JPH0642481B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPH0642481B2
JPH0642481B2 JP59086753A JP8675384A JPH0642481B2 JP H0642481 B2 JPH0642481 B2 JP H0642481B2 JP 59086753 A JP59086753 A JP 59086753A JP 8675384 A JP8675384 A JP 8675384A JP H0642481 B2 JPH0642481 B2 JP H0642481B2
Authority
JP
Japan
Prior art keywords
insulating layer
wiring
semiconductor device
layer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59086753A
Other languages
Japanese (ja)
Other versions
JPS60231340A (en
Inventor
佳嗣 西本
新吾 門村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59086753A priority Critical patent/JPH0642481B2/en
Publication of JPS60231340A publication Critical patent/JPS60231340A/en
Publication of JPH0642481B2 publication Critical patent/JPH0642481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製法、特に多層配線構造を有す
る半導体装置における配線間の絶縁層上の表面を平坦化
するための方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for flattening a surface on an insulating layer between wirings in a semiconductor device having a multilayer wiring structure.

背景技術とその問題点 多層配線構造を有する半導体装置において、上層配線と
下層配線間の電気的分離は、両配線間に絶縁薄膜(層間
絶縁層)を形成することにより行なわれている。この層
間絶縁層は、上層配線を微細加工する上でその表面形状
が下地の段差(下層配線、フイールド酸化膜等)に拘わ
らず平坦であることが次の理由により望ましい。即ち、
層間絶縁層の表面が平坦であれば、上層配線の段部で被
覆された絶縁物の悪化(例えば段切れ等)による断線が
なくなり、信頼性が向上するからである。また、上層配
線加工のためのフオトリソグラフイでパターニングが容
易になるため、加工精度、歩留が向上する。
Background Art and Problems Thereof In a semiconductor device having a multilayer wiring structure, an upper layer wiring and a lower layer wiring are electrically separated from each other by forming an insulating thin film (interlayer insulating layer) between the both wirings. It is desirable that the surface shape of the interlayer insulating layer is flat when finely processing the upper wiring, regardless of the step of the underlying layer (lower wiring, field oxide film, etc.) for the following reason. That is,
This is because if the surface of the interlayer insulating layer is flat, disconnection due to deterioration (for example, step breakage) of the insulator covered by the step portion of the upper layer wiring is eliminated and reliability is improved. Further, since patterning is facilitated by photolithography for processing the upper layer wiring, processing accuracy and yield are improved.

この層間絶縁層の表面を平坦化する際、配線の材質が高
温でも変形、変質しない高融点物質(例えば、ポリシリ
コン、シリサイド、高融点金属等)であれば、金属不純
物添加ガラス(PSG、AsSG、Pb含有酸化膜等)を層間絶
縁層材料として使用し、800〜1100℃の高温処理により
軟化させて平坦な表面を得ることができる(所謂グラス
フロウ又はリフロー技術)。しかし、電気抵抗の低いAl
又はAl、Si、Cuの合金等を使用しようとする場合、これ
らの配線材は低融点物質であるため上記リフロー技術は
使用することができず、従来層間絶縁層の表面凸起部の
みをRIE、イオンミリング(イオンビームエツチング)
等で選択的にエツチング除去して表面の平坦化を図つて
いた。しかし、従来の方法で層間絶縁層を厚く形成しよ
うとする場合、配線の段部で絶縁材の被覆性が悪化し、
特に第1図に示すように並列に並ぶ配線(1)間において
は絶縁材(2)が張り出し(いわゆるオーバハング)、溝
部分又は空洞部分(3)が生じていた。この結果、エツチ
ングしても平坦な表面が得られないという問題点があつ
た。(5)はSi基板、(4)はSiO2膜である。また、このよう
なオーバハングを回避しようとする場合、薄い絶縁層の
形成とエツチングによる平坦化処理を何回か繰り返して
行なわなければならず、製造が複雑であつた。そして、
層間絶縁層をCVDで形成する場合、CVDの装置及び方法
(常圧、減圧、プラズマ併用等)により、段部の被覆性
に差が生じるため、装置、方法を選んで使用しなければ
ならないという欠点があつた。
When flattening the surface of this interlayer insulating layer, if the wiring material is a refractory material that does not deform or deteriorate even at high temperatures (for example, polysilicon, silicide, refractory metal, etc.), metal-impurity-doped glass (PSG, AsSG) , Pb-containing oxide film, etc.) as an interlayer insulating layer material, and can be softened by a high temperature treatment at 800 to 1100 ° C. to obtain a flat surface (so-called glass flow or reflow technique). However, Al with low electrical resistance
Alternatively, when using an alloy of Al, Si, Cu, etc., the above reflow technology cannot be used because these wiring materials are low melting point substances, and only the surface protrusion of the conventional interlayer insulating layer is RIEed. , Ion milling (ion beam etching)
Etching and removal were selectively carried out by means such as to flatten the surface. However, when attempting to form a thick interlayer insulating layer by the conventional method, the covering property of the insulating material deteriorates at the step portion of the wiring,
In particular, as shown in FIG. 1, the insulating material (2) overhangs (so-called overhang) between the wirings (1) arranged in parallel, and a groove portion or a cavity portion (3) occurs. As a result, there is a problem that a flat surface cannot be obtained even by etching. (5) is a Si substrate, and (4) is a SiO 2 film. Further, in order to avoid such an overhang, the formation of a thin insulating layer and the planarization process by etching must be repeated several times, which complicates the manufacturing. And
When the interlayer insulating layer is formed by CVD, it is necessary to select and use the device and method because the step coverage varies depending on the CVD device and method (normal pressure, reduced pressure, plasma combined use, etc.). There was a flaw.

発明の目的 本発明は、配線間の絶縁層上の表面を低温(常温)によ
り平坦化することができる半導体装置の製法を提供する
ものである。
It is an object of the present invention to provide a method for manufacturing a semiconductor device, which can flatten the surface of an insulating layer between wirings at a low temperature (normal temperature).

発明の概要 本発明は、半導体装置に形成された段部上に第1の絶縁
層を形成する工程と、この第1の絶縁層を異方性エツチ
ングして段部の側面にテーパを形成する工程と、第1の
絶縁層上に第2の絶縁層を形成する工程と、この第2の
絶縁層上に第3の絶縁層を表面が平坦化されるように形
成する工程と、異方性エツチングにより第2の絶縁層に
おいて平坦化する工程を有する半導体装置の製法であ
る。
SUMMARY OF THE INVENTION According to the present invention, a step of forming a first insulating layer on a step portion formed in a semiconductor device and anisotropic etching of the first insulating layer to form a taper on a side surface of the step portion. A step, a step of forming a second insulating layer on the first insulating layer, and a step of forming a third insulating layer on the second insulating layer so that the surface is flattened; Is a method for manufacturing a semiconductor device including a step of flattening the second insulating layer by means of etching.

上記製法により、低温で配線間の絶縁層上の表面を平坦
化することができる。
By the above manufacturing method, the surface of the insulating layer between the wirings can be flattened at a low temperature.

実施例 本実施例においては、2層配線構造を有する半導体装置
の製法について説明する。
Example In this example, a method for manufacturing a semiconductor device having a two-layer wiring structure will be described.

先ず、第2図Aに示すように、Si基板(11)の表面にSiO2
膜(12)を形成した後、1層目のAl配線(13)を所定間隔を
置いて並列して形成する。このAl配線(13)は、Siを1%
含有するAl(純粋のAl、Al-Si-Cuの合金等でもよい)よ
りなり、その厚さは4000Åである。
First, as shown in FIG. 2A, SiO 2 is formed on the surface of the Si substrate (11).
After forming the film (12), first-layer Al wirings (13) are formed in parallel at predetermined intervals. This Al wiring (13) contains 1% Si.
It is made of Al (pure Al, Al-Si-Cu alloy, etc.) contained and its thickness is 4000Å.

次に、第2図Bに示すように、Al配線(13)の上にプラズ
マCVDで順次SixNyを1000Å、CVDで純粋のSiO2を1000
Å、PSGを4000Å被着して第1の絶縁層(14)を形成す
る。
Next, as shown in FIG. 2B, SixNy of 1000 Å is sequentially deposited on the Al wiring (13) by plasma CVD and 1000 of pure SiO 2 is deposited by CVD.
Å, 4000 Å of PSG is deposited to form the first insulating layer (14).

次に、第2図Cに示すように、例えばRIE(CF4+H2又は
CHF3、6×▲10-2 torr▼、400W)により異方性エツチン
グを行ない、Al配線(13)の両側面に絶縁層(14)のテーパ
(15)を形成する(いわゆるサイド・ウオール・スペイ
サ)。なお、Al配線(13)上の絶縁層(14)は完全に除去さ
れていてもよく、また一部分残つていてもよい。しか
し、Alの異常成長(所謂ヒロツクの形成)を防止するた
めには、Al配線(13)上の絶縁層(14)を残しておく方が好
ましい。
Next, as shown in FIG. 2C, for example, RIE (CF 4 + H 2 or
CHF 3 , 6 × ▲ 10 -2 torr ▼, 400W) is used for anisotropic etching to taper the insulating layer (14) on both sides of the Al wiring (13).
Form (15) (so-called side wall spacer). The insulating layer (14) on the Al wiring (13) may be completely removed or may be left partially. However, in order to prevent abnormal growth of Al (so-called formation of pits), it is preferable to leave the insulating layer (14) on the Al wiring (13).

次に、第2図Dに示すように、CVDで順次純粋のSiO2を1
000Å、PSGを1.4μ被着して第2の絶縁層(16)を形成す
る。この第2の絶縁層(16)としては、上記構成の他に、
SiO2、不純物を注入したSiO2、Si3N4、ポリイミド(PIQ)
等の無機又は有機の絶縁物、又はこれらを組合わせた多
層よりなるものであつてもよい。なお、この絶縁層(16)
の厚さとしては、Si基板(11)からの高さをT、Al配線(1
3)の厚さをtとした場合、T>tとなるように形成す
る。逆にT<tとした場合、平坦化した後、Al配線(13)
上が絶縁層(16)で覆われなくなるので不適当である。
Next, as shown in FIG. 2D, pure SiO 2 is sequentially deposited to 1 by CVD.
000Å, 1.4 μ of PSG is deposited to form the second insulating layer (16). As the second insulating layer (16), in addition to the above configuration,
SiO 2 , impurity-implanted SiO 2 , Si 3 N 4 , polyimide (PIQ)
It may be composed of an inorganic or organic insulator such as, or a multilayer including a combination thereof. Note that this insulation layer (16)
As for the thickness, the height from the Si substrate (11) is T, Al wiring (1
When the thickness of 3) is t, it is formed so that T> t. On the contrary, when T <t, after flattening, the Al wiring (13)
It is unsuitable because the top is not covered with the insulating layer (16).

次に、第2図Eに示すように、この第2の絶縁層(16)の
上に第3の絶縁層(17)を両Al配線(13)間では厚く、Al配
線(13)上では薄くなるように例えばスピンナで被着し
て、表面が略平坦となるように形成する。ここで使用す
る絶縁材としては、溶剤に溶かした有機物又は無機物を
使用することができる。表面の平坦化法としては、絶縁
材を被着した後、100〜300℃の熱処理による軟化現象を
利用してもよい。フオトレジストを約1.0μの厚さにス
ピンナで被着し、160℃で30分間の熱処理により、表面
を軟化させ平坦化を行う。この第3の絶縁層(17)の材質
として、次のような条件を全て満たすものであればこの
工程で目的の平坦化が達成される。即ち、第1に下地の
絶縁層と密着性は良いが、化学反応はしないこと、第2
にSi基板に形成される電気的活性領域に悪影響を与えな
いこと、第3に上に形成される配線との密着性が良く、
化学反応をしないこと、第4に少くとも400〜500℃の熱
処理で変質、変形しないこと等である。しかし、現状で
はこのような要件を全て備えている物質はなく、また充
分な平坦化が得られる形成方法もないので、第3の絶縁
層(7)の表面に若干の凹凸が生ずるのは避けられない。
従つて、この第3の絶縁層(17)は、次の工程におけるエ
ツチングマスク材としてのみ利用する。
Next, as shown in FIG. 2E, the third insulating layer (17) is thick on the second insulating layer (16) between the two Al wirings (13), and on the Al wiring (13). For example, a spinner is applied so as to be thin, and the surface is formed to be substantially flat. As the insulating material used here, an organic substance or an inorganic substance dissolved in a solvent can be used. As a method of flattening the surface, a softening phenomenon may be utilized by applying an insulating material and then performing heat treatment at 100 to 300 ° C. A photoresist is applied to a thickness of about 1.0 μ by a spinner, and the surface is softened and flattened by heat treatment at 160 ° C. for 30 minutes. If the material of the third insulating layer (17) satisfies all of the following conditions, the desired planarization is achieved in this step. That is, first, the adhesiveness with the underlying insulating layer is good, but no chemical reaction occurs.
Thirdly, it does not adversely affect the electrically active region formed on the Si substrate, and thirdly, the adhesion to the wiring formed on the upper side is good,
No chemical reaction, and fourth, no deterioration or deformation by heat treatment at least at 400 to 500 ° C. However, at present, there is no substance that meets all of these requirements, and there is no formation method that provides sufficient planarization, so avoiding the occurrence of slight irregularities on the surface of the third insulating layer (7). I can't.
Therefore, this third insulating layer (17) is used only as an etching mask material in the next step.

次に、第2図Fに示すように、RIEのような異方性エツ
チングが可能なドライエツチング法を使用し、第2の絶
縁層(16)と第3の絶縁層(17)とのエツチング速度が同じ
条件(第2の絶縁層(16)のエツチング速度が第3の絶縁
層(17)のエツチング速度より多少速い条件でも良い)で
エツチングし、第3の絶縁層(17)において(一点鎖線X
で示す位置)完全な平坦化を得る。これは、第2の絶縁
層(16)の段差の低い所(18)は、上の厚い第3の絶縁層(1
7)のマスキング効果によりエツチングされず、Al配線(1
3)の上部の絶縁層(16)のみ選択的にエツチング除去され
るからである。従つて、平坦化後は、第3の絶縁層(17)
は完全に除去されることになるが、もし部分的に残つて
いる場合には、第3の絶縁層(17)のみを化学的な選択エ
ツチング又はO2ガスを用いたプラズマエツチングで除去
する。なお、RIEでエツチングする際の具体的な条件
は、例えばCHF3(40sccm)+O2(3sccm)、0.06Torr、450Wa
tt(0.23W/cm2)とする。この工程で最終的に形成される
平坦化された層間絶縁層の厚さは、Al配線(13)上部の厚
さをsとした場合、sT−tである。
Next, as shown in FIG. 2F, the dry etching method capable of anisotropic etching such as RIE is used to etch the second insulating layer (16) and the third insulating layer (17). Etching is performed under the same speed condition (the etching speed of the second insulating layer (16) may be slightly faster than the etching speed of the third insulating layer (17)), and the third insulating layer (17) is Chain line X
The position indicated by is obtained). This is because the lower step (18) of the second insulating layer (16) has a thicker third insulating layer (1).
It is not etched by the masking effect of 7) and Al wiring (1
This is because only the insulating layer (16) above 3) is selectively removed by etching. Therefore, after planarization, the third insulating layer (17)
Will be completely removed, but if it remains partially, only the third insulating layer (17) is removed by chemical selective etching or plasma etching using O 2 gas. Specific conditions for etching with RIE are, for example, CHF 3 (40 sccm) + O 2 (3 sccm), 0.06 Torr, 450 Wa
tt (0.23W / cm 2 ) The thickness of the planarized interlayer insulating layer finally formed in this step is sT-t, where s is the thickness of the upper portion of the Al wiring (13).

次に、第2図Hに示すように、Al(例えばSiを1%含
有)を1.0μの厚さとなるようスパツタリング又は蒸着
で形成した後、パターニングを行い、2層目のAl配線(1
9)を形成する。なお、図示しないが、通常この後、2層
目のAl配線(19)の上に保護膜となる絶縁層を形成した
後、外部回路との接続のためにパツド窓明けが行なわれ
る。
Next, as shown in FIG. 2H, Al (for example, containing 1% of Si) is formed by sputtering or vapor deposition to have a thickness of 1.0 μ, and then patterning is performed to form a second layer of Al wiring (1
9) is formed. Although not shown, usually, after this, an insulating layer serving as a protective film is formed on the second-layer Al wiring (19), and then a pad window is opened for connection with an external circuit.

なお、Al配線(13)の厚さが厚い場合、第2図Gで示した
最終的な平坦化工程の後でもAl配線(13)間の絶縁層(16)
に凹状部分が生ずることがある。このような場合、従来
と同様の方法により平坦化工程を繰り返してもよいが、
凹状部分は非常に局所的であるため、シリカガラスの溶
剤をスピンナで被着した後、ベーキング(90〜250℃)
するだけでも充分な平坦化が達成される。
When the Al wiring (13) is thick, the insulating layer (16) between the Al wirings (13) is formed even after the final flattening step shown in FIG. 2G.
A concave part may occur in the. In such a case, the flattening step may be repeated by the same method as the conventional method,
Since the concave part is very local, after baking the silica glass solvent with a spinner, baking (90 ~ 250 ℃)
Sufficient flattening can be achieved by just doing.

本発明は、例えばポリSi配線1層とAl配線2層の3層配
線構造にも適用することができ、この場合には、ポリSi
配線の上に層間絶縁膜を熱処理(リフロー方式)で平坦
に形成した後、上記実施例と同様の処理を行えばよい。
他の応用例としては、前述した平坦化層の上に、さらに
電気的活性な領域(バイポーラトランジスタ又はMOS
トランジスタ等)を設けた、いわゆる3次元デバイスに
も応用可能である。
The present invention can be applied to, for example, a three-layer wiring structure including one layer of poly-Si wiring and two layers of Al wiring.
After the interlayer insulating film is formed flat on the wiring by heat treatment (reflow method), the same processing as in the above embodiment may be performed.
As another application example, an electrically active region (bipolar transistor or MOS) may be formed on the planarization layer described above.
It is also applicable to a so-called three-dimensional device provided with a transistor or the like).

上記製法によれば、層間絶縁層に従来のような溝部分又
は空洞部分が生じることなく層間絶縁層を厚く形成する
ことができる。従つて、上記1回の連続した平坦化工程
により充分な平坦度が得られるため、製造が容易であ
り、且つ再現性及び安定性が優れている。また、Al配線
段部での絶縁材の被覆性が良好になるため、従来のよう
にCVDの装置、条件等を選ぶ必要はなくなる。
According to the above-mentioned manufacturing method, the interlayer insulating layer can be formed thick without forming a groove portion or a cavity portion in the interlayer insulating layer as in the conventional case. Therefore, sufficient flatness can be obtained by the single continuous flattening step, so that the production is easy and the reproducibility and stability are excellent. In addition, since the insulating material has good coverage on the Al wiring step, it is not necessary to select the CVD apparatus, conditions, etc. as in the conventional case.

発明の効果 本半導体装置の製法によれば、高温の熱処理を必要とせ
ずに低温(常温)で層間絶縁層の平坦化を実現できるた
め、電気抵抗の低いAl、Al合金等の低融点材料を多層配
線構造を有する半導体装置の配線に使用することが可能
になる。この結果、半導体装置例えばVLSI、LSIの動作
速度の向上を図ることができる。また、製法が容易であ
るから、従来の配線技術に大きな変更を加えないでも本
製法のために使用することができる。
EFFECTS OF THE INVENTION According to the method for manufacturing a semiconductor device of the present invention, flattening of the interlayer insulating layer can be realized at a low temperature (normal temperature) without the need for high-temperature heat treatment. It can be used for wiring of a semiconductor device having a multilayer wiring structure. As a result, the operating speed of semiconductor devices such as VLSI and LSI can be improved. Further, since the manufacturing method is easy, it can be used for this manufacturing method without making a great change to the conventional wiring technique.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の半導体装置の製法を説明するための断面
図、第2図A〜Hは本発明に係る半導体装置の製法を示
す断面図である。 (11)はSi基板、(12)はSiO2膜、(13)は1層目のAl配線、
(14)は第1の絶縁層、(15)はテーパ、(16)は第2の絶縁
層、(17)は第3の絶縁層、(19)は2層目のAl配線であ
る。
FIG. 1 is a sectional view for explaining a conventional method for manufacturing a semiconductor device, and FIGS. 2A to 2H are sectional views showing a method for manufacturing a semiconductor device according to the present invention. (11) is a Si substrate, (12) is a SiO 2 film, (13) is the first layer of Al wiring,
(14) is the first insulating layer, (15) is the taper, (16) is the second insulating layer, (17) is the third insulating layer, and (19) is the second-layer Al wiring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体装置に形成された段部上に第1の絶
縁層を形成する工程と、該第1の絶縁層を異方性エツチ
ングして上記段部の側面にテーパを形成する工程と、上
記第1の絶縁層上に第2の絶縁層を形成する工程と、該
第2の絶縁層上に第3の絶縁層を表面が平坦化されるよ
うに形成する工程と、異方性エツチングにより上記第2
の絶縁層において平坦化する工程を有する半導体装置の
製法。
1. A step of forming a first insulating layer on a step portion formed in a semiconductor device, and a step of anisotropically etching the first insulating layer to form a taper on a side surface of the step portion. And a step of forming a second insulating layer on the first insulating layer, and a step of forming a third insulating layer on the second insulating layer so that the surface is planarized, The above second due to sex etching
Of a semiconductor device having a step of flattening the insulating layer of.
JP59086753A 1984-04-27 1984-04-27 Manufacturing method of semiconductor device Expired - Lifetime JPH0642481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59086753A JPH0642481B2 (en) 1984-04-27 1984-04-27 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59086753A JPH0642481B2 (en) 1984-04-27 1984-04-27 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60231340A JPS60231340A (en) 1985-11-16
JPH0642481B2 true JPH0642481B2 (en) 1994-06-01

Family

ID=13895519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59086753A Expired - Lifetime JPH0642481B2 (en) 1984-04-27 1984-04-27 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0642481B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481070A (en) * 1984-04-04 1984-11-06 Advanced Micro Devices, Inc. Double planarization process for multilayer metallization of integrated circuit structures
JPS6233445A (en) * 1985-08-07 1987-02-13 Nec Corp Multilayer interconnection and production thereof
JPH04340749A (en) * 1991-05-17 1992-11-27 Nec Corp Manufacture of semiconductor device
JPH0513587A (en) * 1991-07-02 1993-01-22 Matsushita Electron Corp Manufacturing of semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS57143845A (en) * 1981-02-27 1982-09-06 Fujitsu Ltd Formation of multi-layer wiring composition
JPS57193045A (en) * 1981-05-23 1982-11-27 Nippon Telegr & Teleph Corp <Ntt> Integrated circuit device and manufacture thereof
JPS5893329A (en) * 1981-11-30 1983-06-03 Toshiba Corp Method for flattening insulating layer
JPS5897848A (en) * 1981-12-08 1983-06-10 Seiko Instr & Electronics Ltd Smoothing method for surface
JPS58216443A (en) * 1982-06-10 1983-12-16 Toshiba Corp Manufacture of semiconductor device
JPS5969950A (en) * 1982-10-15 1984-04-20 Nec Corp Forming method for multilayer wiring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5444482A (en) * 1977-09-14 1979-04-07 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its manufacture
JPS57143845A (en) * 1981-02-27 1982-09-06 Fujitsu Ltd Formation of multi-layer wiring composition
JPS57193045A (en) * 1981-05-23 1982-11-27 Nippon Telegr & Teleph Corp <Ntt> Integrated circuit device and manufacture thereof
JPS5893329A (en) * 1981-11-30 1983-06-03 Toshiba Corp Method for flattening insulating layer
JPS5897848A (en) * 1981-12-08 1983-06-10 Seiko Instr & Electronics Ltd Smoothing method for surface
JPS58216443A (en) * 1982-06-10 1983-12-16 Toshiba Corp Manufacture of semiconductor device
JPS5969950A (en) * 1982-10-15 1984-04-20 Nec Corp Forming method for multilayer wiring

Also Published As

Publication number Publication date
JPS60231340A (en) 1985-11-16

Similar Documents

Publication Publication Date Title
US5828121A (en) Multi-level conduction structure for VLSI circuits
JP3128811B2 (en) Method for manufacturing semiconductor device
US4872050A (en) Interconnection structure in semiconductor device and manufacturing method of the same
JPH1131745A (en) Formation of contact plug of semiconductor device
JPS63142A (en) Manufacture of semiconductor device
JPH0642481B2 (en) Manufacturing method of semiconductor device
EP0507881A1 (en) Semiconductor interconnect structure utilizing a polyimide insulator
JPH0837289A (en) Semiconductor device and manufacture thereof
JPH04355951A (en) Semiconductor device and manufacture thereof
JPH10256187A (en) Semiconductor device and fabrication thereof
JP2637726B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH04123458A (en) Manufacture of semiconductor device
JPS63262856A (en) Manufacture of semiconductor device
JPH09213793A (en) Semiconductor integrated circuit device and manufacture thereof
JPH10256373A (en) Semiconductor device and manufacture thereof
JPH11238800A (en) Manufacture of element with multilayer wiring
JP2003218116A (en) Semiconductor device and its manufacturing method
JPH0817928A (en) Manufacture of semiconductor device
JP2942063B2 (en) Method for manufacturing semiconductor device
JPH0936229A (en) Semiconductor integrated circuit device and its manufacture
JPS6132555A (en) Formation of multilayer interconnection structure
JPH0831940A (en) Semiconductor device and its manufacture
JPH01241845A (en) Manufacture of semiconductor device
JPS6149439A (en) Manufacture of semiconductor device
JPH0473972A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term