JPS61289649A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61289649A
JPS61289649A JP13147285A JP13147285A JPS61289649A JP S61289649 A JPS61289649 A JP S61289649A JP 13147285 A JP13147285 A JP 13147285A JP 13147285 A JP13147285 A JP 13147285A JP S61289649 A JPS61289649 A JP S61289649A
Authority
JP
Japan
Prior art keywords
wiring
silicon nitride
nitride film
film
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13147285A
Other languages
Japanese (ja)
Inventor
Shuichi Mayumi
周一 真弓
Seiji Ueda
誠二 上田
Soichi Nishida
西田 宗一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP13147285A priority Critical patent/JPS61289649A/en
Publication of JPS61289649A publication Critical patent/JPS61289649A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To check generation of cracks and disconnections of a wiring at manufacture of a semiconductor device by a method wherein a process to insertedly provide silicon oxide films between electrode and wiring layers and plasma silicon nitride films is supplemented. CONSTITUTION:After an interlayer insulating film 2 consisting of PSG is formed as to cover a circuit element on a silicon substrate 1, an under layer Al wiring 3, a silicon oxide film 10 and a plasma silicon nitride film 4 are adhered thereon. A photo resist 5 is rotatingly applied on the silicon nitride film 4 in succession, and after a solvent in the photo resist 5 is removed by applying heat treatment, the photo resist 5 is removed completely under the condition as to make the etching speeds of the silicon nitride film 4 and the photo resist 5 to be nearly the same. At this time, the silicon nitride film is left on the under layer Al wiring 3. After then, a silicon oxide film 6 is adhered on the silicon nitride film 4. Then a through hole 11 is opened, a top layer Al wiring 7 is formed as a passivation film, and a silicon oxide film 8 and a plasma silicon nitride film 9 are formed on the top layer Al wiring 7.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置の製造方法、とりわけ多層配線に
おける眉間絶縁膜の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming a glabella insulating film in a multilayer wiring.

(従来の技術) 近年、LSI素子の高集積化、高速化を図るため。(Conventional technology) In recent years, in order to increase the integration and speed of LSI devices.

多層配線構造を備えたものが増えつつある。配線材料に
は一般にALを主成分とする合金が用いられている。一
方、配線が多層化するにつれてより急峻な段差が生じ、
その上に上層配線を形成することが困難となるため、下
層配線と上層配線の間の層間絶縁膜を平坦化する工程が
必要となる。
The number of devices equipped with multilayer wiring structures is increasing. An alloy containing AL as a main component is generally used as a wiring material. On the other hand, as wiring becomes more multilayered, steeper steps occur,
Since it is difficult to form an upper layer wiring thereon, a step of planarizing the interlayer insulating film between the lower layer wiring and the upper layer wiring is required.

従来の層間絶縁膜の平坦化方法の一例として、ホトレジ
ストのエッチパックを採用したMO3型半導体装置の製
造工程を、第2図(a)〜Q)を参照して説明する。な
お、第2図はA/、二層配線の製造工程を示しており、
簡明化のため、トランジスタ領域は示していない。
As an example of a conventional method for planarizing an interlayer insulating film, a manufacturing process of an MO3 type semiconductor device employing a photoresist etch pack will be described with reference to FIGS. 2(a) to 2Q. In addition, Figure 2 shows the manufacturing process of A/, two-layer wiring,
For clarity, transistor regions are not shown.

第2図において、まず、シリコン基板1上の回路素子(
図には示されていない)を覆うようにPSG 2からな
る眉間絶縁膜を形成した後、例えば膜厚0.8μmの下
層U配線3を形成する〔第2図(a)〕。この後、例え
ば膜厚15μmの、プラズマCVD法により生成する窒
化ケイ素膜(以下、プラズマ窒化ケイ素膜という)4を
被着する〔第2図(b)〕。さらに、この窒化ケイ素膜
4上にホトレジスト5を回転塗布する〔第2図(C)〕
。これを、約200℃で熱処理してホトレジスト5中の
溶媒を除去した後、窒化ケイ素膜4およびホトレジスト
5のエツチング速度がほぼ同一となるような条件下で、
ホトレジスト5を完全にエツチング除去する。なおこの
時、窒化ケイ素膜4の一部も同時にエツチングされ、下
層At配線3上には膜厚0.3〜1.2μmの窒化ケイ
素膜4が残される〔第2図(d)〕。
In FIG. 2, first, the circuit elements (
After forming a glabellar insulating film made of PSG 2 so as to cover (not shown in the figure), a lower layer U wiring 3 having a film thickness of, for example, 0.8 μm is formed [FIG. 2(a)]. Thereafter, a silicon nitride film (hereinafter referred to as plasma silicon nitride film) 4 having a thickness of 15 μm, for example, produced by plasma CVD is deposited [FIG. 2(b)]. Furthermore, a photoresist 5 is spin-coated on this silicon nitride film 4 [FIG. 2(C)]
. This was heat-treated at about 200° C. to remove the solvent in the photoresist 5, and then under conditions such that the etching rate of the silicon nitride film 4 and the photoresist 5 were almost the same.
The photoresist 5 is completely removed by etching. At this time, a part of the silicon nitride film 4 is also etched at the same time, leaving the silicon nitride film 4 with a thickness of 0.3 to 1.2 μm on the lower layer At wiring 3 [FIG. 2(d)].

次に、窒化ケイ素膜4上に1例えば膜厚0.6μ。Next, silicon nitride film 4 is coated with a film having a thickness of 0.6 μm, for example.

の酸化ケイ素膜6を被着する〔第2図(e)〕。この後
、スルーホール11を開孔し、上層At配線7を形成す
る〔第2図(f)〕。最後に、・ヤツシペーシ。
A silicon oxide film 6 is deposited [FIG. 2(e)]. Thereafter, the through hole 11 is opened and the upper layer At wiring 7 is formed [FIG. 2(f)]. Finally, Yatsushi Peshi.

ン膜として、上層kt配線7上に例えばそれぞれの膜厚
が0.5μmの酸化ケイ素膜8およびプラズマ窒化ケイ
素膜9を順次形成して完成する〔第2図(g)〕。
As shown in FIG. 2(g), a silicon oxide film 8 and a plasma silicon nitride film 9, each having a thickness of 0.5 μm, are successively formed on the upper layer kt wiring 7 as a conductive film (FIG. 2(g)).

(発明が解決しようとする問題点〕 しかしながら、この場合、下層At配線3は、圧縮スト
レスの大きいプラズマ窒化ケイ素膜4に接するため、常
に、引張力を受けて形状が変化し、断線に至ることがし
ばしばある。特に、配線幅が2μm以下の微細配線の場
合は、断線に至ることが多い。この現象は、プラズマ窒
化ケイ素膜を被着して後の熱処理工程時に生じ、また、
半導体装置を高温下で長時間使用した場合にも同様の問
題が生じる。
(Problems to be Solved by the Invention) However, in this case, the lower layer At wiring 3 is in contact with the plasma silicon nitride film 4 which has a large compressive stress, so its shape is constantly changed due to tensile force, leading to disconnection. In particular, in the case of fine wiring with a wiring width of 2 μm or less, disconnection often occurs.This phenomenon occurs during the heat treatment process after depositing the plasma silicon nitride film, and
Similar problems occur when semiconductor devices are used at high temperatures for long periods of time.

これに対し、下層At配線を形成した後、酸化ケイ素膜
を被着し、更にこの上に窒化ケイ素膜を被着して後ホト
レジストのエッチパック平坦化を施した場合は、上層A
t配線と窒化ケイ素膜が接するとと忙なり、上層At配
線に同様の問題が生じる。
On the other hand, if after forming the lower layer At wiring, a silicon oxide film is deposited, a silicon nitride film is further deposited on top of this, and then photoresist etch pack planarization is performed, the upper layer A
When the t-wiring and the silicon nitride film come into contact with each other, it becomes busy, and a similar problem occurs with the upper layer At wiring.

また、下層At配線と上層At配線の間の層間絶縁膜を
酸化ケイ素膜だけで形成した場合は、強固で、かつクラ
ック耐性に優れたプラズマ窒化ケイ素膜が存在しないた
め、下層ht配線と上層At配線の間で電気的リークが
生じやすいという問題が生じる。
In addition, if the interlayer insulating film between the lower layer At wiring and the upper layer At wiring is formed only with a silicon oxide film, there is no plasma silicon nitride film that is strong and has excellent crack resistance. A problem arises in that electrical leakage is likely to occur between the wiring lines.

(問題点を解決するための手段) 上記問題点を解決するために、本発明は、シリコン基板
上に設けた第1の電極・配線層上に、まず第1の酸化ケ
イ素膜を被着し、次いで窒化ケイ素膜を被着した後、そ
の上に有機樹脂を回転塗布して、乾燥後有機樹脂の全部
と窒化ケイ素膜の一部をほぼ同一速度でエツチングする
。次に、残された窒化ケイ素膜上に第2の酸化ケイ素膜
を被着し、その上に第2の電極・配線層を形成するとい
う工程を採る。
(Means for Solving the Problems) In order to solve the above problems, the present invention first deposits a first silicon oxide film on a first electrode/wiring layer provided on a silicon substrate. Next, after a silicon nitride film is deposited, an organic resin is spin-coated thereon, and after drying, all of the organic resin and a portion of the silicon nitride film are etched at approximately the same rate. Next, a second silicon oxide film is deposited on the remaining silicon nitride film, and a second electrode/wiring layer is formed thereon.

(作用) 上記工程によれば、下層電極・配線層および上層電極・
配線層ともに、圧縮ストレスを有するプラズマ窒化ケイ
素膜と接することがなく、断線の問題が防止できる。ま
た、眉間絶縁膜の一部にプラズマ窒化ケイ素膜が使われ
ているため、下層電極・配線層と上層電極・配線層との
間で生じる電気的リークが防止できる。
(Function) According to the above steps, the lower electrode/wiring layer and the upper electrode/wiring layer
Neither the wiring layer comes into contact with the plasma silicon nitride film which has compressive stress, and the problem of disconnection can be prevented. Furthermore, since a plasma silicon nitride film is used as a part of the glabellar insulating film, electrical leakage between the lower electrode/wiring layer and the upper electrode/wiring layer can be prevented.

(実施例) 以下、本発明の一実施例を第1図を用いて説明する。な
お、簡明化のために、図にはkA二層配線部分のみを示
し、トランジスタ領域は示していない。
(Example) An example of the present invention will be described below with reference to FIG. Note that, for the sake of simplicity, only the kA two-layer wiring portion is shown in the figure, and the transistor region is not shown.

第1図において、まず、シリコン基板1上の回路素子(
図には示されていない)を覆うようKPSG 2からな
る眉間絶縁膜を形成した後、例えば、膜厚0.8μmの
下層U配線3を形成する〔第1図(a)〕。
In FIG. 1, first, circuit elements (
After forming a glabellar insulating film made of KPSG 2 so as to cover (not shown in the figure), a lower layer U wiring 3 having a film thickness of 0.8 μm, for example, is formed [FIG. 1(a)].

この後、例えば、膜厚0.3μmの酸化ケイ素膜10を
常圧CVD法により被着し、更に、例えば膜厚1.5μ
mのプラズマ窒化ケイ素膜4を被着する〔第1図(b)
〕。引き続き、この窒化ケイ素膜4上に、ホトレジスト
(又はポリイミド樹脂)5を回転塗布する〔第1図(C
)〕。次に、約200℃の熱処理を施してホトレジスト
5中の溶媒を除去した後、窒化ケイ素膜4およびホトレ
ジスト5のエツチング速度がほぼ同一となるような条件
下で、ホトレジスト5を完全にエツチング除去する。な
おこの時、窒化〃イ素膜4の一部も同時にエツチングさ
れ、下層At配線3上には膜厚0.3〜1.2μmの窒
化ケイ素膜が残される〔第1図(d)〕。この後、窒化
ケイ素膜4上に、例えば、膜厚0.3μmの酸化ケイ素
膜6を被着する〔第1図(e)〕。次に、スルーホール
11を開孔し、上層At配線7を形成する〔第1図(f
)〕。最後に、パッジページ、ン膜として、上層At配
線7上に例えばそれぞれの膜厚が0、5μmの酸化ケイ
素膜8およびプラズマ窒化ケイ素膜9を形成して完成す
る〔第1図(g)〕。なお、酸化ケイ素膜6,8,10
は、P e B g As等の不純物を含むガラスによ
り構成してもよい。
Thereafter, a silicon oxide film 10 having a thickness of, for example, 0.3 μm is deposited by atmospheric pressure CVD, and then a silicon oxide film 10 having a thickness of, for example, 1.5 μm is deposited.
A plasma silicon nitride film 4 of m is deposited [FIG. 1(b)]
]. Subsequently, a photoresist (or polyimide resin) 5 is spin-coated on this silicon nitride film 4 [see FIG.
)]. Next, the solvent in the photoresist 5 is removed by heat treatment at about 200° C., and then the photoresist 5 is completely etched away under conditions such that the etching rates of the silicon nitride film 4 and the photoresist 5 are almost the same. . At this time, a part of the silicon nitride film 4 is also etched at the same time, leaving a silicon nitride film with a thickness of 0.3 to 1.2 μm on the lower layer At wiring 3 [FIG. 1(d)]. Thereafter, a silicon oxide film 6 having a thickness of, for example, 0.3 μm is deposited on the silicon nitride film 4 [FIG. 1(e)]. Next, the through hole 11 is opened and the upper layer At wiring 7 is formed [FIG. 1 (f
)]. Finally, a silicon oxide film 8 and a plasma silicon nitride film 9 each having a thickness of 0 and 5 μm, for example, are formed on the upper layer At wiring 7 as a pad page film [FIG. 1(g)]. . Note that silicon oxide films 6, 8, 10
may be made of glass containing impurities such as P e B g As.

以上の実施例による多層配線構造では、下層および上層
のAt配線3,7はともに、圧縮ストレスを有するプラ
ズマ窒化ケイ素膜4と平面的に接することがなく、At
配線が引張られて断線するという問題が防止できる。ま
た、眉間絶縁膜の中間層が強固でかつクラック耐性に優
れたプラズマ窒化ケイ素膜であるため、下層At配線と
上層At配線の間の電気的リークも防止できる。
In the multilayer wiring structure according to the above embodiment, both the lower and upper layer At wirings 3 and 7 are not in planar contact with the plasma silicon nitride film 4 having compressive stress, and
This can prevent the problem of wires being pulled and breaking. Further, since the intermediate layer of the glabellar insulating film is a plasma silicon nitride film that is strong and has excellent crack resistance, electrical leakage between the lower layer At wiring and the upper layer At wiring can be prevented.

なお、実施例では、At二層配線を用いて説明したが、
本発明は、三層あるいはそれ以上のAt多層配線におい
ても同様の効果があることは明らかであり、また、At
以外の金属配線を用いた場合でも同様の効果が期待でき
る。
In addition, in the example, explanation was made using At two-layer wiring, but
It is clear that the present invention has similar effects on At multilayer interconnections of three or more layers, and
Similar effects can be expected even when metal wiring other than the above is used.

(発明の効果) 以上説明したように、本発明によれば、従来液していた
電極・配線層とプラズマ窒化ケイ素膜との層間に酸化ケ
イ素膜を挿設する工程を付加することによりクラックの
発生や配線の断線を防止することができ、半導体装置の
信頼性を向上することができる。
(Effects of the Invention) As explained above, according to the present invention, cracks can be prevented by adding a step of inserting a silicon oxide film between the electrode/wiring layer and the plasma silicon nitride film, which were conventionally liquid-filled. It is possible to prevent the occurrence of wire breakage and disconnection of wiring, and it is possible to improve the reliability of the semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜ωは、本発明の一実施例の一連の製造工
程を示す断面図、第2図(&)〜(X)は、従来例の一
連の製造工程を示す断面図である。 1・・・シリコン基板、2,6,8,10・・・酸化ケ
イ素膜(あるいはpsc )、3・・・下層At配線、
4゜9・・・プラズマ窒化ケイ素膜、5・・・ホトレノ
スト、7・・・上層At配線。 第1図 1・ シリコン薯1( 4,9・・ デラズ4事化ザ4I議 第1図 第2図
Figures 1(a) to ω are cross-sectional views showing a series of manufacturing steps in an embodiment of the present invention, and Figures 2(&) to (X) are sectional views showing a series of manufacturing steps in a conventional example. be. 1... Silicon substrate, 2, 6, 8, 10... Silicon oxide film (or psc), 3... Lower layer At wiring,
4゜9...Plasma silicon nitride film, 5...Photorenost, 7...Upper layer At wiring. Figure 1 1. Silicon 1 (4, 9...) Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)シリコン基板上に設けた第1の電極・配線層上に
第1の酸化ケイ素膜を被着する工程と、前記第1の酸化
ケイ素膜上に窒化ケイ素膜を被着する工程と、前記窒化
ケイ素膜上に有機樹脂を回転塗布する工程と、前記有機
樹脂の全部と前記窒化ケイ素膜の一部を略同一速度でエ
ッチングする工程と、残された前記窒化ケイ素膜上に第
2の酸化ケイ素膜を被着する工程と、前記第2の酸化ケ
イ素膜上に第2の電極・配線層を形成する工程とを有す
ることを特徴とする半導体装置の製造方法。
(1) a step of depositing a first silicon oxide film on a first electrode/wiring layer provided on a silicon substrate; a step of depositing a silicon nitride film on the first silicon oxide film; a step of spin-coating an organic resin on the silicon nitride film; a step of etching all of the organic resin and a part of the silicon nitride film at approximately the same rate; and a step of etching a second organic resin on the remaining silicon nitride film. A method for manufacturing a semiconductor device, comprising the steps of depositing a silicon oxide film and forming a second electrode/wiring layer on the second silicon oxide film.
(2)第1及び第2の酸化ケイ素膜が、リン(P)、ボ
ロン(B)、ヒ素(As)等の不純物を含むガラスから
なることを特徴とする特許請求の範囲第(1)項記載の
半導体装置の製造方法。
(2) Claim (1) characterized in that the first and second silicon oxide films are made of glass containing impurities such as phosphorus (P), boron (B), and arsenic (As). A method of manufacturing the semiconductor device described above.
(3)有機樹脂が、ホトレジスト若しくはポリイミドか
らなることを特徴とする特許請求の範囲第(1)項記載
の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim (1), wherein the organic resin is made of photoresist or polyimide.
JP13147285A 1985-06-17 1985-06-17 Manufacture of semiconductor device Pending JPS61289649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13147285A JPS61289649A (en) 1985-06-17 1985-06-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13147285A JPS61289649A (en) 1985-06-17 1985-06-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61289649A true JPS61289649A (en) 1986-12-19

Family

ID=15058766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13147285A Pending JPS61289649A (en) 1985-06-17 1985-06-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61289649A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246747A (en) * 1988-08-09 1990-02-16 Sony Corp Formation of multilayer interconnection
US5393712A (en) * 1993-06-28 1995-02-28 Lsi Logic Corporation Process for forming low dielectric constant insulation layer on integrated circuit structure
US5470801A (en) * 1993-06-28 1995-11-28 Lsi Logic Corporation Low dielectric constant insulation layer for integrated circuit structure and method of making same
US6520189B1 (en) 1986-09-09 2003-02-18 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788734A (en) * 1980-11-21 1982-06-02 Toshiba Corp Semiconductor device
JPS5817637A (en) * 1981-07-24 1983-02-01 Hitachi Ltd Semiconductor device
JPS58216443A (en) * 1982-06-10 1983-12-16 Toshiba Corp Manufacture of semiconductor device
JPS59114841A (en) * 1982-12-21 1984-07-03 Toshiba Corp Manufacture of semiconductor device
JPS59117133A (en) * 1982-12-24 1984-07-06 Hitachi Ltd Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788734A (en) * 1980-11-21 1982-06-02 Toshiba Corp Semiconductor device
JPS5817637A (en) * 1981-07-24 1983-02-01 Hitachi Ltd Semiconductor device
JPS58216443A (en) * 1982-06-10 1983-12-16 Toshiba Corp Manufacture of semiconductor device
JPS59114841A (en) * 1982-12-21 1984-07-03 Toshiba Corp Manufacture of semiconductor device
JPS59117133A (en) * 1982-12-24 1984-07-06 Hitachi Ltd Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6520189B1 (en) 1986-09-09 2003-02-18 Semiconductor Energy Laboratory Co., Ltd. CVD apparatus
JPH0246747A (en) * 1988-08-09 1990-02-16 Sony Corp Formation of multilayer interconnection
US5393712A (en) * 1993-06-28 1995-02-28 Lsi Logic Corporation Process for forming low dielectric constant insulation layer on integrated circuit structure
US5470801A (en) * 1993-06-28 1995-11-28 Lsi Logic Corporation Low dielectric constant insulation layer for integrated circuit structure and method of making same
US5598026A (en) * 1993-06-28 1997-01-28 Lsi Logic Corporation Low dielectric constant insulation layer for integrated circuit structure and method of making same
US5864172A (en) * 1993-06-28 1999-01-26 Lsi Logic Corporation Low dielectric constant insulation layer for integrated circuit structure and method of making same

Similar Documents

Publication Publication Date Title
US5470793A (en) Method of via formation for the multilevel interconnect integrated circuits
EP0318954B1 (en) Semiconductor device having a composite insulating interlayer
JP2000077625A5 (en)
JPS61289649A (en) Manufacture of semiconductor device
JPS6364057B2 (en)
JPH0587146B2 (en)
JP2663662B2 (en) Method for manufacturing semiconductor device
JPH0642481B2 (en) Manufacturing method of semiconductor device
JPS62154643A (en) Manufacture of semiconductor device
JP3263481B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS5928358A (en) Manufacture of semiconductor device
JPS61107743A (en) Manufacture of semiconductor device
JP3295172B2 (en) Dry etching method and semiconductor device manufacturing method
JP2937675B2 (en) Method for manufacturing semiconductor device
JPS5956734A (en) Manufacture of semiconductor device
JPS61287151A (en) Semiconductor device
KR100216730B1 (en) Semiconductor metal film etching step
JP2942063B2 (en) Method for manufacturing semiconductor device
JP2000232100A (en) Semiconductor device and its manufacture
JPH04340713A (en) Manufacture of semiconductor device
JPS63226041A (en) Manufacture of semiconductor integrated circuit device
JPH10209521A (en) Semiconductor device having magnetoresistance element
KR20020057340A (en) Multi-interconnection structure of semiconductor device and method for fabricating the same
JPS6015948A (en) Manufacture of semiconductor device
JPS61283146A (en) Semiconductor integrated circuit device and manufacture thereof