JPH04355951A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04355951A
JPH04355951A JP1551391A JP1551391A JPH04355951A JP H04355951 A JPH04355951 A JP H04355951A JP 1551391 A JP1551391 A JP 1551391A JP 1551391 A JP1551391 A JP 1551391A JP H04355951 A JPH04355951 A JP H04355951A
Authority
JP
Japan
Prior art keywords
wiring layer
wiring
film
semiconductor device
metal plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1551391A
Other languages
Japanese (ja)
Inventor
Akira Sato
明 佐藤
Kenji Hinode
憲治 日野出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP1551391A priority Critical patent/JPH04355951A/en
Publication of JPH04355951A publication Critical patent/JPH04355951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable a semiconductor device to be lessened in through-hole resistance and enhanced in resistance to electromigration by a method wherein an upper wiring layer is formed, then a through-hole is bored, and then a metal plug is formed. CONSTITUTION:A first wiring layer 3 formed on an insulating film 101 is processed into a required pattern, a first interlayer film 104 and second wiring layers 107 and 108 are formed, and a through-hole is bored in the layers 107 and 108 using a photoresist mask. Then, a metal plug 109 is formed on the first wiring layer 103 thicker than the first interlayer film 104, whereby the first wiring layer 103 is electrically connected to the second wiring layer 106. When a wiring layer is formed furthermore, a second interlayer film 110 and a third wiring layer 111 are formed, a through-hole is bored, and a metal plug 113 is formed on the second wiring layer 107 thicker than the second interlayer film 110 so as to electrically connect the second wiring layer 107 to the third wiring layer 111.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、複数の配線層を有する
半導体装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a plurality of wiring layers and a method for manufacturing the same.

【0002】0002

【従来の技術】従来、多層配線構造を有する半導体装置
の製造方法は、下層配線層を形成した後層間絶縁膜を形
成し、フォトレジストのパターンをマスクとして層間絶
縁膜に所望のホールを開孔し、次いで、スパッタリング
法等によって、上層配線層をホール内と層間絶縁膜上と
に形成するのが通例であった。しかし、微細なパターン
を有する半導体装置を製造する場合、ホールの径が微細
となり、ホール内に形成された上層配線層がオーバーハ
ングにより断線したり、膜質が劣化したりした。
[Prior Art] Conventionally, in a method for manufacturing a semiconductor device having a multilayer wiring structure, after forming a lower wiring layer, an interlayer insulating film is formed, and desired holes are opened in the interlayer insulating film using a photoresist pattern as a mask. Then, it was customary to form an upper wiring layer within the hole and on the interlayer insulating film by sputtering or the like. However, when manufacturing a semiconductor device having a fine pattern, the diameter of the hole becomes fine, and the upper wiring layer formed in the hole may be disconnected due to overhang or the film quality may deteriorate.

【0003】一方、微細なパターンを有する半導体装置
の製造等に際し、化学気相成長(以下、CVDと略す)
法により絶縁膜のホールにタングステン(W)等の金属
を埋め込んで配線金属膜を形成することが行なわれてい
た。例えば、特開昭62−31116に記載の方法は、
コンタクトホールに選択化学気相成長(以下、選択CV
Dと略す)法を用いてW膜を形成し、その後絶縁膜上に
W膜と接続するAl配線を形成する。この方法により製
造された半導体装置は、図3(a)、(b)に示すよう
に、絶縁膜117上に設けられたW配線118上の層間
膜119のホール内に、Wプラグ120が設けられた構
造を有する。このWプラグ120とAl合金配線121
又は純Al配線123の界面には析出物122又は反応
層124が形成され、それぞれ、コンタクト抵抗の増大
又は反応層形成による局所的なエレクトロマイグレーシ
ョン劣化が発生し、配線層間の断線等の問題が生ずる。
On the other hand, when manufacturing semiconductor devices having fine patterns, chemical vapor deposition (hereinafter abbreviated as CVD) is used.
A wiring metal film has been formed by filling a hole in an insulating film with a metal such as tungsten (W) using a method. For example, the method described in JP-A-62-31116 is
Selective chemical vapor deposition (hereinafter referred to as selective CV) is applied to contact holes.
A W film is formed using a method (abbreviated as D), and then an Al wiring connected to the W film is formed on the insulating film. In the semiconductor device manufactured by this method, as shown in FIGS. 3A and 3B, a W plug 120 is provided in a hole in an interlayer film 119 on a W wiring 118 provided on an insulating film 117. It has a unique structure. This W plug 120 and Al alloy wiring 121
Alternatively, a precipitate 122 or a reaction layer 124 is formed at the interface of the pure Al wiring 123, which increases contact resistance or causes local electromigration deterioration due to the formation of the reaction layer, resulting in problems such as disconnection between wiring layers. .

【0004】これらの問題を解決するため、例えば、特
開昭62−145774に記載の半導体装置が提案され
ている。この装置はWプラグとAl配線との間に、バリ
アメタルであるTiN膜とTiSi2膜を有するもので
ある。
In order to solve these problems, a semiconductor device has been proposed, for example, as described in Japanese Patent Application Laid-Open No. 145774/1983. This device has a TiN film and a TiSi2 film, which are barrier metals, between the W plug and the Al wiring.

【0005】また、特開昭63−237443に記載の
半導体装置は、半導体基板上に絶縁膜を介して少なくと
も第1配線層及び第2配線層が積層された多層配線構造
を有し、第1配線層及び第2配線層を横切って半導体基
板の拡散層にまで延びるホールが設けられ、ホール内に
導電体層を有するものである。
Further, a semiconductor device described in Japanese Patent Application Laid-Open No. 63-237443 has a multilayer wiring structure in which at least a first wiring layer and a second wiring layer are laminated on a semiconductor substrate with an insulating film interposed therebetween. A hole is provided that extends across the wiring layer and the second wiring layer to the diffusion layer of the semiconductor substrate, and has a conductor layer within the hole.

【0006】[0006]

【発明が解決しようとする課題】上記特開昭62−31
116に記載の従来技術は、絶縁膜のホールに埋め込ま
れたW膜の上に形成されたAl配線の材料が0.5%以
上のSiを含むAl合金の場合、ホールに埋め込まれた
W膜とAl配線との界面で選択的にSi粒が析出し、ス
ルーホール抵抗が増大するという問題があった。また、
このAl配線の材料が純Alの場合、ホールに埋め込ま
れたW膜とAl配線との界面で反応層が形成され、局所
的にエレクトロマイグレーション耐性が劣化し、それが
進行するとホールに埋め込まれたW膜とAl配線との界
面でコンタクト不良が発生するという問題があった。
[Problem to be solved by the invention] The above-mentioned Japanese Patent Application Laid-Open No. 62-31
In the prior art described in No. 116, when the material of the Al wiring formed on the W film buried in the hole of the insulating film is an Al alloy containing 0.5% or more of Si, the W film buried in the hole is There was a problem in that Si grains were selectively precipitated at the interface between the aluminum wiring and the aluminum wiring, increasing the through-hole resistance. Also,
When the material of this Al wiring is pure Al, a reaction layer is formed at the interface between the W film buried in the hole and the Al wiring, locally deteriorating the electromigration resistance, and as this progresses, the reaction layer is formed at the interface between the W film filled in the hole and the Al wiring. There was a problem in that contact failure occurred at the interface between the W film and the Al wiring.

【0007】上記特開昭62−145774に記載の従
来技術は、バリアメタルとしてTiN膜とTiSi2膜
の2層の膜を形成する必要があり、製造工程が複雑にな
るという問題があった。さらに、微細なパターンを有す
る多層配線構造の半導体装置を製造する場合、配線層間
のスルーホールの形成時の位置合わせ余裕が極めて小さ
いため、スルーホールを下地配線層に合わせるのが非常
に困難であり、位置合わせ不良によって配線層間の断線
が発生するという問題があった。
The conventional technique described in the above-mentioned Japanese Patent Laid-Open No. 62-145774 has the problem that it is necessary to form two layers of TiN film and TiSi2 film as the barrier metal, which complicates the manufacturing process. Furthermore, when manufacturing a semiconductor device with a multilayer wiring structure having a fine pattern, the alignment margin when forming through holes between wiring layers is extremely small, making it extremely difficult to align the through holes with the underlying wiring layer. However, there was a problem in that disconnections between wiring layers occurred due to poor alignment.

【0008】上記特開昭63−237443に記載の従
来技術は、ホールの高さが極端に高くなるため、ホール
に導電体層を形成する際、カバレジ不足による第2配線
層と拡散層との導通不良が発生するという問題があった
[0008] In the conventional technique described in the above-mentioned Japanese Patent Laid-Open No. 63-237443, the height of the hole becomes extremely high, so when forming a conductive layer in the hole, the second wiring layer and the diffusion layer are not connected due to insufficient coverage. There was a problem that poor conduction occurred.

【0009】本発明の目的は、スルーホール抵抗が低く
、かつ、配線の耐エレクトロマイグレーション特性に優
れ、配線層間の断線を解消した半導体装置及びそのよう
な半導体装置の製造方法並びに配線層間のスルーホール
の位置合わせを容易に行なうことのでき、比較的簡単な
方法で行なえる半導体装置の製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device that has low through-hole resistance, excellent electromigration resistance characteristics of wiring, and eliminates disconnection between wiring layers, a method for manufacturing such a semiconductor device, and a through-hole between wiring layers. It is an object of the present invention to provide a method for manufacturing a semiconductor device which allows easy alignment of the semiconductor device and which can be performed using a relatively simple method.

【0010】0010

【課題を解決するための手段】上記目的は、(1)基板
上に配置された、第1配線層と、該第1配線層上に絶縁
膜を介して配置された第2配線層と、該第1及び第2配
線層を電気的に接続する金属プラグとを有する半導体装
置において、該金属プラグは、該第1配線層の上面から
、該第2配線層に設けられたスルーホールを通って配置
され、かつ、該金属プラグの材料と該第2配線層の少な
くとも表面の材料は、互いに異なる材料であることを特
徴とする半導体装置、(2)上記1記載の半導体装置に
おいて、上記金属プラグの上部は、上記第2配線層の上
部と実質的に同じ高さであることを特徴とする半導体装
置、(3)基板上に、所望のパターンの第1配線層を形
成する工程、該第1配線層上に、層間絶縁膜と第2配線
層を形成する工程、該第2配線層と該層間絶縁膜とにス
ルーホールを開孔する工程、該スルーホール内に該第1
配線層と第2配線層とを電気的に接続する金属プラグを
形成する工程を少なくとも有することを特徴とする半導
体装置の製造方法、(4)上記3記載の半導体装置の製
造方法において、上記金属プラグの形成は、化学気相成
長法により行なうことを特徴とする半導体装置の製造方
法、(5)上記3記載の半導体装置の製造方法において
、上記金属プラグの形成は、選択化学気相成長法により
行なうことを特徴とする半導体装置の製造方法、(6)
上記3から5のいずれかに記載の半導体装置の製造方法
において、上記金属プラグは、その上部を上記第2配線
層の上面の高さと実質的に同じにすることを特徴とする
半導体装置の製造方法、(7)上記3から5のいずれか
に記載の半導体装置の製造方法において、上記第1配線
層の材料と上記第2配線層の少なくとも表面の材料は、
互いに異なる材料であること特徴とする半導体装置の製
造方法により達成される。
[Means for Solving the Problems] The above objects are: (1) a first wiring layer disposed on a substrate; a second wiring layer disposed on the first wiring layer with an insulating film interposed therebetween; In a semiconductor device having a metal plug that electrically connects the first and second wiring layers, the metal plug passes through a through hole provided in the second wiring layer from the top surface of the first wiring layer. (2) A semiconductor device according to item 1 above, wherein the metal plug and the material of at least the surface of the second wiring layer are different materials. A semiconductor device characterized in that an upper part of the plug is substantially at the same height as an upper part of the second wiring layer, (3) a step of forming a first wiring layer in a desired pattern on a substrate; forming an interlayer insulating film and a second wiring layer on the first wiring layer; forming a through hole in the second wiring layer and the interlayer insulating film;
(4) A method for manufacturing a semiconductor device according to item 3 above, which comprises at least the step of forming a metal plug that electrically connects the wiring layer and the second wiring layer. (5) A method for manufacturing a semiconductor device according to item 3 above, wherein the formation of the metal plug is performed by selective chemical vapor deposition. (6) A method for manufacturing a semiconductor device, characterized in that it is carried out by
In the method for manufacturing a semiconductor device according to any one of 3 to 5 above, the metal plug has an upper portion thereof substantially the same height as the upper surface of the second wiring layer. (7) In the method for manufacturing a semiconductor device according to any one of 3 to 5 above, the material of the first wiring layer and the material of at least the surface of the second wiring layer are:
This is achieved by a method of manufacturing a semiconductor device characterized in that the materials are different from each other.

【0011】[0011]

【作用】図1に示すように、絶縁膜101上に形成した
第1配線層103を所望のパターンに加工した後、第1
層間膜104と第2配線層106、107を形成し、ホ
トレジストをマスクとしてその2層の膜にスルーホール
を開孔する。次いで、CVD法を用いて第1配線層10
3上に金属プラグ109を第1層間膜104よりも厚く
形成することにより、第1配線層103と第2配線層1
06を電気的に導通する。
[Operation] As shown in FIG. 1, after processing the first wiring layer 103 formed on the insulating film 101 into a desired pattern, the first
An interlayer film 104 and second wiring layers 106 and 107 are formed, and through holes are opened in the two layers using photoresist as a mask. Next, the first wiring layer 10 is formed using the CVD method.
By forming the metal plug 109 thicker than the first interlayer film 104 on the first wiring layer 103 and the second wiring layer 1
06 is electrically connected.

【0012】また、さらに配線層を形成する場合、第2
層間膜110と第3配線層111を形成し、上記方法と
同様にスルーホールを開孔した後、CVD法を用いて第
2配線層107上に金属プラグ113を第2層間膜11
0よりも厚く形成することにより、第2配線層107と
第3配線層111を電気的に導通する。
[0012] Furthermore, when forming a further wiring layer, a second wiring layer is formed.
After forming the interlayer film 110 and the third wiring layer 111 and drilling through holes in the same manner as in the above method, a metal plug 113 is placed on the second wiring layer 107 using the CVD method.
By forming the layer thicker than 0, the second wiring layer 107 and the third wiring layer 111 are electrically connected.

【0013】なお、上記方法で金属プラグ109、11
3を形成する場合、全面に金属材料を形成し、表面をエ
ッチングして金属プラグ部分を残してもよいが、選択C
VD法により下層の配線層上にのみ金属プラグを形成す
ることが好ましい。この場合第1配線層103及び第2
配線層106の材料並びに第2配線層107及び第3配
線層111の材料を各々異なる金属とする必要がある。 例えば、下層の配線層はWを、上層の配線層はAlを用
いる。また、下層の配線層はAlを、上層の配線層はM
oを用いる。いずれの場合も金属プラグとしてはW、C
u、Al又は金属シリサイドを用いる。
[0013] Note that the metal plugs 109, 11 are
3, a metal material may be formed on the entire surface and the surface may be etched to leave a metal plug part;
It is preferable to form the metal plug only on the lower wiring layer by the VD method. In this case, the first wiring layer 103 and the second
It is necessary that the material of the wiring layer 106 and the materials of the second wiring layer 107 and the third wiring layer 111 are different metals. For example, W is used for the lower wiring layer, and Al is used for the upper wiring layer. In addition, the lower wiring layer is made of Al, and the upper wiring layer is made of M.
Use o. In either case, the metal plug is W or C.
u, Al or metal silicide.

【0014】また、図2に示すように、第1配線層10
3と第2配線層106を同種金属とし、第2配線層10
6上に第2配線層106とは異種の金属薄膜114を形
成してもよい。同様に第2配線層107と第3配線層1
11を同種金属とし、第3配線層111上には金属薄膜
115とは異種の金属薄膜116を形成してもよい。な
お、金属薄膜116は絶縁膜に置き換えても構わない。 例えば、配線層の材料としてW、Al等を用い、金属薄
膜としてTiNを用いる。また、絶縁膜としてはSiO
2、Al2O3を用いる。
Furthermore, as shown in FIG. 2, the first wiring layer 10
3 and the second wiring layer 106 are made of the same kind of metal, and the second wiring layer 10
A metal thin film 114 different from the second wiring layer 106 may be formed on the second wiring layer 106 . Similarly, the second wiring layer 107 and the third wiring layer 1
11 may be made of the same metal, and a metal thin film 116 of a different type from the metal thin film 115 may be formed on the third wiring layer 111. Note that the metal thin film 116 may be replaced with an insulating film. For example, W, Al, etc. are used as the material for the wiring layer, and TiN is used as the metal thin film. In addition, the insulating film is SiO
2. Use Al2O3.

【0015】また、金属プラグ109、113を形成し
た後、熱処理を行なうことが好ましい。これにより第2
配線層106及び第3配線層111が熱膨張し、金属プ
ラグ109と第2配線層106の界面及び金属プラグ1
13と第3配線層111の界面での密着性が各々良好な
ものとなる。そのため、これらの界面に析出物や反応層
が形成することなく、スルーホールにおける配線の信頼
性を向上することができる。
Further, it is preferable to perform heat treatment after forming the metal plugs 109 and 113. This allows the second
The wiring layer 106 and the third wiring layer 111 thermally expand, and the interface between the metal plug 109 and the second wiring layer 106 and the metal plug 1
The adhesion at the interface between the wiring layer 13 and the third wiring layer 111 becomes good. Therefore, the reliability of the wiring in the through hole can be improved without forming precipitates or reaction layers at these interfaces.

【0016】さらに、図4(a)に示すように、第1配
線層127と第2配線層130を電気的に導通させるた
めの金属プラグ132は、第1配線層127及び第2配
線層130の配線幅よりも小さくする必要はなく、隣合
った第1配線層128及び第2配線層131と電気的に
絶縁されていれば良い。このため、金属プラグ132の
大きさは余裕をもって選定することができ、望ましくは
第1配線層127及び第2配線層130の配線幅よりも
大きくする。これは、第1配線層127と第2配線層1
30の間のスルーホール抵抗がスルーホールの断面積に
反比例するという関係より、スルーホール抵抗を最小限
に抑えることが可能となるためである。
Further, as shown in FIG. 4A, a metal plug 132 for electrically connecting the first wiring layer 127 and the second wiring layer 130 is connected to the first wiring layer 127 and the second wiring layer 130. It is not necessary to make the wiring width smaller than the wiring width, and it is sufficient that the wiring width is electrically insulated from the adjacent first wiring layer 128 and second wiring layer 131. Therefore, the size of the metal plug 132 can be selected with a certain margin, and is preferably larger than the wiring width of the first wiring layer 127 and the second wiring layer 130. This is the first wiring layer 127 and the second wiring layer 1.
This is because the through-hole resistance between 30 and 30 is inversely proportional to the cross-sectional area of the through-hole, so that the through-hole resistance can be minimized.

【0017】図4(a)のA−A′間の断面図を図4(
b)に示す。Si基板125上に設けられた絶縁膜12
6の上に第1配線層127が配置されている。第1配線
層127上に選択的に形成した金属プラグ132は、第
1層間膜129の膜厚よりも高く形成し、しかも第2配
線層131とは絶縁されている。また、図4(a)のB
−B′間の断面図を図4(c)に示す。第1配線層12
7上にのみ形成された金属プラグ132は、第1層間膜
129によって第1配線層128と電気的に絶縁され、
しかも第2配線層130と電気的に導通させるために第
1層間膜129の膜厚よりも高く形成する必要がある。 金属プラグ132の高さは、半導体製造装置の表面平坦
化のため、第2配線層130の高さと一致させることが
望ましい。
FIG. 4 (
Shown in b). Insulating film 12 provided on Si substrate 125
A first wiring layer 127 is arranged on top of the wiring layer 6 . The metal plug 132 selectively formed on the first wiring layer 127 is formed to be thicker than the first interlayer film 129 and is insulated from the second wiring layer 131 . Also, B in Fig. 4(a)
-B' is shown in FIG. 4(c). First wiring layer 12
The metal plug 132 formed only on the first wiring layer 128 is electrically insulated from the first wiring layer 128 by the first interlayer film 129.
Furthermore, in order to electrically conduct with the second wiring layer 130, it is necessary to form the film thicker than the first interlayer film 129. The height of the metal plug 132 is preferably made to match the height of the second wiring layer 130 in order to flatten the surface of the semiconductor manufacturing device.

【0018】これにより、第1配線層127と第2配線
層130間のスルーホール抵抗を最小限に抑えることが
でき、しかも第2配線層130の耐エレクトロマイグレ
ーション特性を向上させることができる。
Thereby, the through-hole resistance between the first wiring layer 127 and the second wiring layer 130 can be minimized, and the electromigration resistance of the second wiring layer 130 can be improved.

【0019】[0019]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。 〈実施例1〉図5、図6、図7は本発明の一実施例の半
導体装置の製造工程図である。リンガラス(PSG)か
らなる絶縁膜101上に、Wからなる第1配線膜102
を最初スパッタリング法で、次いでCVD法で150n
mの厚みに形成する(図5(a))。ついでホトレジス
ト160をマスクとして(図5(b))、第1配線膜1
02をドライエッチングによりエッチングして第1配線
層103を形成する(図5(c))。つぎに、PSG、
SOG(スピン  オン  グラス;塗布型のガラスを
熱硬化した実質的にSiO2である材料)、PSGの3
層からなる厚さ  0.4μmの第1層間膜104を形
成し、さらにAl−1%Siからなる第2配線膜105
をスパッタリング法で厚さ0.5μm形成する(図5(
d))。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Embodiment 1 FIGS. 5, 6, and 7 are process diagrams for manufacturing a semiconductor device according to an embodiment of the present invention. A first wiring film 102 made of W is formed on an insulating film 101 made of phosphorus glass (PSG).
first by sputtering method, then by CVD method at 150nm.
It is formed to have a thickness of m (FIG. 5(a)). Next, using the photoresist 160 as a mask (FIG. 5(b)), the first wiring film 1 is
02 by dry etching to form a first wiring layer 103 (FIG. 5(c)). Next, PSG,
SOG (spin-on glass; a material that is essentially SiO2 made by thermosetting coated glass) and PSG.
A first interlayer film 104 having a thickness of 0.4 μm is formed, and a second wiring film 105 made of Al-1%Si is formed.
is formed with a thickness of 0.5 μm by sputtering method (Fig. 5 (
d)).

【0020】さらに、ホトレジストをマスクとして第2
配線膜105を所望のパターンにエッチングして第2配
線層106、107を形成する(図6(a))。さらに
、ホトレジストをマスクとして第2配線層106をドラ
イエッチングし、ついで第1層間膜104をドライエッ
チングし、スルーホール108を開孔する(図6(b)
)。つぎに第1配線層103と第2配線層106を電気
的に導通させるため、選択CVD法を用いてWの金属プ
ラグ109を選択CVD法により形成する(図6(c)
)。なお、金属プラグ109の高さは、第1層間膜10
4と第2配線層106の2層膜の膜厚と一致させた。
Furthermore, using the photoresist as a mask, a second
The wiring film 105 is etched into a desired pattern to form second wiring layers 106 and 107 (FIG. 6(a)). Furthermore, the second wiring layer 106 is dry-etched using the photoresist as a mask, and then the first interlayer film 104 is dry-etched to open a through hole 108 (FIG. 6(b)).
). Next, in order to electrically conduct the first wiring layer 103 and the second wiring layer 106, a W metal plug 109 is formed by selective CVD (FIG. 6(c)).
). Note that the height of the metal plug 109 is higher than that of the first interlayer film 10.
The thicknesses of the two-layer film 4 and the second wiring layer 106 were made to match.

【0021】また、さらに上層の配線を形成する場合、
上記と同様の方法を用いて第2層間膜110と、スパッ
タリング法で形成した厚さ0.9μmのAl膜111a
及び反応性スパッタリング法で形成した厚さ0.1μm
のTiN膜111bからなる第3配線層111を形成し
た(図7(a))。以下、上記と同様にホトレジストを
マスクとして上記第3配線層111と第2層間膜110
をエッチングしてスルーホール112を開孔する(図7
(b))。つぎに選択CVD法を用いてスルーホール1
12に金属プラグ113を形成し、第2配線層107と
第3配線層111を電気的に導通させる(図7(c))
。なお金属プラグ113の高さは、第2層間膜110と
第3配線層111の2層膜の膜厚と一致させた。
[0021] Furthermore, when forming upper layer wiring,
A second interlayer film 110 is formed using a method similar to that described above, and an Al film 111a having a thickness of 0.9 μm is formed by a sputtering method.
and a thickness of 0.1 μm formed by reactive sputtering method.
A third wiring layer 111 made of a TiN film 111b was formed (FIG. 7(a)). Hereinafter, the third wiring layer 111 and the second interlayer film 111 are connected to each other using a photoresist as a mask in the same manner as described above.
is etched to open a through hole 112 (Fig. 7
(b)). Next, through-hole 1 is made using selective CVD method.
A metal plug 113 is formed in 12 to electrically connect the second wiring layer 107 and the third wiring layer 111 (FIG. 7(c)).
. Note that the height of the metal plug 113 was made to match the thickness of the two-layer film of the second interlayer film 110 and the third wiring layer 111.

【0022】〈実施例2〉本発明の他の実施例の半導体
装置の製造工程を図8、図9、図10に示す。N型Si
基板133表面を酸化してSiO2層134を形成し、
このSiO2層134をホトレジストのマスクを用いて
エッチングして所望のパターンとし、このパターンをマ
スクに不純物ドーピング、不純物拡散を行ないPウェル
層135を形成する。(図8(a))。
Embodiment 2 The manufacturing process of a semiconductor device according to another embodiment of the present invention is shown in FIGS. 8, 9, and 10. N-type Si
oxidizing the surface of the substrate 133 to form a SiO2 layer 134;
This SiO2 layer 134 is etched using a photoresist mask to form a desired pattern, and using this pattern as a mask, impurity doping and impurity diffusion are performed to form a P well layer 135. (Figure 8(a)).

【0023】SiO2層134を削除し、安定化のため
基板表面に酸化膜136を形成し、ついでSi3N4膜
137を形成後、ホトレジストパターン138によりエ
ッチングを行ない、所望のパターンとし、さらにこの上
にホトレジストパターン139を形成する(図8(b)
)。これらのパターンをマスクとして不純物ドーピング
によりP層140を形成し、ホトレジストパターン13
8、139を除去後、フィールド酸化を行ない、Si3
N4膜137を除去し、ゲート酸化を行なう(図8(c
))。厚さ0.3μmの多結晶Si膜141を形成し、
ホトレジストのマスクを用いて所望のパターンにエッチ
ングする(図8(d))。つぎに絶縁膜143を形成し
、ホトレジストのマスクにより所望のパターンとし、こ
の絶縁膜143や多結晶Si膜141をマスクに不純物
ドーピングと拡散を行ない高濃度P型不純物拡散層14
2を形成する(図8(e))。
After removing the SiO2 layer 134 and forming an oxide film 136 on the substrate surface for stabilization, and then forming a Si3N4 film 137, etching is performed using a photoresist pattern 138 to obtain a desired pattern, and then a photoresist is formed on this. A pattern 139 is formed (FIG. 8(b)
). Using these patterns as a mask, a P layer 140 is formed by doping with impurities, and a photoresist pattern 13 is formed.
After removing 8,139, field oxidation is performed to form Si3
The N4 film 137 is removed and gate oxidation is performed (FIG. 8(c)
)). A polycrystalline Si film 141 with a thickness of 0.3 μm is formed,
A desired pattern is etched using a photoresist mask (FIG. 8(d)). Next, an insulating film 143 is formed, a desired pattern is formed using a photoresist mask, and impurity doping and diffusion are performed using this insulating film 143 and the polycrystalline Si film 141 as a mask to form a highly concentrated P-type impurity diffusion layer 14.
2 (FIG. 8(e)).

【0024】上記絶縁膜143を除き、上記と同様の方
法で高濃度P型不純物拡散層142を覆うように絶縁膜
144を形成し、高濃度N型不純物拡散層145を形成
する(図9(a))。絶縁膜144を除き、全面にPS
Gの絶縁膜146を厚さ約0.6μmに形成し、所望の
位置にコンタクトホールを形成する(図9(b))。つ
いで1層目配線のW膜147を約0.2μmの厚みに、
最初スパッタリング法で、つぎにCVD法で形成し、ホ
トレジストをマスクとして所望のパターンにエッチング
する(図9(c))。なお、ここ迄の工程は従来の方法
と同様である。
An insulating film 144 is formed to cover the high concentration P-type impurity diffusion layer 142 by the same method as above except for the insulation film 143, and a high concentration N-type impurity diffusion layer 145 is formed (see FIG. 9). a)). PS is applied to the entire surface except for the insulating film 144.
A G insulating film 146 is formed to a thickness of about 0.6 μm, and contact holes are formed at desired positions (FIG. 9(b)). Next, the W film 147 of the first layer wiring is made to have a thickness of about 0.2 μm.
It is first formed by a sputtering method and then by a CVD method, and is etched into a desired pattern using a photoresist as a mask (FIG. 9(c)). Note that the steps up to this point are the same as the conventional method.

【0025】ついで、第1層間膜148としてTEOS
(テトラエトキシシラン)を用いたプラズマSiO2膜
とSOGの積層膜を約0.6μm形成し、2層目配線の
Al膜149をスパッタリング法で厚さ約0.3μm形
成する。つぎにホトレジストをマスクとしてAl膜14
9と第1層間膜148の2層の膜にスルーホールを形成
し、選択CVD法によりWプラグ150をAl膜149
の表面の高さと同じ高さに形成する。この場合、W膜1
47のパターンの幅0.3μmに対し、Wプラグ150
の大きさは0.4×0.4μmとした。さらにホトレジ
ストをマスクにAl膜149を所望のパターンにエッチ
ングする(図9(d))。
Next, TEOS is used as the first interlayer film 148.
A laminated film of a plasma SiO2 film using (tetraethoxysilane) and SOG is formed to a thickness of about 0.6 .mu.m, and an Al film 149 of a second layer wiring is formed to a thickness of about 0.3 .mu.m by a sputtering method. Next, using the photoresist as a mask, the Al film 14 is
9 and the first interlayer film 148, and the W plug 150 is attached to the Al film 149 by selective CVD.
form the same height as the surface of the In this case, W film 1
W plug 150 for the pattern width 0.3 μm of 47
The size was 0.4×0.4 μm. Furthermore, the Al film 149 is etched into a desired pattern using the photoresist as a mask (FIG. 9(d)).

【0026】さらに、第2層間膜151を同様に厚さ約
0.8μm形成し、3層目配線のAl膜152を厚さ約
0.5μm形成する(図10(a))。つぎにAl膜1
52をホトレジストをマスクとして所望の配線パターン
にエッチングし、SiO2膜153を厚さ約50nm形
成する。さらにホトレジストをマスクとしてSiO2膜
153とAl膜152と第2層間膜151の3層膜にス
ルーホール154を開孔する(図10(b))。ついで
、2層目配線のAl膜149と3層目配線のAl膜15
2を電気的に導通させるため、選択CVD法によりWプ
ラグ155を厚さ約1.3μm形成し、さらにパッシベ
ーション膜156を約0.3μm形成する(図10(c
))。
Furthermore, a second interlayer film 151 is similarly formed to a thickness of about 0.8 μm, and an Al film 152 of a third layer wiring is formed to a thickness of about 0.5 μm (FIG. 10(a)). Next, Al film 1
52 is etched into a desired wiring pattern using a photoresist as a mask, and an SiO2 film 153 is formed to a thickness of about 50 nm. Furthermore, using photoresist as a mask, a through hole 154 is opened in the three-layer film of the SiO2 film 153, the Al film 152, and the second interlayer film 151 (FIG. 10(b)). Next, the Al film 149 of the second layer wiring and the Al film 15 of the third layer wiring are formed.
2, a W plug 155 with a thickness of about 1.3 μm is formed by selective CVD, and a passivation film 156 with a thickness of about 0.3 μm is formed (see FIG. 10(c).
)).

【0027】これにより、スルーホールをW膜で埋め込
み平坦化することができ、膜被覆形状の優れた配線膜を
形成することができたと同時に、スルーホール径の増大
が可能となったことから極めて低いスルーホール抵抗を
得ることができた。また、エレクトロマイグレーション
に対しては良好な耐性を示し、信頼性の優れたCMOS
  LSIを製造することができた。
[0027] As a result, it was possible to fill the through hole with the W film and flatten it, forming a wiring film with an excellent film covering shape, and at the same time, it was possible to increase the diameter of the through hole. We were able to obtain low through-hole resistance. In addition, CMOS exhibits good resistance to electromigration and has excellent reliability.
We were able to manufacture LSI.

【0028】[0028]

【発明の効果】本発明によれば、上層配線層を形成した
後スルーホールを開孔し、その後金属プラグを形成する
ことにより、ホトレジスト工程におけるパターンの位置
合わせに余裕ができ、比較的簡単な方法で半導体装置を
製造することができた。それにより埋め込んだ金属プラ
グのスルーホール抵抗が小さく、かつ、配線の耐エレク
トロマイグレーション特性に優れ、配線層間の断線を解
消した半導体装置を得ることができた。
[Effects of the Invention] According to the present invention, by forming a through hole after forming an upper wiring layer and then forming a metal plug, there is sufficient margin for pattern alignment in the photoresist process, and the process is relatively simple. A semiconductor device could be manufactured using this method. As a result, it was possible to obtain a semiconductor device in which the through-hole resistance of the embedded metal plug was small, the wiring had excellent electromigration resistance, and disconnection between wiring layers was eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】半導体装置の主要部断面模式図である。FIG. 1 is a schematic cross-sectional view of the main parts of a semiconductor device.

【図2】半導体装置の主要部断面模式図である。FIG. 2 is a schematic cross-sectional view of the main parts of a semiconductor device.

【図3】従来の半導体装置の主要部断面模式図である。FIG. 3 is a schematic cross-sectional view of main parts of a conventional semiconductor device.

【図4】半導体装置の平面模式図及び断面模式図である
FIG. 4 is a schematic plan view and a schematic cross-sectional view of a semiconductor device.

【図5】半導体装置の製造方法を示す工程図である。FIG. 5 is a process diagram showing a method for manufacturing a semiconductor device.

【図6】半導体装置の製造方法を示す工程図である。FIG. 6 is a process diagram showing a method for manufacturing a semiconductor device.

【図7】半導体装置の製造方法を示す工程図である。FIG. 7 is a process diagram showing a method for manufacturing a semiconductor device.

【図8】半導体装置の製造方法を示す工程図である。FIG. 8 is a process diagram showing a method for manufacturing a semiconductor device.

【図9】半導体装置の製造方法を示す工程図である。FIG. 9 is a process diagram showing a method for manufacturing a semiconductor device.

【図10】半導体装置の製造方法を示す工程図である。FIG. 10 is a process diagram showing a method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

101、117、126、143、144、146  
絶縁膜 102  第1配線膜 103、127、128  第1配線層104、129
、148  第1層間膜105  第2配線膜 106、107、130、131  第2配線層108
、112、154  スルーホール109、113、1
32  金属プラグ110、151  第2層間膜  
        111  第3配線層 111a、149、152  Al膜    111b
  TiN膜 114、115、116  金属薄膜    118、
  W配線 119  層間膜                 
     120、150、155  Wプラグ 121  Al合金配線              
  122  析出物123  純Al配線     
             124  反応層125 
 Si基板                    
133  N型Si基板 134、153  SiO2層           
135  Pウェル層 136  酸化膜                 
     137  Si3N4膜 138、139  ホトレジストパターン140  P
層                        
141  多結晶Si膜 142  高濃度P型不純物拡散層      145
  高濃度N型不純物拡散層 147  W膜                  
      156  パッシベーション膜 160  ホトレジスト
101, 117, 126, 143, 144, 146
Insulating film 102 First wiring film 103, 127, 128 First wiring layer 104, 129
, 148 First interlayer film 105 Second wiring film 106, 107, 130, 131 Second wiring layer 108
, 112, 154 Through hole 109, 113, 1
32 Metal plugs 110, 151 Second interlayer film
111 Third wiring layer 111a, 149, 152 Al film 111b
TiN film 114, 115, 116 Metal thin film 118,
W wiring 119 interlayer film
120, 150, 155 W plug 121 Al alloy wiring
122 Precipitate 123 Pure Al wiring
124 Reaction layer 125
Si substrate
133 N-type Si substrate 134, 153 SiO2 layer
135 P well layer 136 Oxide film
137 Si3N4 film 138, 139 Photoresist pattern 140 P
layer
141 Polycrystalline Si film 142 High concentration P-type impurity diffusion layer 145
High concentration N type impurity diffusion layer 147 W film
156 Passivation film 160 Photoresist

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板上に配置された、第1配線層と、該第
1配線層上に絶縁膜を介して配置された第2配線層と、
該第1及び第2配線層を電気的に接続する金属プラグと
を有する半導体装置において、該金属プラグは、該第1
配線層の上面から、該第2配線層に設けられたスルーホ
ールを通って配置され、かつ、該金属プラグの材料と該
第2配線層の少なくとも表面の材料は、互いに異なる材
料であることを特徴とする半導体装置。
1. A first wiring layer disposed on a substrate; a second wiring layer disposed on the first wiring layer with an insulating film interposed therebetween;
In a semiconductor device having a metal plug electrically connecting the first and second wiring layers, the metal plug electrically connects the first and second wiring layers.
The metal plug is disposed from the top surface of the wiring layer through a through hole provided in the second wiring layer, and the material of the metal plug and the material of at least the surface of the second wiring layer are different materials from each other. Characteristic semiconductor devices.
【請求項2】請求項1記載の半導体装置において、上記
金属プラグの上部は、上記第2配線層の上部と実質的に
同じ高さであることを特徴とする半導体装置。
2. The semiconductor device according to claim 1, wherein an upper part of said metal plug is substantially at the same height as an upper part of said second wiring layer.
【請求項3】基板上に、所望のパターンの第1配線層を
形成する工程、該第1配線層上に、層間絶縁膜と第2配
線層を形成する工程、該第2配線層と該層間絶縁膜とに
スルーホールを開孔する工程、該スルーホール内に該第
1配線層と第2配線層とを電気的に接続する金属プラグ
を形成する工程を少なくとも有することを特徴とする半
導体装置の製造方法。
3. A step of forming a first wiring layer in a desired pattern on a substrate; a step of forming an interlayer insulating film and a second wiring layer on the first wiring layer; A semiconductor comprising at least the steps of forming a through hole in an interlayer insulating film, and forming a metal plug electrically connecting the first wiring layer and the second wiring layer in the through hole. Method of manufacturing the device.
【請求項4】請求項3記載の半導体装置の製造方法にお
いて、上記金属プラグの形成は、化学気相成長法により
行なうことを特徴とする半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the metal plug is formed by chemical vapor deposition.
【請求項5】請求項3記載の半導体装置の製造方法にお
いて、上記金属プラグの形成は、選択化学気相成長法に
より行なうことを特徴とする半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 3, wherein the metal plug is formed by selective chemical vapor deposition.
【請求項6】請求項3から5のいずれかに記載の半導体
装置の製造方法において、上記金属プラグは、その上部
を上記第2配線層の上面の高さと実質的に同じにするこ
とを特徴とする半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 3, wherein the metal plug has an upper portion substantially the same height as an upper surface of the second wiring layer. A method for manufacturing a semiconductor device.
【請求項7】請求項3から5のいずれかに記載の半導体
装置の製造方法において、上記第1配線層の材料と上記
第2配線層の少なくとも表面の材料は、互いに異なる材
料であること特徴とする半導体装置の製造方法。
7. The method of manufacturing a semiconductor device according to claim 3, wherein the material of the first wiring layer and the material of at least the surface of the second wiring layer are different materials. A method for manufacturing a semiconductor device.
JP1551391A 1991-02-06 1991-02-06 Semiconductor device and manufacture thereof Pending JPH04355951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1551391A JPH04355951A (en) 1991-02-06 1991-02-06 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1551391A JPH04355951A (en) 1991-02-06 1991-02-06 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04355951A true JPH04355951A (en) 1992-12-09

Family

ID=11890899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1551391A Pending JPH04355951A (en) 1991-02-06 1991-02-06 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04355951A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031007A1 (en) * 1994-05-09 1995-11-16 National Semiconductor Corporation Interconnect structures for integrated circuits
JPH08203997A (en) * 1994-10-12 1996-08-09 Hyundai Electron Ind Co Ltd Metal wiring formation of semiconductor element
JPH0982804A (en) * 1995-09-14 1997-03-28 Nec Corp Semiconductor device and manufacture thereof
FR2784502A1 (en) * 1998-10-09 2000-04-14 St Microelectronics Sa Integrated circuit with interconnected strip conductors at different levels, comprising insulating layers and openings filled with conducting material to reach lower level conductors
US6245664B1 (en) * 1998-01-05 2001-06-12 Texas Instruments Incorporated Method and system of interconnecting conductive elements in an integrated circuit
JP2006319307A (en) * 2005-05-11 2006-11-24 Samsung Sdi Co Ltd Semiconductor device and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031007A1 (en) * 1994-05-09 1995-11-16 National Semiconductor Corporation Interconnect structures for integrated circuits
US5571751A (en) * 1994-05-09 1996-11-05 National Semiconductor Corporation Interconnect structures for integrated circuits
US5666007A (en) * 1994-05-09 1997-09-09 National Semiconductor Corporation Interconnect structures for integrated circuits
US5691572A (en) * 1994-05-09 1997-11-25 National Semiconductor Corporation Interconnect structures for integrated circuits
US5798299A (en) * 1994-05-09 1998-08-25 National Semiconductor Corporation Interconnect structures for integrated circuits
EP0955672A3 (en) * 1994-05-09 2000-01-12 National Semiconductor Corporation Interconnect structures for integrated circuits
JPH08203997A (en) * 1994-10-12 1996-08-09 Hyundai Electron Ind Co Ltd Metal wiring formation of semiconductor element
JPH0982804A (en) * 1995-09-14 1997-03-28 Nec Corp Semiconductor device and manufacture thereof
US6245664B1 (en) * 1998-01-05 2001-06-12 Texas Instruments Incorporated Method and system of interconnecting conductive elements in an integrated circuit
FR2784502A1 (en) * 1998-10-09 2000-04-14 St Microelectronics Sa Integrated circuit with interconnected strip conductors at different levels, comprising insulating layers and openings filled with conducting material to reach lower level conductors
JP2006319307A (en) * 2005-05-11 2006-11-24 Samsung Sdi Co Ltd Semiconductor device and method for manufacturing same
JP4663530B2 (en) * 2005-05-11 2011-04-06 三星モバイルディスプレイ株式會社 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO1997022144A1 (en) Reverse damascene via structures
JP2007221161A (en) Capacitor used in semiconductor device, and production method thereof
JPH06125013A (en) Semiconductor device and its manufacture
JP2785768B2 (en) Method for manufacturing semiconductor device
JPH0897283A (en) Manufacture of semiconductor device
JP2001176877A (en) Method for manufacturing semiconductor device
JP2001135723A (en) Semiconductor device and method of manufacturing the same
JPH04355951A (en) Semiconductor device and manufacture thereof
JPH09312291A (en) Semiconductor device and manufacture thereof
JP3463961B2 (en) Semiconductor device
JPH04296041A (en) Semiconductor device and manufacture thereof
JP2716977B2 (en) Method for manufacturing semiconductor device
KR100268914B1 (en) Wiring of semiconductor device and method for forming the same
JPH1070190A (en) Partially overlapping interconnection structure and manufacturing method thereof
JP2002176098A (en) Method for manufacturing semiconductor device having multilayer interconnection structure
JPH02183536A (en) Semiconductor device
JPH05251566A (en) Multilayer interconnection structure
JPH10173051A (en) Wiring forming method
JP3263481B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH07147281A (en) Manufacture of semiconductor integrated circuit device
JPH0577185B2 (en)
JPH08203899A (en) Fabrication of semiconductor device
JPH0936229A (en) Semiconductor integrated circuit device and its manufacture
JPH0831940A (en) Semiconductor device and its manufacture
KR20020057340A (en) Multi-interconnection structure of semiconductor device and method for fabricating the same