JPH0614523B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JPH0614523B2
JPH0614523B2 JP59104716A JP10471684A JPH0614523B2 JP H0614523 B2 JPH0614523 B2 JP H0614523B2 JP 59104716 A JP59104716 A JP 59104716A JP 10471684 A JP10471684 A JP 10471684A JP H0614523 B2 JPH0614523 B2 JP H0614523B2
Authority
JP
Japan
Prior art keywords
wiring
film
semiconductor device
resin
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59104716A
Other languages
Japanese (ja)
Other versions
JPS60249333A (en
Inventor
正泰 安部
康一 間瀬
正治 青山
隆 安島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59104716A priority Critical patent/JPH0614523B2/en
Publication of JPS60249333A publication Critical patent/JPS60249333A/en
Publication of JPH0614523B2 publication Critical patent/JPH0614523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Local Oxidation Of Silicon (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、半導体装置とその製造方法に関し、さらに
詳細にはAlもしくはAl合金製の配線とその配線上に
プラズマCVD絶縁保護膜を形成する場合の配線消失な
どの欠陥を防止する構造とその形成方法に係るものであ
る。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor device and a method of manufacturing the same, and more specifically, in the case of forming a wiring made of Al or Al alloy and a plasma CVD insulating protective film on the wiring. The present invention relates to a structure for preventing defects such as wiring loss and a method for forming the structure.

[発明の技術的背景] プラズマCVD法によって形成されるプラズマ窒化シリ
コン膜(以下にはP−SiN膜と記載する)は水分やN
aイオンの阻止能力が高く、また比較的低温で形成でき
るため、配線形成後の半導体装置パッシベーション膜な
どとして極めて優れた性質を有しており、それゆえ、現
在では高集積度の半導体装置の最終保護膜及び多層配線
間の層間絶縁膜として用いられている。
[Technical Background of the Invention] A plasma silicon nitride film (hereinafter, referred to as a P-SiN film) formed by a plasma CVD method contains moisture or N.
Since it has a high ability to block a ions and can be formed at a relatively low temperature, it has extremely excellent properties as a semiconductor device passivation film after wiring is formed. It is used as a protective film and an interlayer insulating film between multilayer wirings.

[背景技術の問題点] P−SiN膜は配線材料であるAlよりも熱膨脹係数が
はるかに小さいので、Al配線の上にP−SiN膜を形
成した場合、膜形成後の冷却過程においてAl配線はP
−SiN膜の圧縮応力に起因する負の静水圧を受けるよ
うになり(P−SiN膜のほかのプラズマCVD絶縁膜
においてもその傾向がある)、その結果、Al配線は流
動化(マイグレーション)を起し配線が消失するかのご
とき現象を生じることが知られている。
[Problems of the Background Art] Since the P-SiN film has a thermal expansion coefficient much smaller than that of Al, which is a wiring material, when the P-SiN film is formed on the Al wiring, the Al wiring is formed in the cooling process after the film formation. Is P
-Negative hydrostatic pressure due to the compressive stress of the SiN film comes to be exerted (there is a tendency also in the plasma CVD insulating film other than the P-SiN film), and as a result, the Al wiring is fluidized (migrated). It is known that such a phenomenon occurs that the rising wiring disappears.

第3図は従来の半導体装置において前記のごとき現象を
説明したものである。同図において、1は半導体基板、
2はSiO等の絶縁膜、3は該絶縁膜2上に形成され
たAl等の配線、4は該配線3及び絶縁膜2上に形成さ
れたP−SiNからなる絶縁保護膜である。図示のよう
に配線3の上に絶縁保護膜4を形成した場合、AlとP
−SiNとは熱膨脹係数にかなりの差がある(Al:2
3.8×10-6/℃,P−SiN:4×10-6/℃)ため、P
−SiN膜形成(P−SiNの形成温度はほぼ400℃)
後の冷却過程においては配線3の収縮量が絶縁保護膜4
のそれよりも大きくなり、その結果、配線3の各面には
絶縁保護膜4によって外側に向う負の静水圧(各面に垂
直な引張応力)が働くことになる。その場合、配線3に
何らかの欠陥やコンタミネーション等が存在すると、そ
こに応力集中等が生じて配線3の一部3aが流動かつ消
失して配線3の実質的な幅は設計値よりも大幅に減少
し、配線抵抗が著しく増加するという結果を招くことに
なる。この配線の一部消失は配線3の内部応力と流動化
(マイグレーション)の抵抗とが平衡するまで進行す
る。
FIG. 3 illustrates the phenomenon as described above in the conventional semiconductor device. In the figure, 1 is a semiconductor substrate,
Reference numeral 2 is an insulating film such as SiO 2 , 3 is a wiring such as Al formed on the insulating film 2, and 4 is an insulating protective film made of P—SiN formed on the wiring 3 and the insulating film 2. When the insulating protective film 4 is formed on the wiring 3 as shown in the figure, Al and P
-There is a considerable difference in the coefficient of thermal expansion from SiN (Al: 2
3.8 × 10 -6 / ° C, P-SiN: 4 × 10 -6 / ° C), so P
-SiN film formation (P-SiN formation temperature is approximately 400 ° C)
In the subsequent cooling process, the shrinkage amount of the wiring 3 is reduced by the insulating protective film 4.
As a result, a negative hydrostatic pressure (tensile stress perpendicular to each surface) outward acts on each surface of the wiring 3 by the insulating protective film 4. In that case, if there is some kind of defect or contamination in the wiring 3, stress concentration or the like occurs therein, and a part 3a of the wiring 3 flows and disappears, so that the substantial width of the wiring 3 becomes significantly larger than the design value. This results in a decrease in wiring resistance and a significant increase in wiring resistance. This partial disappearance of the wiring proceeds until the internal stress of the wiring 3 and the resistance of fluidization (migration) are balanced.

従って従来は配線の一部消失を考慮して予め配線幅を大
きく(例えば6μm以上に)設計しておくか、あるいは
配線表面を硬化させて配線の流動化(マイグレーショ
ン)を抑制する等の対策が行なわれてきた。
Therefore, conventionally, measures such as designing a large wiring width in advance (for example, 6 μm or more) in consideration of partial loss of wiring, or hardening the wiring surface to suppress wiring fluidization (migration) have been taken. Has been done.

しかしながら、配線幅を大きくすると集積度が低下して
チップ面積が増大し、その結果、歩留りが低下するとい
う問題を生じるので好ましいことではなかった。(すな
わち、線幅を4μmから6μmに増加させた場合、バイ
ポーラLSIの1素子当りの面積は例えば 6×103 μm
/素子から15×10 3μm/素子に増大し、従ってバ
イポーラLSIの集積度は大幅に低下する。) また、配線表面を硬化させる方法としては従来、配線表
面にほう素をイオン注入する方法(注入量 1×1016cm-2
以下、加速電圧50keV)と、配線表面をTiSi
(膜厚500Å)被覆する方法とが知られているが、これ
らの方法は工程コストが高いうえ配線消失を完全に抑制
することもできないため、実用には適していなかった。
However, if the wiring width is increased, the degree of integration is reduced, the chip area is increased, and as a result, the yield is reduced, which is not preferable. (That is, when the line width is increased from 4 μm to 6 μm, the area per element of the bipolar LSI is, for example, 6 × 10 3 μm.
The number is increased from 2 / element to 15 × 10 3 μm 2 / element, and thus the integration degree of the bipolar LSI is significantly reduced. ) In addition, the conventional method for hardening the wiring surface is to implant boron ions into the wiring surface (implantation amount 1 × 10 16 cm -2
Hereinafter, accelerating voltage of 50 keV) and a method of coating the wiring surface with TiSi 2 (film thickness 500Å) are known, but these methods are high in process cost and cannot completely suppress wiring loss. , Was not suitable for practical use.

一方、従来の半導体装置及びその製造方法では、前記の
ごとき配線の一部消失とともに配線表面にヒロック3b
を生じた場合の問題点があった。よく知られているよう
に、配線3の表面にヒロック3bが生ずると、層間絶縁
膜やパッシベーション膜(第3図の半導体装置ではP−
SiN膜)にも欠陥や表面突起部4aが生じて保護絶縁
膜自体の絶縁不良や上層配線の形成不良等が生じやすく
なるため、パッシベーション膜や層間絶縁膜はできるか
ぎり平坦化されたものであることが望ましい。
On the other hand, in the conventional semiconductor device and the manufacturing method thereof, the hillock 3b is formed on the wiring surface together with the disappearance of the wiring as described above.
There was a problem when it occurred. As is well known, when a hillock 3b is formed on the surface of the wiring 3, an interlayer insulating film or a passivation film (P- in the semiconductor device of FIG.
The passivation film and the interlayer insulating film are flattened as much as possible, because defects and surface protrusions 4a also occur in the SiN film) and insulation defects of the protective insulating film itself, formation defects of upper layer wirings, and the like are likely to occur. Is desirable.

[発明の目的] この発明の第一の目的は、前記のごとき従来の半導体装
置に存する問題点を解決し、配線の一部消失が生ずる恐
れがなく、かつヒロックによる保護膜や上層配線の不良
をほぼ完全に抑制することができる半導体装置を提供す
ることである。また、この発明の第二の目的は上記のご
とき配線の一部消失を防止しかつ平坦な保護膜とを備え
た半導体装置を高歩留りで製造することのできる製造方
法を提供することである。
[Object of the Invention] A first object of the present invention is to solve the problems existing in the conventional semiconductor device as described above, there is no fear that a part of the wiring will be lost, and a defective protective film or upper wiring due to hillocks. It is an object of the present invention to provide a semiconductor device capable of almost completely suppressing the above. A second object of the present invention is to provide a manufacturing method capable of manufacturing a semiconductor device having a flat protective film and preventing the partial disappearance of the wiring as described above with a high yield.

[発明の概要] この発明による半導体装置は、AlもしくはAl合金製
の配線と、該配線の上面に被着された(該配線と同一パ
ターンの)ポリイミド系樹脂製の樹脂膜と、該樹脂膜の
表面と該樹脂膜及び該配線の側面とを覆って被着された
プラズマCVD法による絶縁保護膜とを有していること
を特徴とするものである。また本発明の製造方法は配線
金属膜と樹脂膜とを積層した後同一パターンでエッチン
グし、次いでプラズマCVD法により絶縁保護膜で被覆
することを特徴としている。本発明の半導体装置では配
線の一部消失を生ずる恐れがなく、また、絶縁保護膜の
表面には配線表面のヒロックに基因する表面欠陥を生ず
ることはない。
[Summary of the Invention] A semiconductor device according to the present invention includes a wiring made of Al or an Al alloy, a resin film made of a polyimide resin (having the same pattern as the wiring) deposited on the upper surface of the wiring, and the resin film. And an insulating protective film formed by a plasma CVD method so as to cover the surface and the side surface of the resin film and the wiring. Further, the manufacturing method of the present invention is characterized in that a wiring metal film and a resin film are laminated, etched in the same pattern, and then covered with an insulating protective film by a plasma CVD method. In the semiconductor device of the present invention, there is no possibility that a part of the wiring will be lost, and the surface of the insulating protective film will not have surface defects due to hillocks on the wiring surface.

[発明の実施例] 以下に第1図及び第2図を参照して本発明の半導体装置
及びその製造方法の実施例について説明する。
[Embodiment of the Invention] An embodiment of a semiconductor device and a manufacturing method thereof according to the present invention will be described below with reference to FIGS. 1 and 2.

第1図及び第2図は本発明の半導体装置を製造する方法
の概略を示したものであり、また第2図は本発明の半導
体装置の構造を示す断面図である。
1 and 2 show the outline of the method for manufacturing the semiconductor device of the present invention, and FIG. 2 is a sectional view showing the structure of the semiconductor device of the present invention.

第1図及び第2図において第3図と同じ符号で表示され
ている部分は第3図の半導体装置と同じ部分を表わし、
1は半導体基板、2はSiO等の絶縁膜、3はAlも
しくはAl合金等からなる配線、4はP−SiN膜等の
絶縁保護膜である。
1 and 2, portions indicated by the same reference numerals as those in FIG. 3 represent the same portions as those of the semiconductor device shown in FIG.
Reference numeral 1 is a semiconductor substrate, 2 is an insulating film such as SiO 2 , 3 is wiring made of Al or Al alloy, and 4 is an insulating protective film such as a P-SiN film.

本発明の半導体装置は第2図に示すように、配線3の上
面にポリイミド樹脂系からなる樹脂膜5が被覆され、該
樹脂膜5の表面と配線3の側面及び絶縁膜2の表面にわ
たってP−SiN膜等からなる絶縁保護膜4が被覆され
ていることを特徴とするものである。このような構造を
有する本発明の半導体装置では、配線3の上面に樹脂膜
5が介在しているため、絶縁保護膜4の形成時において
該配線3の上面が該絶縁保護膜4に直接に接触しないの
で該絶縁保護膜4からの引張力が軽減され、その結果、
配線3の一部消失を未然に防止することができる。
As shown in FIG. 2, in the semiconductor device of the present invention, the upper surface of the wiring 3 is covered with a resin film 5 made of a polyimide resin, and the surface of the resin film 5 and the side surface of the wiring 3 and the surface of the insulating film 2 are covered with P. It is characterized by being covered with an insulating protective film 4 made of a —SiN film or the like. In the semiconductor device of the present invention having such a structure, since the resin film 5 is interposed on the upper surface of the wiring 3, the upper surface of the wiring 3 directly contacts the insulating protection film 4 when the insulating protection film 4 is formed. Since there is no contact, the tensile force from the insulating protective film 4 is reduced, and as a result,
It is possible to prevent the wiring 3 from partially disappearing.

また、配線3の上面に形成された樹脂膜5によって配線
3の上面のヒロック3bを被覆すると、樹脂膜5は配線
3のヒロック3bを埋めて平坦になるため、絶縁保護膜
4の表面をも平坦化することができる。
When the hillock 3b on the upper surface of the wiring 3 is covered with the resin film 5 formed on the upper surface of the wiring 3, the resin film 5 fills the hillock 3b of the wiring 3 and becomes flat, so that the surface of the insulating protective film 4 is also covered. It can be flattened.

前記のごとき本発明の半導体装置は次のような工程で製
造された。
The semiconductor device of the present invention as described above is manufactured through the following steps.

まず、半導体基板1の全面にSiO等の絶縁膜2を生
成させた後、AlもしくはAl合金を該絶縁膜2上に所
定の厚さで蒸着させて金属膜を形成し、続いて該金属膜
上にポリイミド樹脂からなる樹脂膜を1000Å〜3000Åの
厚さに形成した。樹脂膜の形成は、半導体基板1上に液
状樹脂をスピンナ塗布した後、例えば100℃で一時間、2
50℃で一時間、350℃で一時間の加熱を行って該樹脂を
硬化させることにより行われた。
First, after an insulating film 2 such as SiO 2 is formed on the entire surface of the semiconductor substrate 1, Al or Al alloy is vapor-deposited on the insulating film 2 to a predetermined thickness to form a metal film, and then the metal film is formed. A resin film made of polyimide resin was formed on the film to a thickness of 1000Å to 3000Å. The resin film is formed by applying the liquid resin onto the semiconductor substrate 1 by a spinner and then, for example, at 100 ° C. for 1 hour.
It was carried out by heating the resin at 50 ° C. for 1 hour and at 350 ° C. for 1 hour to cure the resin.

樹脂膜の形成後、該樹脂膜上に公知の方法でレジストパ
ターン6を形成し(例えば、該樹脂膜上に形成したレジ
スト膜を所定のマスクを介して選択的に露光した後、現
像及び洗浄を行うことにより)、該レジストパターン6
をマスクとして反応性イオンエッチング(RIE)でま
ず、該樹脂膜をエッチングした(反応ガスとして酸素ガ
ス7Pa、RF電力 150Wで)後、続いて、該金属膜
をRIEエッチングする(反応ガス;CCl、圧力50
Pa、電力 100W)ことにより第1図に示すように絶
縁膜2上に配線3及び樹脂膜5並びにレジストパターン
6が形成された状態となる。
After forming the resin film, a resist pattern 6 is formed on the resin film by a known method (for example, the resist film formed on the resin film is selectively exposed through a predetermined mask, and then developed and washed). The resist pattern 6
First, the resin film is etched by reactive ion etching (RIE) using as a mask (oxygen gas 7 Pa as reaction gas, RF power 150 W), and then the metal film is RIE etched (reaction gas; CCl 4). , Pressure 50
As shown in FIG. 1, the wiring 3, the resin film 5 and the resist pattern 6 are formed on the insulating film 2 by applying Pa and electric power of 100 W).

次にレジストパターン6を有機溶剤で剥離した後、プラ
ズマCVD装置で全面にP−SiN膜からなる絶縁保護
膜4を厚さ1.0μmに被着させることによって第1図の
ごとき本発明の半導体装置を形成した。なお、多層配線
を形成する場合には絶縁保護膜4上にさらに上層配線が
形成されることになる。
Next, after removing the resist pattern 6 with an organic solvent, an insulating protective film 4 made of a P-SiN film is applied to the entire surface by a plasma CVD device to a thickness of 1.0 .mu.m, and the semiconductor device of the present invention as shown in FIG. Was formed. When forming a multi-layer wiring, an upper layer wiring is further formed on the insulating protection film 4.

また本発明のおける構造を要しないコンタクトホールな
ど所定個所については別の公知の工程を組合せることは
容易に理解できよう。
Further, it can be easily understood that other known processes are combined with respect to predetermined portions such as contact holes which do not require the structure in the present invention.

[発明の効果] 以上のごとき方法を用いて多層配線の半導体装置を多数
製作し、従来方法で作られた従来構造の多層配線の半導
体装置と比較した。
[Effects of the Invention] A large number of semiconductor devices having multi-layer interconnections were manufactured using the above method, and compared with a semiconductor device having multi-layer interconnections having a conventional structure produced by the conventional method.

第4図は横軸に上下の配線の総交叉面積A(mm)をと
り、縦軸に良品率ε(%)をとって従来の半導体装置と
本発明の半導体装置とを比較表示したものであり、同図
の(a)は本発明の半導体装置の良品率、同図の(b)
は従来の半導体装置の良品率を示す。
In FIG. 4, the horizontal axis represents the total cross-sectional area A (mm 2 ) of the upper and lower wirings and the vertical axis represents the non-defective rate ε (%), which is a comparative display of the conventional semiconductor device and the semiconductor device of the present invention. (A) of the figure is the non-defective rate of the semiconductor device of the present invention, and (b) of the figure.
Shows the non-defective rate of the conventional semiconductor device.

第4図から明らかなように、本発明の半導体装置では、
配線の交叉面積が増加しても良品率は100%を維持する
が、従来の半導体装置では配線の交叉面積が増加すると
良品率は急激に低下することがわかる。これは、本発明
の半導体装置では、樹脂膜の応力緩和作用のため配線の
損傷や一部消失などが少なく、且つ樹脂膜のヒロックを
埋める作用のため層間絶縁膜やパッシベーション膜が平
坦であるということを意味している。
As is clear from FIG. 4, in the semiconductor device of the present invention,
Although the non-defective rate is maintained at 100% even if the crossing area of the wiring is increased, it can be seen that in the conventional semiconductor device, the non-defective rate is sharply decreased when the crossing area of the wiring is increased. This means that in the semiconductor device of the present invention, the stress relaxation effect of the resin film causes less damage or partial disappearance of the wiring, and the hillocks of the resin film are filled with the interlayer insulating film and the passivation film being flat. It means that.

一方、配線の幅を4μmにして本発明の半導体装置と従
来の半導体装置とを同数ずつ製作し、それらの半導体装
置における配線の消失量について調べた結果、本発明の
半導体装置には配線消失が全く生じなかったのに反し、
従来の半導体装置では配線の20〜40%の体積が消失して
おり、また、配線にほう素をイオン注入した従来の改良
型半導体装置でも配線の体積の10〜20%が消失している
ことがわかった。
On the other hand, the same number of semiconductor devices of the present invention and conventional semiconductor devices were manufactured with the width of the wiring being 4 μm, and the amount of disappearance of the wiring in these semiconductor devices was examined. As a result, the semiconductor device of the present invention showed no wiring disappearance. Contrary to nothing happening,
In the conventional semiconductor device, 20 to 40% of the volume of the wiring is lost, and in the conventional improved semiconductor device in which boron is ion-implanted into the wiring, 10 to 20% of the volume of the wiring is lost. I understood.

他方、本発明の方法においてポリイミド樹脂の塗布に要
するコストを従来方法におけるBイオン注入やTiS
コーティング等のコストと比較したところ、ポリイミド
樹脂の塗布に要するコストはBイオン注入やTiS
ーティングのコストの1/5以下であり、本発明方法が
従来方法に比べて安価なコストで実施しうることも明ら
かになった。
On the other hand, the cost required for applying the polyimide resin in the method of the present invention is the same as that in the conventional method such as B ion implantation or TiS 2.
Comparing with the cost of coating etc., the cost required for applying the polyimide resin is 1/5 or less of the cost of B ion implantation and TiS 2 coating, and the method of the present invention can be carried out at a lower cost than the conventional method. It became clear.

以上のように、本発明の半導体装置によれば、従来の半
導体装置よりも配線消失及び保護膜絶縁不良などの不良
率が低下し、かつ従来よりも配線を細くすることができ
るとともに高歩留りでかつ安価なコストで製造すること
のできる半導体装置が提供される。また、本発明の製造
方法によれば、上記のごとき優れた特性を有する本発明
の半導体装置を従来方法よりも低コストかつ高歩留りで
生産することができる半導体装置製造方法が提供され
る。
As described above, according to the semiconductor device of the present invention, the defect rate such as wiring disappearance and protective film insulation failure is lower than that of the conventional semiconductor device, and the wiring can be made thinner than the conventional one, and the yield is high. A semiconductor device that can be manufactured at low cost is provided. Further, according to the manufacturing method of the present invention, there is provided a semiconductor device manufacturing method capable of manufacturing the semiconductor device of the present invention having the above excellent characteristics at a lower cost and a higher yield than the conventional method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法の一工程を示す断面図、第2図は本
発明の半導体装置の断面図、第3図は従来の半導体装置
の断面図、第4図は本発明の半導体装置の良品率と従来
の半導体装置の良品率とを比較表示した図である。 1……半導体基板、2……絶縁膜、3……配線、3a…
…(消失する)辺縁部、3b……ヒロック、4……絶縁
保護膜、4a……絶縁保護膜の突起部、5……樹脂膜、
6……レジストパターン。
1 is a sectional view showing one step of the method of the present invention, FIG. 2 is a sectional view of a semiconductor device of the present invention, FIG. 3 is a sectional view of a conventional semiconductor device, and FIG. 4 is a semiconductor device of the present invention. It is the figure which compared and displayed the non-defective rate and the non-defective rate of the conventional semiconductor device. 1 ... Semiconductor substrate, 2 ... Insulating film, 3 ... Wiring, 3a ...
... (disappearing) edge portion, 3b ... hillock, 4 ... insulating protective film, 4a ... protruding portion of insulating protective film, 5 ... resin film,
6 ... Resist pattern.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安島 隆 神奈川県川崎市幸区小向東芝町1 株式会 社東芝多摩川工場内 (56)参考文献 特開 昭55−22865(JP,A) 特開 昭53−99882(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Yasushima 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Stock company, Toshiba Tamagawa Plant (56) Reference JP-A-55-22865 (JP, A) JP Sho 53-99882 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】AlもしくはAl合金製の配線と、該配線
の所定個所以外の配線上面に被着された同じパターンの
ポリイミド樹脂製の樹脂膜と、該樹脂膜の表面と該樹脂
膜及び該配線の側面とを覆って被着されたプラズマCV
D法による絶縁保護膜とを有することを特徴とする半導
体装置。
1. A wiring made of Al or an Al alloy, a resin film made of a polyimide resin having the same pattern deposited on the upper surface of the wiring other than a predetermined portion of the wiring, the surface of the resin film, the resin film, and Plasma CV deposited over the sides of the wiring
A semiconductor device having an insulating protective film formed by the D method.
【請求項2】半導体基板上に直接もしくは間接にAlも
しくはAl合金の金属膜を形成する工程と、該金属膜の
上にポリイミド樹脂系の樹脂膜を形成する工程と、該樹
脂膜の上に所定のレジストパターンを形成する工程と、
該レジストパターンをマスクとして該樹脂膜と該金属膜
とを連続してエッチングする工程と、該レジストパター
ンを剥離した後に該樹脂膜の上から該半導体基板の全面
にわたってプラズマCVD法による絶縁保護膜を被覆す
る工程とを含む半導体装置の製造方法。
2. A step of directly or indirectly forming a metal film of Al or an Al alloy on a semiconductor substrate, a step of forming a polyimide resin resin film on the metal film, and a step of forming a polyimide resin resin film on the metal film. A step of forming a predetermined resist pattern,
A step of continuously etching the resin film and the metal film using the resist pattern as a mask; and an insulating protective film formed by a plasma CVD method over the entire surface of the semiconductor substrate from the resin film after peeling the resist pattern. A method of manufacturing a semiconductor device, which comprises a step of covering.
JP59104716A 1984-05-25 1984-05-25 Semiconductor device and manufacturing method thereof Expired - Lifetime JPH0614523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104716A JPH0614523B2 (en) 1984-05-25 1984-05-25 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104716A JPH0614523B2 (en) 1984-05-25 1984-05-25 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS60249333A JPS60249333A (en) 1985-12-10
JPH0614523B2 true JPH0614523B2 (en) 1994-02-23

Family

ID=14388206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104716A Expired - Lifetime JPH0614523B2 (en) 1984-05-25 1984-05-25 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0614523B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828419B2 (en) * 1986-02-20 1996-03-21 富士通株式会社 Wiring structure
JP2550337B2 (en) * 1987-03-03 1996-11-06 日本電気株式会社 Method for manufacturing semiconductor device
JP4771783B2 (en) * 2005-10-24 2011-09-14 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522865A (en) * 1978-08-07 1980-02-18 Nec Corp Manufacturing methof of semiconductor device

Also Published As

Publication number Publication date
JPS60249333A (en) 1985-12-10

Similar Documents

Publication Publication Date Title
JPH08501904A (en) Chip interconnect with breathable etch stop layer
US5055906A (en) Semiconductor device having a composite insulating interlayer
JPS5815250A (en) Manufacture of semiconductor device
US5517062A (en) Stress released VLSI structure by the formation of porous intermetal layer
JPS59198734A (en) Multilayer interconnection structure
JPS61154146A (en) Manufacture of semiconductor device
JP3125745B2 (en) Method for manufacturing semiconductor device
JPH0614523B2 (en) Semiconductor device and manufacturing method thereof
JP3130726B2 (en) Semiconductor device and manufacturing method thereof
JPS60109248A (en) Semiconductor ic device and manufacture thereof
JP2550337B2 (en) Method for manufacturing semiconductor device
JP2820281B2 (en) A1 Multilayer wiring structure of semiconductor device
JPH0332214B2 (en)
JPS61289649A (en) Manufacture of semiconductor device
Geffken Multi-level metallurgy for master image structured logic
JPH0642481B2 (en) Manufacturing method of semiconductor device
JP3149169B2 (en) Method for manufacturing semiconductor device
JPS6194346A (en) Manufacture of semiconductor device
JPH0234928A (en) Manufacture of semiconductor device
JPH077765B2 (en) Method for manufacturing semiconductor device
JPS6223135A (en) Semiconductor device
KR890004875B1 (en) Manufacture of electrode on semiconductor body
JPS63229839A (en) Semiconductor device
JPH01243548A (en) Semiconductor device and its manufacture
JPS59163838A (en) Manufacture of semiconductor device