と略々同一にした。
【0076】アノード電極202とカソード電極203
間に高周波電界を印加し堆積室201内にグロー放電を
発生させた。
【0077】なお、ゲート電圧VG が零のとき、ソース
・ドレイン間の抵抗(チャンネル部の抵抗)はいずれの
場合も2.5×109 Ω〜3.0×109 Ωと殆んど変
わらなかった。
【0078】この際、投入される高周波電圧は0.7K
V、高周波電力は30Wであった。
【0079】グロー放電によって形成されるプラズマは
40分間維持させて0.3μ厚の半導体層105を作成
した。n+層107はSiF4 ガスをMFC210−6
の指示を40SCCMに、水素ベースフォスフィンガス
(オスフィン10vol%)をMFC210−8の指示
を2SCCMに設定しストップバルブ209−6,20
9−7,209−8を開放にし半導体層105形成時と
同様に堆積室内201へ流出させ堆積室201内の圧力
を80Paになるようにし、ガラス基板温度は350℃
に設定し高周波電圧を0.75KV、高周波電力は50
Wで、n+層を形成させた。
【0080】この際グロー放電によって形成されたプラ
ズマは15分間維持させて、0.1μ厚のn+層を得
た。
【0081】なおこのときのn+層の比抵抗値は試料B
−2,C−2,D−2共に1.2Ω・cmであった。
【0082】なお、本実施例における試料A−2,B−
2,C−2,D−2は実施例1における試料A,B,
C,Dに各々対応する。即ち、試料A−2が試料Aに、
試料B−2が試料Bに、試料C−2が試料Cに、試料D
−2が試料Dに、それぞれ対応している。試料B−2,
C−2,D−2においてチャンネル部分のn+層のエッ
チングはHF:HNO3 :CH3 COOH=3:5:8
0からなる液にて行い、40sec間浸漬することによ
りチャンネル部分のn+層を完全に除去した。その他パ
ターニング、エッチングは実施例1と同一にして施し
た。
【0083】実施例1と同様ソース、ドレイン間電圧V
D に対するドレイン電流ID をしらべた結果(このとき
G =1.5volt)を図6に示す。直ちに判明され
るようにオーミック接触は試料D−2で完全にとれてい
るが他の試料A−2,B−2,C−2は良好でないこと
がわかる。
【0084】絶縁層106として窒化シリコンの代わり
にSiO2 のスパッタリング膜(膜厚0.1μ)を用い
ても同様の傾向が認められ、ソース、ドレイン電極と半
導体層105のオーミック接触は該半導体層105とn
+層107の放電を維持した状態で連続して付着させる
ことにより達成される事が判明した。
【0085】一方実施例ではn+層形成のためドーピン
グ材料としてPH3 の例を掲げたがAsH3 を混合した
ガスを用いてn+層を形成しても良い結果が得られた。
【0086】なお、半導体層形成の為原材料として上記
の実施例ではSiH4 ,SiF4 の例を掲げたが勿論S
iH4 ,SiF4 の混合ガスを用いてもよいことは当然
である。
【0087】
【発明の効果】以上詳述したように、本発明の非晶質シ
リコン薄膜トランジスタの製造法によれば、シリコン原
子を含有するガスを水素ガスにより希釈して堆積室内に
導入して、グロー放電を生起させて水素化非晶質シリコ
ンからなる半導体層を形成するため、非晶質シリコン半
導体層は、水素により十分ダングリングボンド(不飽和
電子対)が補償された優れたものとなる。そして、この
ような半導体層を用いて薄膜トランジスタを製造するの
で得られる薄膜トランジスタは、半導体特性が極めて向
上した薄膜トランジスタとなる。更に、非晶質半導体層
のクリーンサーフェス上にn+層を設けることで電極と
前記非晶質半導体層との間に非常に良好なオーミック接
触が得られている優れたトランジスタ特性を有する非晶
質シリコン薄膜トランジスタを製造することができる。
【0088】更に言えば、本発明においては、n+層を
介して半導体層と電極との間に非常に良好なオーミック
接触を得るために、半導体層とn+層を形成する際に、
半導体層表面を大気又は酸素に晒すことなくn+層を形
成する、或いは、半導体層形成後半導体層形成と同一の
堆積室内でn+層を該半導体層形成に引続き連続して形
成する。これによって、半導体層上に例えば不純物粒子
の吸着や酸化膜の形成を生じさせない為電極と半導体層
との間に極めて優れた特性のオーミック接触をとること
ができる。
【0089】又、本発明によって非晶質シリコン薄膜ト
ランジスタの電極と半導体層との間にn+層を設け、そ
れ等の間に良好なオーミック接触をさせることで、従来
の非晶質シリコン薄膜トランジスタの有していたゲート
電圧一定時のVD −ID 特性がVD の小さい領域におい
て非直線性を示す、云い換えればVD を増加させてもI
D があまり増加しない、というトランジスタの特性とし
ては好ましくない特性の問題を解決し、非常に優れたト
ランジスタ特性を有する非晶質シリコン薄膜トランジス
タを製造することができる。
【図面の簡単な説明】
【図1】本発明により得られるトランジスタの一構造を
説明する為の模式的な斜視部分図である。
【図2】本発明に係わるトランジスタを製造する為の装
置の一例を示す模式図である。
【図3】本発明に係わるトランジスタを製造する為の装
置の一例を示す模式図であり、図2における点線XYで
切断した場合の断面図である。
【図4】本発明に係わるトランジスタの特性を測定する
為の模式的回路図である。
【図5】本発明の実施例における結果を示すVD −ID
曲線の説明図である。
【図6】本発明の実施例における結果を示すVD −ID
曲線の説明図である。
【符号の説明】
101 ゲート電極 102 ソース電極 103 ドレイン電極 104 絶縁層 105 半導体層 106 基板 107 n+層 108 クリーンサーフェス
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 幸俊 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 中桐 孝志 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 ゲート電極と電気的な絶縁層とが形成さ
    れた非晶質シリコン薄膜トランジスタ形成用の基板を、
    減圧にし得る堆積室内に設置し、前記堆積室内を所定の
    真空度として、前記絶縁層上に水素化非晶質シリコンか
    らなる半導体層を形成した後、該半導体層に電気的に接
    続するソース電極及びドレイン電極を形成して非晶質シ
    リコン薄膜トランジスタを製造する非晶質シリコン薄膜
    トランジスタの製造方法であって、シリコン原子を含有
    するガスを水素ガスにより希釈して前記堆積室に導入
    し、該堆積室内にグロー放電を生起させて前記半導体層
    を形成することを特徴とする非晶質シリコン薄膜トラン
    ジスタの製造法。
  2. 【請求項2】 前記水素ガスと前記シリコン原子を含有
    するガスとの割合は、99.9:1〜1:9の範囲にあ
    る請求項1に記載の非晶質シリコン薄膜トランジスタの
    製造法。
  3. 【請求項3】 前記割合は、99.9:1〜7:3の範
    囲にある請求項2に記載の非晶質シリコン薄膜トランジ
    スタの製造法。
  4. 【請求項4】 前記半導体層の形成は、前記基板を10
    0℃〜300℃の温度に保持して行われる請求項1に記
    載の非晶質シリコン薄膜トランジスタの製造法。
  5. 【請求項5】 前記半導体層の形成は、前記堆積室内の
    圧力を0.10〜1.0Torrの範囲として行われる
    請求項1に記載の非晶質シリコン薄膜トランジスタの製
    造法。
  6. 【請求項6】 前記半導体層の形成は、前記堆積室内に
    おける放電電力を0.005〜0.1W/cm2の範囲
    として行われる請求項1に記載の非晶質シリコン薄膜ト
    ランジスタの製造法。
JP5185051A 1980-03-27 1993-07-27 非晶質シリコン薄膜トランジスタの製造法 Expired - Lifetime JP2690446B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5185051A JP2690446B2 (ja) 1980-03-27 1993-07-27 非晶質シリコン薄膜トランジスタの製造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3925180A JPS56135968A (en) 1980-03-27 1980-03-27 Amorphous silicon thin film transistor and manufacture thereof
JP5185051A JP2690446B2 (ja) 1980-03-27 1993-07-27 非晶質シリコン薄膜トランジスタの製造法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3925180A Division JPS56135968A (en) 1980-03-27 1980-03-27 Amorphous silicon thin film transistor and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH06163592A true JPH06163592A (ja) 1994-06-10
JP2690446B2 JP2690446B2 (ja) 1997-12-10

Family

ID=26378578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5185051A Expired - Lifetime JP2690446B2 (ja) 1980-03-27 1993-07-27 非晶質シリコン薄膜トランジスタの製造法

Country Status (1)

Country Link
JP (1) JP2690446B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3743951A1 (de) * 1986-12-26 1988-07-07 Toshiba Ceramics Co Einrichtung zum ziehen von siliziumeinkristallen mit einem waermeisolierzylinder und verfahren zur herstellung des materials desselben
WO2009118837A1 (ja) * 2008-03-26 2009-10-01 東京エレクトロン株式会社 処理チャンバの排気ガス流量の制御方法及び処理装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154289A (en) * 1978-05-26 1979-12-05 Matsushita Electric Ind Co Ltd Manufacture of thin-film transistor array

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154289A (en) * 1978-05-26 1979-12-05 Matsushita Electric Ind Co Ltd Manufacture of thin-film transistor array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3743951A1 (de) * 1986-12-26 1988-07-07 Toshiba Ceramics Co Einrichtung zum ziehen von siliziumeinkristallen mit einem waermeisolierzylinder und verfahren zur herstellung des materials desselben
WO2009118837A1 (ja) * 2008-03-26 2009-10-01 東京エレクトロン株式会社 処理チャンバの排気ガス流量の制御方法及び処理装置
JP5391190B2 (ja) * 2008-03-26 2014-01-15 東京エレクトロン株式会社 処理チャンバの排気ガス流量の制御方法及び処理装置

Also Published As

Publication number Publication date
JP2690446B2 (ja) 1997-12-10

Similar Documents

Publication Publication Date Title
JPH0449269B2 (ja)
JP2506539B2 (ja) 絶縁膜の形成方法
JP2762968B2 (ja) 電界効果型薄膜トランジスタの製造方法
JPS633463A (ja) 薄膜トランジスタの製造方法
JPS63194326A (ja) 半導体装置の製造方法
JP3054862B2 (ja) ダイヤモンド状炭素膜を含むゲート絶縁膜とこれを用いた薄膜トランジスタ及びゲート絶縁膜の形成方法並びにこれらの製造方法
JPH04218928A (ja) 薄膜半導体装置とその製造方法及びシリコン薄膜堆積法
JPH06163592A (ja) 非晶質シリコン薄膜トランジスタの製造法
EP0744775A2 (en) Microcrystal silicon thin film transistor
JP2714570B2 (ja) アクティブマトリクス回路
JPH06163591A (ja) 半導体装置の製造方法
JP3807127B2 (ja) シリコン系薄膜の形成方法
JP3486421B2 (ja) 薄膜半導体装置の製造方法
JPS58112365A (ja) 薄膜トランジスタの製造方法
JP3221129B2 (ja) 半導体装置の製法
JPH04304677A (ja) アモルファスシリコン薄膜半導体装置とその製法
JPS62240768A (ja) 堆積膜形成法
JPH04318973A (ja) 薄膜トランジスタ及びその製造方法
JP2663418B2 (ja) 薄膜トランジスタの製造方法
JP3837934B2 (ja) 半導体装置の製造方法
JP2000091590A (ja) 薄膜半導体装置の製造方法
JP3730185B2 (ja) 薄膜トランジスタの製造方法
JPH01171275A (ja) 薄膜トランジスタの製造方法
JPH0645593A (ja) トランジスタの製造方法
JPH0653503A (ja) 薄膜トランジスタ及びその製造方法