JPS5897848A - Smoothing method for surface - Google Patents

Smoothing method for surface

Info

Publication number
JPS5897848A
JPS5897848A JP19742381A JP19742381A JPS5897848A JP S5897848 A JPS5897848 A JP S5897848A JP 19742381 A JP19742381 A JP 19742381A JP 19742381 A JP19742381 A JP 19742381A JP S5897848 A JPS5897848 A JP S5897848A
Authority
JP
Japan
Prior art keywords
oxide film
coating
film
dry etching
smoothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19742381A
Other languages
Japanese (ja)
Inventor
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP19742381A priority Critical patent/JPS5897848A/en
Publication of JPS5897848A publication Critical patent/JPS5897848A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To leave an oxide film applied to the bottom and side surface of difference at stages effective for smoothing by forming the oxide film applied, exposing the whole surface in a dry etching atmosphere and removing the unnecessary section of the film applied until the oxide film is exposed. CONSTITUTION:A polycrystal layer 12 and a layer insulating film 13 are formed onto an oxide film 11 on a semiconductor crystal 10, and the oxide film 15 applied is deposited. The whole surface is etched in the dry etching atmosphere, the thin section of the oxide film 15 applied is removed and a section having a smoothing effect is left, and the layer insulating film 13 or the oxide film 11 requiring processing are exposed. When dry etching is executed by a gas such as the mixed gas (20-80% O2) of CF4 and O2, the quantities of the layer insulating film 13 and the oxide film 15 are little when the whole surface is etched because the ratio of approximately 4:1 or higher is obtained at the ratio of etching speed of the oxide film applied to a thermal oxide film and the ratio of approximately 3:1 or higher is acquired to a CVD oxide film. An opening on the polycrystal layer 12 and the processing of the oxide film 11 as necessary are executed extremely easily because of no oxide film applied.

Description

【発明の詳細な説明】 本!1Iji社、多層配線の一部に多結晶層を用いたり
、半導体結晶に凹部を設けたことによる半導体装置表面
の凹凸を平滑化する方法に関するものである。
[Detailed description of the invention] Book! 1Iji Co., Ltd., relates to a method for smoothing unevenness on the surface of a semiconductor device caused by using a polycrystalline layer as part of a multilayer interconnection or by providing a recessed portion in a semiconductor crystal.

多結晶層を用いた従来の多層配線について示せば、第1
図CG)に示す様に、半導体結晶10上の酸化J[11
の上に多結晶層12t、さらにその上に層間絶縁膜13
t−形成すると、多結晶層12の側面は急使になり(微
細加工上急使にならざるt得ない]、かつOvD法等に
よる層間絶縁膜もステップカバーが充分でないので、こ
36の上KAt等金属膜14を堆積し選択エッチすると
、側面がうすくなったシ、図中矢印で示す如(段切れを
生じてしまう。
Regarding conventional multilayer wiring using polycrystalline layers, the first
As shown in Figure CG), oxidized J[11
A polycrystalline layer 12t is formed on top of the polycrystalline layer 12t, and an interlayer insulating film 13 is further formed on top of the polycrystalline layer 12t.
When T- is formed, the side surface of the polycrystalline layer 12 becomes a courier (it cannot help but become a courier due to microfabrication), and the interlayer insulating film formed by the OvD method etc. does not provide sufficient step cover. When a metal film 14 such as KAt is deposited and selectively etched, the side surfaces become thinner and breakage occurs as shown by the arrow in the figure.

従来、こrLt改善するため、酸化Mllや層間絶縁1
[13上に塗布隊化膜15t−スピン=−トして表面を
平滑化していた。塗布酸化膜ISは、ocnや丁キエス
ピン、スピン、ライト等の商品名tもり塗布剤で、20
G−1000′c程度の熱処理で酸化膜となる。この中
には、不純物を含まな−もの中、リン等の不純物を含む
ものがTo9、目的により使いわけらnている。冨15
1IC&)に示テ如(、塗布酸化Q 15 Kより表面
は平滑化さn1金属膜14の段切扛も改善さnる。しか
しながら、一般に塗布酸化膜15rj熱酸化嘆やOVD
酸化膜に比しエッチ速度えば、多結晶層12上の層間絶
縁膜13や塗布酸化膜15に開孔を設け、金属J[14
と多結晶層12t−jii!!続する場酋、通常のフォ
トプロセスでレジスト上マスタに多結晶層【2上に開孔
を設は様とすると塗布酸く、多結晶層12の側面もエッ
チさnてしまい結果的に表面平滑化の効果なくなってし
まうこ、とがしばしばある。
Conventionally, in order to improve this rLt, oxidation Mll and interlayer insulation 1
[13 was coated with a plated film 15t-spun to smooth the surface. The coating oxide film IS is a coating agent with a trade name such as ocn, chokiespin, spin, light, etc.
It becomes an oxide film by heat treatment of about G-1000'c. Among these, among those that do not contain impurities, those that contain impurities such as phosphorus are classified as To9 depending on the purpose. Tomi 15
As shown in 1IC&), the surface is smoother and the step-cutting of the metal film 14 is improved by coating oxidation Q15K. However, in general, thermal oxidation or OVD coating oxide film 15rj
If the etch rate is higher than that of the oxide film, openings are formed in the interlayer insulating film 13 on the polycrystalline layer 12 and the coated oxide film 15, and the metal J[14
and polycrystalline layer 12t-jii! ! Next, if you try to make holes on the polycrystalline layer [2] on the resist using a normal photo process, the coating will be acidic and the sides of the polycrystalline layer 12 will also be etched, resulting in a smooth surface. It often happens that the effect of the change is lost.

本実開拡上述の問題を改善するためになさnたもので塗
布酸化膜形成後少なく加工の必要な部分の塗布酸化膜を
除去して、下地の加工しやすい酸化膜中層間絶縁膜を露
出すると共に、平滑化に効果ある段差底部や側面の塗布
酸化膜を残すものである。塗布酸化膜の除去は、H?等
のウエットエツナによっても可能であるがエッチ速度が
著しく高いので制御が困mなため、プラズマエッチ、反
応性イオンエッチ、イオンエッチ等のドライエッチで行
なうことが望ましい。以下に図面を用いて本実明管詳述
する。112図に)には、半導体結晶10上のa+tI
gxt上に多結晶層12、層間絶縁fi13’i形成し
た後、塗布酸化WX15を堆積した断面を示す。
This practical development was done in order to improve the above-mentioned problem, and after forming the coated oxide film, remove the coated oxide film in the parts that require less processing to expose the underlying oxide film and interlayer insulating film, which is easy to process. At the same time, it leaves an applied oxide film on the bottom and side surfaces of the step, which is effective for smoothing. Is it possible to remove the applied oxide film using H? Although this is possible with a wet etcher such as, the etch rate is extremely high and difficult to control, it is preferable to use dry etching such as plasma etching, reactive ion etching, or ion etching. This actual tube will be explained in detail below using the drawings. 112), a+tI on the semiconductor crystal 10
A cross section is shown in which a coating oxide WX15 is deposited after forming a polycrystalline layer 12 and interlayer insulation fi13'i on gxt.

その後、第2図(6)に示す様に全面をドライエッチ雰
囲気でエッチして塗布酸化膜15のうすい部分t、除去
し、かつ平滑効果のある部分を残し、加工の必要な層間
絶縁膜13もしくは酸化1[11・を露出する、ドライ
エッチは、例見ば01番と0−の混曾ガス(0,20〜
80%)で行なうと、塗布酸化膜と熱酸化層のエッチ速
度比は約4=1以上にとnlま九〇VD酸化膜に対して
は約3:1以上にとれるので、この全面エッチの際層間
絶嶽gX13や酸化膜15の除去のさn方は少ない、こ
の後@2図(e)の如く多結晶層12上の開孔や、必要
に応じ酸化jl[11の加工は、塗布酸化膜がないため
非常に行ないやすくな)、第1図(6)の様な問題はな
くなった。
Thereafter, as shown in FIG. 2(6), the entire surface is etched in a dry etching atmosphere to remove the thin part t of the applied oxide film 15, leaving a smoothing part, and leaving the interlayer insulating film 13 that needs processing. Alternatively, dry etching to expose oxidized 1[11.
80%), the etch rate ratio between the coated oxide film and the thermal oxide layer is about 4=1 or more, and for the nl to 90VD oxide film, it is about 3:1 or more. There is little time to remove the interlayer gap gX13 and the oxide film 15.After this, as shown in Figure 2(e), holes are formed on the polycrystalline layer 12, and processing of oxidation layer [11] is performed as necessary. Since there is no oxide film, it is very easy to carry out), and the problem as shown in Fig. 1 (6) is eliminated.

他の本発明例について述べる。塗布酸化膜とrBG(リ
ンを数ts〜105G程度含む酸化膜)のエッチ速度比
は約2=1以下になるので、層間絶縁膜13や酸化gX
11の少なく共表面部QF8Gで形成した後、塗布酸化
Ml[]5t−堆積し全面ドライエッチを行なえば、第
3図の如くほぼ塗布酸化膜150表面形状のtま78G
が露出さnるので、表面平滑化効果はほとんど失わnな
い利点がある。
Other examples of the present invention will be described. Since the etch rate ratio between the coated oxide film and rBG (an oxide film containing about several ts to 105G of phosphorus) is approximately 2=1 or less, the interlayer insulating film 13 and oxidized gX
After forming the co-surface portion QF8G with a small amount of oxide film 11, if coating oxide Ml [ ] 5t is deposited and dry etching is performed on the entire surface, the surface shape of the coating oxide film 150 is approximately 78G as shown in FIG.
Since the surface is exposed, there is an advantage that almost no surface smoothing effect is lost.

第3図の例は、1’8Gに限らず塗布酸化膜の成分や熱
処理条件、層間絶縁膜や酸化膜の形成条件、ドライエッ
チ条件によってもエッチ選択比を適宜制御できるので、
他の材料への応用も可能である。
In the example shown in FIG. 3, the etch selectivity can be controlled not only by 1'8G but also by the composition of the applied oxide film, heat treatment conditions, interlayer insulation film and oxide film formation conditions, and dry etching conditions.
Application to other materials is also possible.

tた、多層配線のときの平滑化の例を主に述べてきたが
、凹部分離等結晶内に凹W(もしくは凸部〕のある場酋
、酸化膜等による段差のある場合にも同様KV効である
。パ
In addition, although we have mainly described examples of smoothing in multilayer wiring, KV can also be applied in cases where there are depressions (or protrusions) in the crystal, such as in the case of a depression separation, or in the case where there is a step due to an oxide film, etc. It is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に)〜(C) t;j:多結晶を用いた多層配線
の従来の方法を示した断面図、第2図(G)〜(6)は
本発明による平滑方法を多層配9線に適用したときの断
面図、tIX3図は本発明の他の実施例を説゛明するた
め断面図である。 10゜。半導体結晶、11 、 、酸化、嘆、12.、
多結晶層、1300層間絶縁膜、140.金属層、15
.。 塗布酸化膜 以上 出願人 株式会社第二精工金 代理人 弁理士最上  務 第1図(a) 第1図(b) 第1図(C) 第2図(α) /−〜IO 第2図(17) 第2図(C) 第3図
1) to (C) t;j: Cross-sectional views showing the conventional method of multilayer interconnection using polycrystal, and FIGS. 2(G) to (6) show the smoothing method according to the present invention for A cross-sectional view when applied to a wire, tIX3 is a cross-sectional view for explaining another embodiment of the present invention. 10°. Semiconductor crystal, 11, Oxidation, lamentation, 12. ,
Polycrystalline layer, 1300 interlayer insulating film, 140. metal layer, 15
.. . Coated oxide film Applicant Daini Seikokin Co., Ltd. Agent Patent Attorney Mogami Affairs Figure 1 (a) Figure 1 (b) Figure 1 (C) Figure 2 (α) /-~IO Figure 2 ( 17) Figure 2 (C) Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)多結晶層を用いた多層配線もしく紘半導体結晶に
凹’gt−設けたことによる半導体装置表面の凹凸を塗
布W11と硅素屓を塗布して平滑化する方法において、
前記凹凸の表面を酸化膜で被覆した後、前記塗布at−
塗布、熱処理後、全表面をドライエッチ雰囲気にさらす
ととKよ)少なく共前記塗布嘆の不要部上前記酸化膜が
露出するまで除去すること1%黴とする表面平滑化方法
。 (乃 少な(共前記酸化膜の表面Ktl!IJンを含む
肩が形成されて* D 、前記ドライエッチによって前
記塗布膜と共K11l記リンを含む腹の一部も除去さn
ることtW徴とする特許請求の範囲第1頂上戦の表面平
滑化方法。
(1) In a method of smoothing unevenness on the surface of a semiconductor device due to multilayer wiring using a polycrystalline layer or by providing recesses in a semiconductor crystal by applying coating W11 and silicone coating,
After coating the uneven surface with an oxide film, the coating at-
After coating and heat treatment, the entire surface is exposed to a dry etching atmosphere, and at least 1% of the mold is removed from the unnecessary portions of the coating until the oxide film is exposed. A shoulder containing a small amount of phosphorus (Ktl!
Claim 1: A method for smoothing the surface of a top surface.
JP19742381A 1981-12-08 1981-12-08 Smoothing method for surface Pending JPS5897848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19742381A JPS5897848A (en) 1981-12-08 1981-12-08 Smoothing method for surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19742381A JPS5897848A (en) 1981-12-08 1981-12-08 Smoothing method for surface

Publications (1)

Publication Number Publication Date
JPS5897848A true JPS5897848A (en) 1983-06-10

Family

ID=16374268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19742381A Pending JPS5897848A (en) 1981-12-08 1981-12-08 Smoothing method for surface

Country Status (1)

Country Link
JP (1) JPS5897848A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231340A (en) * 1984-04-27 1985-11-16 Sony Corp Manufacture of semiconductor device
JPS61196555A (en) * 1985-02-26 1986-08-30 Nec Corp Formation for multilayer interconnection
JPS61272951A (en) * 1985-05-28 1986-12-03 Nippon Gakki Seizo Kk Forming method of multilayer wiring
JPS62295437A (en) * 1986-06-14 1987-12-22 Yamaha Corp Forming method for multilayer interconnection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214366A (en) * 1975-07-25 1977-02-03 Hitachi Ltd Process for production of semiconductor device
JPS53104186A (en) * 1977-02-23 1978-09-11 Hitachi Ltd Multilayer wiring body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214366A (en) * 1975-07-25 1977-02-03 Hitachi Ltd Process for production of semiconductor device
JPS53104186A (en) * 1977-02-23 1978-09-11 Hitachi Ltd Multilayer wiring body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60231340A (en) * 1984-04-27 1985-11-16 Sony Corp Manufacture of semiconductor device
JPH0642481B2 (en) * 1984-04-27 1994-06-01 ソニー株式会社 Manufacturing method of semiconductor device
JPS61196555A (en) * 1985-02-26 1986-08-30 Nec Corp Formation for multilayer interconnection
JPS61272951A (en) * 1985-05-28 1986-12-03 Nippon Gakki Seizo Kk Forming method of multilayer wiring
JPS62295437A (en) * 1986-06-14 1987-12-22 Yamaha Corp Forming method for multilayer interconnection
JPH0587146B2 (en) * 1986-06-14 1993-12-15 Yamaha Corp

Similar Documents

Publication Publication Date Title
JPH029122A (en) Method of etching layers containing polycrystalline silicon
JPS5897848A (en) Smoothing method for surface
JPH0239435A (en) Manufacture of semiconductor device
JPS57204148A (en) Manufacture of semiconductor device
JPS5444474A (en) Contact forming method of semiconductor device
JPS5850754A (en) Formation of selective oxide layer
JP2975496B2 (en) Method of forming element isolation structure
JP2570729B2 (en) Method for manufacturing semiconductor device
JPS5823480A (en) Forming method for silicon gate
JPS60128635A (en) Forming process of element isolation region
JPH01244636A (en) Manufacture of semiconductor device
JPS6193629A (en) Manufacture of semiconductor device
JPS61102751A (en) Manufacture of semiconductor device
JPS6149437A (en) Semiconductor device
JPS54126485A (en) Forming method of insulating film for multilayer wiring
JPS5857737A (en) Manufacture of semiconductor device
JPS6028237A (en) Manufacture of semiconductor device
JPS6130045A (en) Manufacture of semiconductor device
JPH03274730A (en) Manufacture of semiconductor device
JPS61248437A (en) Manufacture of semiconductor device
JPS59189646A (en) Manufacture of semiconductor device
JPS5821843A (en) Manufacture of semiconductor device
JPS63185030A (en) Manufacture of semiconductor element
JPS641254A (en) Method of flattening groove for insulating substrate
JPS62194627A (en) Manufacture of semiconductor device