JPH06132474A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06132474A
JPH06132474A JP4061636A JP6163692A JPH06132474A JP H06132474 A JPH06132474 A JP H06132474A JP 4061636 A JP4061636 A JP 4061636A JP 6163692 A JP6163692 A JP 6163692A JP H06132474 A JPH06132474 A JP H06132474A
Authority
JP
Japan
Prior art keywords
semiconductor chip
chip
semiconductor
bump electrode
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4061636A
Other languages
Japanese (ja)
Other versions
JP3119927B2 (en
Inventor
Hiroshi Yamada
浩 山田
Masayuki Saito
雅之 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04061636A priority Critical patent/JP3119927B2/en
Publication of JPH06132474A publication Critical patent/JPH06132474A/en
Application granted granted Critical
Publication of JP3119927B2 publication Critical patent/JP3119927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/1147Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To realize highly reliable high density mounting on a wiring board by employing multistage or laminar flip-chip mounting of semiconductor chips. CONSTITUTION:A first semiconductor chip 5a having a first bump electrode 6a is placed on a bonding pad 8a. A second semiconductor chip 5b having a second bump electrode 6b and flip-chip mounting the first semiconductor chip 5a while opposing active element regions 7a, 7b forming faces each other on the surface thereof is placed on a bonding pad 8b. Furthermore, a third semiconductor chip 5c having a third bump electrode 6c and flip-chip mounting the second semiconductor chip 5b while opposing active element regions 7b, 7c forming faces each other on the surface thereof is placed on a bonding pad 8c. The semiconductor device is constituted in multilayer of three or more layers. This constitution reduces wiring board area required for mounting greatly as compared with the overall planar area of the semiconductor chips 5a-5c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に係り、特に
複数の半導体チップを高密度に配線基板面への実装を可
能に構成した半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which a plurality of semiconductor chips can be mounted on a wiring board surface with high density.

【0002】[0002]

【従来の技術】半導体装置(半導体チップもしくは半導
体素子)は近年高集積化の方向にあり、またこの種の半
導体装置を高密度に配線基板へ実装する要求も高まって
いる。そして、半導体装置を配線基板面へ、高密度に実
装する手段として、様々な方法も提案されているが、最
近は主にフリップチップ実装方法が行われている。フリ
ップチップ実装は、ワイヤーボンデング実装や TAB実装
に比較して、半導体チップを高密度に実装できるからで
ある。すなわち、ワイヤーボンデング実装や TAB実装に
よって、半導体チップを実装した場合は、半導体チップ
から引き出されるリードの占める面積が、半導体チップ
の 2〜 3倍の面積を必要とする。一方、フリッブチップ
実装の場合、半導体チップの実装面積は半導体チップの
面積で足り、半導体チップを互いに隣接した上体で実装
し得る。したがって、フリップチップ実装に比較する
と、ワイヤーボンデング実装や TAB実装は半導体チップ
の実装面積が 1/2〜 1/3程度となり、高密度化の限界を
なしている。
2. Description of the Related Art In recent years, semiconductor devices (semiconductor chips or semiconductor elements) have become highly integrated, and there is also an increasing demand for high-density mounting of semiconductor devices of this type on wiring boards. Various methods have been proposed as means for mounting the semiconductor device on the surface of the wiring board at a high density, but recently, a flip-chip mounting method has been mainly used. This is because flip chip mounting enables semiconductor chips to be mounted at a higher density than wire bonding and TAB mounting. That is, when the semiconductor chip is mounted by wire bonding mounting or TAB mounting, the area occupied by the leads drawn from the semiconductor chip needs to be two to three times the area of the semiconductor chip. On the other hand, in the case of the flip chip mounting, the mounting area of the semiconductor chip is sufficient for the area of the semiconductor chip, and the semiconductor chips can be mounted in the upper body adjacent to each other. Therefore, compared to flip-chip mounting, wire bonding mounting and TAB mounting occupy a semiconductor chip mounting area of about 1/2 to 1/3, limiting the densification.

【0003】ところで、前記フリップチップ実装は、い
わゆる平面実装であるため、実装密度も配線基板面から
制約を受け、実装の高密度化にも限界がある。このよう
な問題に対して、たとえば IMC 90 Proceedingに記載さ
れているごとく、 TAB実装のテープキャリアを積層し
て、半導体チップを3次元に実装する手段、あるいはEP
&P 1990 p76に記載されているように、半導体チップを
縦方向に並べて3次元的に実装する手段が提案されてい
る。
By the way, since the flip chip mounting is so-called planar mounting, the mounting density is also restricted by the surface of the wiring board, and there is a limit to high density mounting. To solve this problem, for example, as described in IMC 90 Proceeding, a method of stacking TAB-mounted tape carriers to mount semiconductor chips three-dimensionally or EP
As described in & P 1990 p76, a means for vertically arranging semiconductor chips in a three-dimensional manner has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記3
次元(的)実装の場合は、たたとえばメモリチップのよ
うに実装する半導体チップのサイズが同一でなかった
り、あるいは形状が不均一であったりすると、目的に沿
った実装の高密度化を達成し得ないという問題がある。
However, the above-mentioned 3
In the case of dimensional (target) mounting, if the semiconductor chips to be mounted, such as memory chips, are not the same size or have non-uniform shapes, it is possible to achieve high-density mounting according to the purpose. There is a problem of not getting.

【0005】一方、サイズの異なる半導体チップを、図
6に断面的に示すごとく多段的に実装する構成も試みら
れている。すなわち、サイズの異なる各半導体チップ1
a,1b,1cについて、それぞれ能動素子領域面のボンデ
ングパッドから裏面側に配線を引き伸し、裏面に第2の
ボンデイングパッド2a,2b,2cを設け、これら第2のボ
ンデイングパッド2a,2b,2cを介して、配線基板3面に
各半導体チップ1a,1b,1cを多段的に実装した構成を採
っている。しかし、この構成においては、半導体チップ
1a,1b,1cの裏面に、第2のボンデイングパッド2a,2
b,2cを設けることが困難であり、また半導体チップ1
a,1b,1cに孔を穿設し、この孔を利用して第2のボン
デイングパッド2a,2b,2cを設けるとしても、前記孔の
穿設工程を要する。いずれにしても、この図6に図示し
た構成の場合は、コストアップとなるなど問題がある。
On the other hand, a structure in which semiconductor chips of different sizes are mounted in multiple stages as shown in a sectional view of FIG. 6 has been attempted. That is, each semiconductor chip 1 of different size
For a, 1b, and 1c, the wiring is extended from the bonding pad on the active element area surface to the back surface side, and the second bonding pads 2a, 2b, and 2c are provided on the back surface, and these second bonding pads 2a and 2b are provided. , 2c, the semiconductor chips 1a, 1b, 1c are mounted on the surface of the wiring board 3 in multiple stages. However, in this configuration, the semiconductor chip
On the back side of 1a, 1b, 1c, the second bonding pads 2a, 2
It is difficult to provide b and 2c, and the semiconductor chip 1
Even if holes are formed in a, 1b, and 1c and the second bonding pads 2a, 2b, and 2c are provided by using these holes, the step of forming the holes is required. In any case, the structure shown in FIG. 6 causes a problem such as an increase in cost.

【0006】さらに、サイズの異なる半導体チップを、
図7に断面的に示すごとく多段的に積層・配置する構成
も試みられている。すなわち、サイズの異なる各半導体
チップ1a,1b,1cを、能動素子領域面を上面として所要
の配線基板3面に、順次積層的にマウントするととも
に、相互の間をワイヤボンデング4により電気的に接続
して実装した構成を採っている。しかし、この構成にお
いては、半導体チップ1a,1b,1cの発熱面をなす能動素
子領域面上に他の半導体チップがマウントされるため、
放熱が不十分となり易く機能面での信頼性が損なわれる
という問題がある。 本発明は以上の問題点に鑑みてな
されたもので、配線基板(回路基板)に、高密度かつ信
頼性の高い実装が可能に構成された半導体装置の提供を
目的とする。
Furthermore, semiconductor chips of different sizes are
As shown in a sectional view in FIG. 7, a structure of stacking and arranging in multiple stages has also been tried. That is, the semiconductor chips 1a, 1b, and 1c having different sizes are sequentially stacked and mounted on a required wiring board 3 surface with the active element region surface as an upper surface, and electrically connected by wire bonding 4 between them. The configuration is implemented by connecting. However, in this configuration, since another semiconductor chip is mounted on the active element region surface which is the heat generating surface of the semiconductor chips 1a, 1b, 1c,
There is a problem that heat radiation is likely to be insufficient and the reliability of the function is impaired. The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device configured to be mounted on a wiring board (circuit board) with high density and high reliability.

【0007】[0007]

【課題を解決するための手段】本発明に係る半導体装置
は、ボンデングパッド上に第1のバンプ電極を有する第
1の半導体チップと、ボンデングパッド上に前記第1の
半導体チップの厚および第1のバンプ電極の高さとの和
よりも高い第2のバンプ電極を有し、かつ第2のバンプ
電極が形成された面上において互いに能動素子領域形成
面を対向させて少なくとも1個の第1の半導体チップを
フリップチップ実装した第2の半導体チップと、ボンデ
ングパッド上に前記第2の半導体チップの厚および第2
のバンプ電極の高さとの和よりも高い第3のバンプ電極
を有し、かつ第3のバンプ電極が形成された面上におい
て互いに能動素子領域形成面を対向させて少なくとも1
個の第2の半導体チップをフリップチップ実装する第3
の半導体チップとを具備してなることを特徴とする。
A semiconductor device according to the present invention includes a first semiconductor chip having a first bump electrode on a bonding pad, and a thickness of the first semiconductor chip on the bonding pad and a thickness of the first semiconductor chip. The second bump electrode has a height higher than the sum of the heights of the first bump electrodes, and the active element region forming surfaces are opposed to each other on the surface on which the second bump electrodes are formed so that at least one first bump electrode is formed. A second semiconductor chip in which the first semiconductor chip is flip-chip mounted, and the thickness of the second semiconductor chip and the second semiconductor chip on the bonding pad.
A third bump electrode having a height higher than the sum of the heights of the bump electrodes, and the active element region forming surfaces are opposed to each other on the surface on which the third bump electrode is formed.
Third flip-chip mounting of two second semiconductor chips
The semiconductor chip according to claim 1 is included.

【0008】前記半導体装置の構成においては、上記に
準じた構成を成す第3の半導体チップを第4の半導体チ
ップ面にフリップチップ実装し、同様に第4の半導体チ
ップを第5の半導体チップ面にフリップチップ実装ごと
く、さらに多層的な配置の構成も採り得る。そして、こ
の半導体装置を構成する半導体チップ面に、たとえばチ
ップ抵抗,チップコンデンサ,薄膜抵抗,薄膜コンデン
サなどの、少なくとも1種を付設しておくことも可能
で、こうしたことは回路構成のコンパクト化などの点か
ら好ましい。
In the structure of the semiconductor device, the third semiconductor chip having the above structure is flip-chip mounted on the fourth semiconductor chip surface, and similarly the fourth semiconductor chip is mounted on the fifth semiconductor chip surface. Further, it is possible to adopt a configuration of more multi-layer arrangement like flip-chip mounting. It is also possible to attach at least one of a chip resistor, a chip capacitor, a thin film resistor, a thin film capacitor, etc. to the surface of a semiconductor chip that constitutes this semiconductor device. From the point of, it is preferable.

【0009】[0009]

【作用】本発明に係る半導体装置によれば、半導体チッ
プを多段的ないし積層的にフリップチップ実装した構成
を採るため、通常行われているフリップチップ実装の場
合に比べて、実装回路装置の構成において高密度実装を
容易に達成し得る。すなわち、半導体装置の実装に要す
る配線基板面積は、前記半導体装置を形成する半導体チ
ップの平面的な全面積に比べて大幅に低減するため、高
密度実装化を実現できる。しかも、半導体チップの裏面
にボンデングパッドを設ける必要もないので、構成も簡
略化するばかりでなく、良好な放熱性を保持・発揮する
ので実装回路装置を構成したときも、信頼性の高い機能
を呈する。
According to the semiconductor device of the present invention, since the semiconductor chips are flip-chip mounted in multiple stages or in a stacked manner, the structure of the mounting circuit device is higher than that in the usual flip-chip mounting. In, high density packaging can be easily achieved. That is, the area of the wiring substrate required for mounting the semiconductor device is significantly reduced as compared with the entire planar area of the semiconductor chip forming the semiconductor device, so that high density mounting can be realized. Moreover, since it is not necessary to provide a bonding pad on the back surface of the semiconductor chip, not only the structure is simplified, but also good heat dissipation is maintained and exhibited, so that a highly reliable function is achieved even when the mounted circuit device is configured. Present.

【0010】[0010]

【実施例】以下、図1、図2(a) 〜(j) 、図3、図4お
よび図5を参照して本発明の実施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. 1, 2 (a) to 2 (j), 3, 4 and 5.

【0011】図1は本発明に係る半導体装置の要部構成
例の断面図である。この図1において、3は本発明に係
る半導体装置5を実装した配線基板で、前記半導体装置
5は、次のように構成されている。すなわち、ボンデン
グパッド上に第1のバンプ電極6aを有する第1の半導体
チップは5a、ボンデングパッド上に前記第1の半導体チ
ップ5aの厚および第1のバンプ電極6a高さの和よりも高
い第2のバンプ電極6bを有し、かつ第2のバンプ電極6b
が形成された面(面上)において互いに能動素子領域7
a,7b形成面を対向させて、前記第1の半導体チップ5a
をフリップチップ実装した第2の半導体チップ5b、ボン
デングパッド上に前記第2の半導体チップ5bの厚および
第2のバンプ電極6b高さの和よりも高い第3のバンプ電
極6cを有し、かつ第3のバンプ電極6cが形成された領域
内において互いに能動素子領域7b,7c形成面を対向させ
て、前記第2の半導体チップ5bをフリップチップ実装し
た第3の半導体チップ5cとを具備した構成を成してい
る。
FIG. 1 is a sectional view of an example of the essential structure of a semiconductor device according to the present invention. In FIG. 1, reference numeral 3 is a wiring board on which a semiconductor device 5 according to the present invention is mounted, and the semiconductor device 5 is configured as follows. That is, the first semiconductor chip having the first bump electrode 6a on the bonding pad is 5a, and the thickness of the first semiconductor chip 5a on the bonding pad is more than the sum of the height of the first bump electrode 6a. The second bump electrode 6b having a high second bump electrode 6b
The active element regions 7 are formed on the surface where the
The first and second semiconductor chips 5a are made to face each other with a and 7b forming surfaces facing each other.
A second semiconductor chip 5b flip-chip mounted on the bonding pad, and a third bump electrode 6c higher than the sum of the thickness of the second semiconductor chip 5b and the height of the second bump electrode 6b on the bonding pad, And a third semiconductor chip 5c in which the second semiconductor chip 5b is flip-chip mounted with the active element regions 7b and 7c forming surfaces facing each other in the region where the third bump electrode 6c is formed. Make up the composition.

【0012】そして、前記構成の半導体装置5は、次の
ような手段によって容易に製造し得る。図2(a) 〜(j)
は、半導体装置5を製造する実施態様例を模式的に示し
たもので、先ず、ボンデングパッド8bが、パッシベーシ
ョン膜の一部が除かれた領域に形成された第2の半導体
チップ5bを用意し、この第2の半導体チップ5bの、前記
ボンデングパッド8b形成面に、ボンデングパッド8b面を
露出させて、たとえばポリイミド樹脂層9bを設ける。こ
のポリイミド樹脂層9bの形成は、たとえばポリイミド前
駆体 UR-3140(東レ製,商品名)を全面にスピンコート
した後、露光し、現像液 DV505(東レ製,商品名)によ
り現像して、ボンデングパッド8b面を開口してから、 4
00℃程度の温度で加熱してポリイミド前駆体 UR-3140校
をポリイミド化させる(図2(a))。
The semiconductor device 5 having the above structure can be easily manufactured by the following means. 2 (a)-(j)
Shows a schematic example of an embodiment for manufacturing the semiconductor device 5. First, a second semiconductor chip 5b in which a bonding pad 8b is formed in a region where a part of a passivation film is removed is prepared. Then, the bonding pad 8b surface is exposed on the bonding pad 8b forming surface of the second semiconductor chip 5b, for example, a polyimide resin layer 9b is provided. This polyimide resin layer 9b is formed by, for example, spin coating a polyimide precursor UR-3140 (Toray, trade name) on the entire surface, exposing it, developing with a developer DV505 (Toray, trade name), and Open the surface of the dengue pad 8b, then 4
The polyimide precursor UR-3140 is heated to a temperature of about 00 ° C. to make it polyimide (FIG. 2 (a)).

【0013】次いで、前記で形成したポリイミド樹脂層
9b面上に、Al/Ti層を蒸着・形成した後、そのAl/Ti層
面上にエッチングレジスト OFPR-800 ( 東京応化社)ス
ピンコートし、プリベーク,露光,現像を順次行い前記
ボンデングパッド8bに接続するエッチングレジストパタ
ーンを形成する。このように、エッチングレジストパタ
ーンを形成した後、リン酸/酢酸/硝酸の混合液でAl
を、EDTA/NH3 / H2 O2 でTiをと順次選択エッチング
してから、前記エッチングレジストパターンを成す OFP
R-800 層を除去して、第2の配線パター 10bを形成する
(図2(b))。
Next, the polyimide resin layer formed above
After the Al / Ti layer is vapor-deposited and formed on the 9b surface, an etching resist OFPR-800 (Tokyo Ohka Co., Ltd.) is spin-coated on the Al / Ti layer surface, and prebaking, exposure, and development are sequentially performed to perform the bonding pad 8b. Forming an etching resist pattern connected to the. After forming the etching resist pattern in this way, use a mixed solution of phosphoric acid / acetic acid / nitric acid to remove Al.
Is sequentially etched with EDTA / NH 3 / H 2 O 2 to form the etching resist pattern of OFP.
The R-800 layer is removed to form the second wiring pattern 10b (FIG. 2 (b)).

【0014】前記第2の配線パターン 10bを形成した面
上に、ポリイミド樹脂層9cを前記の場合と同様にして、
第2のボンデングパッド 11aに相当する部分を除いて形
成する(図2(c))。前記ポリイミド樹脂層9cを形成した
面上に、たとえばTi/Cu層13を蒸着によって形成する
(図2(d))。次いで、前記形成したTi/Cu層12面上に、
厚膜レジスト AZ 4903(ヘキストジャパン社製)をスピ
ンコートして、膜厚 500μm 程度のレジスト層13を形成
し、露光,現像を順次行って 100μm の開口を有する
ボンデングパッド9bよりも、一辺が20μm 小さい80μm
の開口部14を形成する(図2(e))。前記マスキングした
後、硫酸銅250g/l,硫酸(比重1.84) 50g/lから成る溶
液に浸漬して、浴温度25℃に設定し、前記Ti/Cu層12を
陰極,高純度銅を陽極として、電流密度 5A/dm2 を印加
して緩やかに攪拌しながら銅を 450μm メッキする。そ
の後、全スズ40 g/l,第1スズ35 g/l,鉛44 g/l,遊離
ホウ酸40 g/l,ホウ酸25 g/l,ニカワ3.0g/lから成るメ
ッキ浴を用い、前記Ti/Cu層12を陰極,40%スズをを陽
極として、電流密度 3.2A/dm2 を印加して緩やかに攪拌
しながらスズ/鉛=40/60の合金を50μm 連続メッキ
(図2(f))して、第2のバンプ6bを形成する。
A polyimide resin layer 9c is formed on the surface on which the second wiring pattern 10b is formed in the same manner as in the above case.
It is formed except for the portion corresponding to the second bonding pad 11a (FIG. 2 (c)). A Ti / Cu layer 13 is formed by vapor deposition on the surface on which the polyimide resin layer 9c is formed (FIG. 2 (d)). Then, on the formed Ti / Cu layer 12 surface,
Thick film resist AZ 4903 (manufactured by Hoechst Japan Ltd.) is spin-coated to form a resist layer 13 with a film thickness of about 500 μm, and exposure and development are performed sequentially to form one side of the bonding pad 9b having an opening of 100 μm □. Is 20 μm smaller 80 μm
The opening 14 is formed (FIG. 2 (e)). After masking, it was immersed in a solution containing 250 g / l of copper sulfate and 50 g / l of sulfuric acid (specific gravity 1.84) and the bath temperature was set to 25 ° C., with the Ti / Cu layer 12 as a cathode and high-purity copper as an anode. Apply a current density of 5 A / dm 2 and gently stir to plate copper to 450 μm. Then, using a plating bath consisting of total tin 40 g / l, stannous 35 g / l, lead 44 g / l, free boric acid 40 g / l, boric acid 25 g / l, glue 3.0 g / l, Using the Ti / Cu layer 12 as a cathode and 40% tin as an anode, a current density of 3.2 A / dm 2 was applied and gentle stirring was performed to continuously plate an alloy of tin / lead = 40/60 with a thickness of 50 μm (see FIG. f)) Then, the second bump 6b is formed.

【0015】前記により第2のバンプ6bを形成した後、
メッキレジスト膜を成していた厚膜レジスト AZ 4903層
13を、たとえばアセトンで溶解除去してから(図2
(g))、前記スズ/鉛(第2のバンプ)6bをエッチングマ
スクとして、過硫酸アンモニウム/硫酸/エタノールか
ら成る溶液で、露出した前記Cu層をエッチング後、さら
にEDTA,アンモニア,過酸化水素から成る溶液で、露出
した前記Ti層をエッチングして、その後レジストOFPR層
9cをアセトンで溶解除去する(図2(h))。
After forming the second bumps 6b as described above,
Thick-film resist AZ 4903 layer that formed plating resist film
13 is dissolved and removed with acetone, for example (see FIG. 2).
(g)), using the tin / lead (second bump) 6b as an etching mask, after etching the exposed Cu layer with a solution of ammonium persulfate / sulfuric acid / ethanol, further etching from EDTA, ammonia, and hydrogen peroxide Etch the exposed Ti layer with a solution of
9c is dissolved and removed with acetone (Fig. 2 (h)).

【0016】一方、第1の半導体チップ5aも前記に準じ
た操作で構成される。すなわち、ボンデングパッド8a
が、パッシベーション膜の一部が除かれた領域に形成さ
れた第1の半導体チップ5aを用意する。ここで、第1の
半導体チップ5aとしては、その形状,大きさが前記第2
の半導体チップ5bのバンプ電極6b領域内に収納・配置し
得るものである。この第1の半導体チップ5aの、前記ボ
ンデングパッド8a形成面に、ボンデングパッド8a面を露
出させてポリイミド樹脂層9aを設け、このポリイミド樹
脂層9b面上に、Cu/Ti層を蒸着・形成する。その後、前
記Cu/Ti層面上に厚膜レジスト AZ 4903(ヘキストジャ
パン社製)をスピンコートして、膜厚50μm 程度のレジ
スト層を形成し、露光,現像を順次行い、前記ボンデン
グパッド8a面に対応した領域を、たとえばボンデングパ
ッド8aの大きさ80μm よりも、一辺が20μm 小さい60
μm に開口させる。このようにマスキングした後、硫
酸銅250g/l,硫酸(比重1.84) 50g/lから成る溶液に浸
漬して、浴温度25℃に設定し、前記Ti/Cu層を陰極,高
純度銅を陽極として、電流密度 5A/dm2 を印加して緩や
かに攪拌しながら銅を40μm メッキする。その後、全ス
ズ40 g/l,第1スズ35g/l,鉛44 g/l,遊離ホウ酸40 g/
l,ホウ酸25 g/l,ニカワ3.0g/lから成るメッキ浴を用
い、前記Ti/Cu層を陰極,40%スズをを陽極として、電
流密度 3.2A/dm2 を印加して緩やかに攪拌しながらスズ
/鉛=40/60の合金を10μm 連続メッキして、所要のバ
ンプ電極6aを形成する。
On the other hand, the first semiconductor chip 5a is also constructed by the operation according to the above. That is, the bonding pad 8a
First, a first semiconductor chip 5a formed in a region where a part of the passivation film is removed is prepared. Here, the first semiconductor chip 5a has the same shape and size as the second semiconductor chip 5a.
The semiconductor chip 5b can be housed and arranged in the bump electrode 6b region. A polyimide resin layer 9a is provided on the bonding pad 8a forming surface of the first semiconductor chip 5a with the bonding pad 8a surface exposed, and a Cu / Ti layer is vapor-deposited on the polyimide resin layer 9b surface. Form. After that, a thick film resist AZ 4903 (manufactured by Hoechst Japan Co., Ltd.) is spin-coated on the Cu / Ti layer surface to form a resist layer having a film thickness of about 50 μm, which is sequentially exposed and developed, and the bonding pad 8a surface is formed. The area corresponding to is smaller than the bonding pad 8a size of 80 μm by 60 μm.
Open to μm . After masking in this way, it was immersed in a solution consisting of 250 g / l of copper sulfate and 50 g / l of sulfuric acid (specific gravity 1.84) and the bath temperature was set to 25 ° C., the Ti / Cu layer was used as the cathode, and high-purity copper was used as the anode. As a result, a current density of 5 A / dm 2 is applied and copper is plated to a thickness of 40 μm with gentle stirring. After that, total tin 40 g / l, stannous 35 g / l, lead 44 g / l, free boric acid 40 g / l
Using a plating bath consisting of l, boric acid 25 g / l, and glue 3.0 g / l, the Ti / Cu layer was used as a cathode and 40% tin as an anode, and a current density of 3.2 A / dm 2 was applied to slowly While stirring, tin / lead = 40/60 alloy is continuously plated to a thickness of 10 μm to form the required bump electrode 6a.

【0017】前記によりバンプ電極6aを形成した後、メ
ッキレジスト膜を成していた厚膜レジスト AZ 4903層
を、たとえばアセトンで溶解除去してから、前記スズ/
鉛(第1のバンプ)6aをエッチングマスクとして、過硫
酸アンモニウム/硫酸/エタノールから成る溶液で、露
出した前記Cu層をエッチング後、さらにEDTA,アンモニ
ア,過酸化水素から成る溶液で、露出した前記Ti層をエ
ッチングして、その後レジストOFPR層をアセトンで溶解
除去し、第1の半導体チップ5aを得る。
After the bump electrode 6a is formed as described above, the thick film resist AZ 4903 layer which has formed the plating resist film is dissolved and removed with, for example, acetone, and then the tin / tin
After the exposed Cu layer is etched with a solution of ammonium persulfate / sulfuric acid / ethanol using the lead (first bump) 6a as an etching mask, the exposed Ti layer is further exposed with a solution of EDTA, ammonia and hydrogen peroxide. The layer is etched, and then the resist OFPR layer is dissolved and removed with acetone to obtain the first semiconductor chip 5a.

【0018】さらに、前記第1の半導体チップ5aおよび
第2の半導体チップ5bの製造工程に準じて、第3の半導
体チップ5cを製造する。この第3の半導体チップ5cの構
成においては、第3の半導体チップ5cとしてその形状,
大きさが、前記第2の半導体チップ5bを、突設するバン
プ電極6cの領域内に収納・配置し得るものであり、また
その能動素子領域7c面に、前記第2の半導体チップ5bの
バンプ電極6bが接続される第3のボンデングパッド11b
が形成される。さらに、前記突設するバンプ電極6cの高
さも、前記第2の半導体チップ5bをバンプ電極6cの領域
内に内装(内蔵)する形で収納・配置し得るような高
さ、すなわち第2の半導体チップ5bの厚さおよびそのバ
ンプ電極6bの高さとの和以上に設定される。
Further, the third semiconductor chip 5c is manufactured according to the manufacturing process of the first semiconductor chip 5a and the second semiconductor chip 5b. In the configuration of the third semiconductor chip 5c, the shape of the third semiconductor chip 5c is
The size is such that the second semiconductor chip 5b can be housed / arranged in the region of the bump electrode 6c to be projected, and the bump of the second semiconductor chip 5b can be formed on the surface of the active element region 7c. Third bonding pad 11b to which electrode 6b is connected
Is formed. Further, the height of the bump electrode 6c provided so as to project is such a height that the second semiconductor chip 5b can be housed and arranged in the area of the bump electrode 6c so as to be housed (arranged), that is, the second semiconductor. It is set to be not less than the sum of the thickness of the chip 5b and the height of the bump electrode 6b.

【0019】次に、前記能動素子領域7b上に所要のバン
プ電極6bおよび第2ボンデングパッド11a が設けられて
いる第2の半導体チップ5b上へ、この第2の半導体チッ
プ5bに対して、第1の半導体チップ5aをフェースダウン
の位置関係に保ちながら、第1の半導体チップ5aのバン
プ電極6aを、第2の半導体チップ5bの第2ボンデングパ
ッド11a にハーフミラーを用いて位置合わせし、これら
バンプ電極6aおよび第2ボンデングパッド11a に対接さ
せる。なお、この工程においては、前記バンプ電極6aお
よび第2ボンデングパッド11a が対接する面に、予め共
晶半田層を介在させてあり、また第1の半導体チップ5a
を加熱機構付けのコレットに保持して前記操作を行って
いる。そして、前記第1の半導体チップ5aのバンプ電極
6aと第2の半導体チップ5bの第2ボンデングパッド11a
とを対接させた状態で、たとえば窒素雰囲気中、 280℃
程度に加熱することによって両者を電気的に接続する
(図2(i))。
Next, onto the second semiconductor chip 5b on which the required bump electrodes 6b and the second bonding pads 11a are provided on the active element region 7b, with respect to the second semiconductor chip 5b, While maintaining the first semiconductor chip 5a in a face-down positional relationship, the bump electrodes 6a of the first semiconductor chip 5a are aligned with the second bonding pads 11a of the second semiconductor chip 5b using a half mirror. The bump electrode 6a and the second bonding pad 11a are brought into contact with each other. In this step, the eutectic solder layer is previously interposed on the surface where the bump electrode 6a and the second bonding pad 11a are in contact with each other, and the first semiconductor chip 5a
Is held in a collet with a heating mechanism to perform the above operation. The bump electrode of the first semiconductor chip 5a
6a and the second bonding pad 11a of the second semiconductor chip 5b
280 ° C in a nitrogen atmosphere while being in contact with
Both are electrically connected by heating to a certain degree (Fig. 2 (i)).

【0020】前記により第2の半導体チップ5bに、第1
の半導体チップ5aをフリップチップ実装した後、この第
1の半導体チップ5aを実装させた第2の半導体チップ5b
を、前記実装手段に準じて、さらに第3の半導体チップ
5cにフリップチップ実装する(図2(j))することによっ
て、本発明に係る半導体装置が構成される。
As described above, the first semiconductor chip is formed on the second semiconductor chip 5b.
Second semiconductor chip 5b on which the first semiconductor chip 5a is mounted after flip-chip mounting of the first semiconductor chip 5a
The third semiconductor chip according to the mounting means.
The semiconductor device according to the present invention is configured by flip-chip mounting on 5c (FIG. 2 (j)).

【0021】前記構成において、第1の半導体チップ5a
を 3mm,第2の半導体チップ5bを4mm,第1の半導
体チップ5cを 5mmにそれぞれ設定して成る半導体装置
を、配線基板面に実装して実装回路装置を構成したとこ
ろ、従来のワイヤボンデング方式で構成した実装回路装
置の場合に比べて実装密度が 5倍、また TAB方式で構成
した実装回路装置の場合に比べて実装密度が 4倍にそれ
ぞれ向上していた。さらに、半導体装置の熱抵抗を評価
したところ、 5mmのチップで自然冷却により20℃/Wで
あり、ワイヤボンデング方式で積層した構成の場合(図
7参照)の40℃/Wに対して 2倍の放熱特性を示した。ま
た、図1に示す構成にフリップチップ実装した実装回路
装置について、 -55℃(30 min)〜25℃( 5 min)〜 150℃
(30 min)〜25℃( 5 min)の温度サイクル試験(1000サイ
クル)を行成った結果、接続抵抗の増加は認められず、
機能面でも高い信頼性を示した。
In the above structure, the first semiconductor chip 5a
3 mm , the second semiconductor chip 5b is set to 4 mm , and the first semiconductor chip 5c is set to 5 mm , and the mounted circuit device is constructed by mounting the semiconductor device on the wiring board surface. The mounting density was 5 times higher than that of the wire-bonded mounting circuit device, and was 4 times higher than that of the TAB mounting circuit device. Furthermore, when the thermal resistance of the semiconductor device was evaluated, it was 20 ° C / W with a 5 mm chip by natural cooling, and it was 40 ° C / W in the case of the structure laminated by the wire bonding method (see Fig. 7). It showed twice the heat dissipation characteristics. In addition, regarding the mounting circuit device flip-chip mounted in the configuration shown in Fig. 1, -55 ° C (30 min) to 25 ° C (5 min) to 150 ° C
As a result of performing a temperature cycle test (1000 cycles) of (30 min) to 25 ° C (5 min), no increase in connection resistance was observed.
It also showed high reliability in terms of functionality.

【0022】図3は本発明に係る半導体装置の他の要部
構成例を断面的に示したもので、この構成においては、
配線基板の代わりにガラス基板3′面に、 CCDチップ 1
5aをドライバーIC 15bのバンプ電極 16bの領域内に内装
する形で、 CCDチップ 15aおよびドライバーIC 15bをそ
れぞれフリッブチップ実装した構成を採っている。この
半導体装置の場合は、ガラス基板3′を通して受光した
信号をドライバーIC15bで制御できるため、従来のたと
えばフレキシブル基板を用いた構成の場合に比べて、電
子機器のコンパクト化も可能となった。
FIG. 3 is a sectional view showing another example of the structure of the main part of the semiconductor device according to the present invention. In this structure,
CCD chip 1 on the glass substrate 3'side instead of the wiring substrate
The configuration is such that the CCD chip 15a and the driver IC 15b are mounted on the flip chip, respectively, in such a manner that 5a is embedded in the area of the bump electrode 16b of the driver IC 15b. In the case of this semiconductor device, since the signal received through the glass substrate 3'can be controlled by the driver IC 15b, the electronic equipment can be made compact as compared with the conventional configuration using a flexible substrate, for example.

【0023】さらに、図4は本発明に係る半導体装置の
別の要部構成例を斜視的に示したもので、この構成例に
おいては、第3の半導体チップ5c面上に第1の半導体チ
ップ5aが複数個フリップチップ実装している。図4にお
いて、8cはその上面に第3のバンプ電極6cが設けられる
第3のボンデングパッド、11b は第2の半導体チップ5b
のバンプ電極6bなどが接続する第2のボンデングパッド
である。この構成の場合は、半導体装置における半導体
チップの高密度化が可能で、また第3の半導体チップ5c
面に、たとえばチップ抵抗,チップコンデンサ,薄膜抵
抗,薄膜コンデンサなども併せて実装し易い。
Further, FIG. 4 is a perspective view showing another example of the essential structure of the semiconductor device according to the present invention. In this structural example, the first semiconductor chip is placed on the surface of the third semiconductor chip 5c. Multiple 5a are flip-chip mounted. In FIG. 4, 8c is a third bonding pad having a third bump electrode 6c provided on its upper surface, and 11b is a second semiconductor chip 5b.
This is a second bonding pad to which the bump electrode 6b and so on are connected. With this structure, the density of the semiconductor chips in the semiconductor device can be increased, and the third semiconductor chip 5c can be used.
It is easy to mount a chip resistor, a chip capacitor, a thin film resistor, a thin film capacitor, etc. on the surface.

【0024】さらにまた、図5は本発明に係る半導体装
置の異なる要部構成例を斜視的に示したもので、この構
成例においては、たとえば第3の半導体チップ5c面上
に、第1の半導体チップ5aを交差させた形でフリップチ
ップ実装している。つまり、本発明に係る半導体装置に
おいては、半導体チップ5a,5b,5cなどの形状に応じて
(半導体チップの形状が制約されることなく)、任意な
向きに(向きを揃えずに)フリップチップ実装した構成
を採り得る。
Furthermore, FIG. 5 is a perspective view showing a structural example of a different main part of a semiconductor device according to the present invention. In this structural example, for example, a first semiconductor device is formed on the surface of a third semiconductor chip 5c. Flip-chip mounting is performed with the semiconductor chips 5a crossing each other. That is, in the semiconductor device according to the present invention, the flip chip is arranged in an arbitrary direction (without aligning the direction) according to the shape of the semiconductor chips 5a, 5b, 5c (without restricting the shape of the semiconductor chip). The implemented configuration can be adopted.

【0025】なお、本発明は前記実施例に限定されるも
のでなく、その要旨を逸脱しない範囲で変更して実施し
得る。たとえば、バンプ電極の形成はCuの他Au,Pd,P
t,Niなどで行ってもよく、またバンプ電極の形成時の
電気メッキで陰極を成す導電性層もCu/Tiに限定されな
いし、さらに多段的にフリップチップ実装する半導体チ
ップ数も、前記例示に限定されないことは勿論である。
The present invention is not limited to the above-mentioned embodiments, but may be modified and carried out without departing from the scope of the invention. For example, bump electrodes are formed using Cu, Au, Pd, P
The conductive layer that forms the cathode by electroplating when forming bump electrodes is not limited to Cu / Ti, and the number of semiconductor chips to be flip-chip mounted in multiple stages is also the same as the above examples. Of course, it is not limited to.

【0026】[0026]

【発明の効果】本発明に係る半導体装置よれば、従来の
フリップチップ実装によって半導体実装回路装置を構成
する場合に比べて、配線基板面を立体的に利用し得るた
め、高密度実装回路装置の実現が可能となる。しかも、
この高密度化達成に当たり、従来知られている方式に比
べて繁雑な作業なども要せずに、信頼性の高い電気的な
接続を達成し得るとともに、一方では良好な放熱性を呈
するので、信頼性の高い、かつ高密度実装回路装置の構
成を容易に図り得る。
According to the semiconductor device of the present invention, the wiring board surface can be used three-dimensionally as compared with the conventional semiconductor device mounted by flip-chip mounting. Realization is possible. Moreover,
In achieving this high density, it is possible to achieve highly reliable electrical connection without requiring complicated work as compared with the conventionally known method, and on the other hand, because it exhibits good heat dissipation, A highly reliable and high-density packaging circuit device can be easily configured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体装置の要部構成例を示す断
面図。
FIG. 1 is a cross-sectional view showing a configuration example of a main part of a semiconductor device according to the present invention.

【図2】本発明に係る半導体装置を製造する実施態様例
を模式的に示すもので、(a) は半導体チップ面に絶縁層
を形成した状態を示す断面図、(b) は絶縁層上に配線パ
ターンを形成した状態を示す断面図、(c) は第2のボン
デングパッドを形成した状態を示す断面図、(d) はメッ
キ用の導電層を形成した状態を示す断面図、(e)はメッ
キレジスト膜をパターンニングした状態を示す断面図、
(f) はバンプ電極をメッキ形成した状態を示す断面図、
(g) はメッキレジスト膜を除去した状態を示す断面図、
(h) は第2のボンデングパッドを形成した状態を示す断
面図、(i)は第2の半導体チップ面に第1の半導体チッ
プをフリッブチップ実装した状態を示す断面図、(j) は
半導体装置の断面図。
2A and 2B schematically show an example of an embodiment for manufacturing a semiconductor device according to the present invention, where FIG. 2A is a sectional view showing a state in which an insulating layer is formed on a semiconductor chip surface, and FIG. A cross-sectional view showing a state in which a wiring pattern is formed, (c) a cross-sectional view showing a state in which a second bonding pad is formed, (d) a cross-sectional view showing a state in which a conductive layer for plating is formed, ( e) is a sectional view showing a state in which the plating resist film is patterned,
(f) is a sectional view showing a state in which bump electrodes are formed by plating,
(g) is a sectional view showing a state where the plating resist film is removed,
(h) is a cross-sectional view showing a state in which a second bonding pad is formed, (i) is a cross-sectional view showing a state in which the first semiconductor chip is mounted on the second semiconductor chip surface by the flip chip, and (j) is a semiconductor Sectional drawing of an apparatus.

【図3】本発明に係る半導体装置の他の要部構成例を示
す断面図。
FIG. 3 is a cross-sectional view showing another configuration example of the main part of the semiconductor device according to the invention.

【図4】本発明に係る半導体装置の別の要部構成例を示
す断面図。
FIG. 4 is a cross-sectional view showing another configuration example of the main part of the semiconductor device according to the present invention.

【図5】本発明に係る半導体装置の別の要部構成例を示
す断面図。
FIG. 5 is a cross-sectional view showing another configuration example of the main part of the semiconductor device according to the invention.

【図6】従来の半導体装置を配線基板面に実装した態様
を示す断面図。
FIG. 6 is a cross-sectional view showing a mode in which a conventional semiconductor device is mounted on a wiring board surface.

【図7】従来の半導体装置を配線基板面に実装した他の
態様を示す断面図。
FIG. 7 is a cross-sectional view showing another mode in which a conventional semiconductor device is mounted on a wiring board surface.

【符号の説明】[Explanation of symbols]

1a,1b,1c…半導体チップ 2a,2b,2c…ボンデング
パッド 3…配線基板 3′…ガラス基板 4…
ボンデングワイヤ 5…半導体装置 5a…第1の半
導体チップ 5b…第2の半導体チップ 5c…第3の
半導体チップ 6a…第1のバンプ電極 6b…第2のバンプ電極 6c
…第3のバンプ電極 7a,7b,7c…能動素子領域 8a,8b,8c…ボンデング
パッド 9a,9b,9c…ポリイミド樹脂層 10a …配
線パターン 11a,11b …第2のボンデングパッド
12…Ti/Cu層 13…レジスト層 14…開口部 15
a …CCD チップ 15b …ドライバーIC 16a …CCD チップのバンプ電極
16b …ドライバーICのバンプ電極
1a, 1b, 1c ... Semiconductor chips 2a, 2b, 2c ... Bonding pad 3 ... Wiring board 3 '... Glass substrate 4 ...
Bonding wire 5 ... Semiconductor device 5a ... First semiconductor chip 5b ... Second semiconductor chip 5c ... Third semiconductor chip 6a ... First bump electrode 6b ... Second bump electrode 6c
… Third bump electrodes 7a, 7b, 7c… Active element regions 8a, 8b, 8c… Bonding pads 9a, 9b, 9c… Polyimide resin layer 10a… Wiring patterns 11a, 11b… Second bonding pads
12 ... Ti / Cu layer 13 ... Resist layer 14 ... Opening 15
a… CCD chip 15b… Driver IC 16a… CCD chip bump electrode
16b… bump electrodes of driver IC

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月20日[Submission date] October 20, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ボンデングパッド上に第1のバンプ電極
を有する第1の半導体チップと、ボンデングパッド上に
前記第1の半導体チップの厚および第1のバンプ電極の
高さとの和よりも高い第2のバンプ電極を有し、かつ第
2のバンプ電極が形成された面上において互いに能動素
子領域形成面を対向させて少なくとも1個の第1の半導
体チップをフリップチップ実装した第2の半導体チップ
と、ボンデングパッド上に前記第2の半導体チップの厚
および第2のバンプ電極の高さとの和よりも高い第3の
バンプ電極を有し、かつ第3のバンプ電極が形成された
面上において互いに能動素子領域形成面を対向させて少
なくとも1個の第2の半導体チップをフリップ実装した
第3の半導体チップとを具備してなることを特徴とする
半導体装置。
1. A sum of a first semiconductor chip having a first bump electrode on a bonding pad and a thickness of the first semiconductor chip on the bonding pad and a height of the first bump electrode. A second flip-chip mounting device having a high second bump electrode, and at least one first semiconductor chip being flip-chip mounted with the active element region forming surfaces facing each other on the surface on which the second bump electrode is formed. A semiconductor chip and a third bump electrode having a thickness higher than the sum of the thickness of the second semiconductor chip and the height of the second bump electrode on the bonding pad, and the third bump electrode is formed. A semiconductor device comprising: a third semiconductor chip in which at least one second semiconductor chip is flip-mounted with the active element region forming surfaces facing each other on the surface.
JP04061636A 1992-03-18 1992-03-18 Semiconductor device Expired - Lifetime JP3119927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04061636A JP3119927B2 (en) 1992-03-18 1992-03-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04061636A JP3119927B2 (en) 1992-03-18 1992-03-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH06132474A true JPH06132474A (en) 1994-05-13
JP3119927B2 JP3119927B2 (en) 2000-12-25

Family

ID=13176888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04061636A Expired - Lifetime JP3119927B2 (en) 1992-03-18 1992-03-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3119927B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5721452A (en) * 1995-08-16 1998-02-24 Micron Technology, Inc. Angularly offset stacked die multichip device and method of manufacture
US6051886A (en) * 1995-08-16 2000-04-18 Micron Technology, Inc. Angularly offset stacked die multichip device and method of manufacture
JP2002170918A (en) * 2000-12-01 2002-06-14 Nec Corp Semiconductor device and its manufacturing method
JP2002359342A (en) * 2001-05-31 2002-12-13 Dainippon Printing Co Ltd Middle board for multichip module
US6563205B1 (en) 1995-08-16 2003-05-13 Micron Technology, Inc. Angularly offset and recessed stacked die multichip device and method of manufacture
US6633081B2 (en) 2001-05-30 2003-10-14 Matsushita Electric Industrial Co., Ltd. Semiconductor device on a packaging substrate
KR100406448B1 (en) * 2001-04-02 2003-11-19 앰코 테크놀로지 코리아 주식회사 Semiconductor package and its manufacturing method
US6706557B2 (en) 2001-09-21 2004-03-16 Micron Technology, Inc. Method of fabricating stacked die configurations utilizing redistribution bond pads
US6884657B1 (en) 1995-08-16 2005-04-26 Micron Technology, Inc. Angularly offset stacked die multichip device and method of manufacture
US6989605B2 (en) 1997-03-10 2006-01-24 Seiko Epson Corporation Electronic component and semiconductor device, method of fabricating the same, circuit board mounted with the same, and electronic appliance comprising the circuit board
US6995455B2 (en) 2002-11-29 2006-02-07 Renesas Technology Corp. Semiconductor device
US7112468B2 (en) 1998-09-25 2006-09-26 Stmicroelectronics, Inc. Stacked multi-component integrated circuit microprocessor
JP2007507879A (en) * 2003-10-01 2007-03-29 オプトパック、インコーポレイテッド Electronic package for semiconductor device for photodetection and packaging method thereof
JP2008028284A (en) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd Semiconductor mounting construction
US7681309B2 (en) 2001-10-03 2010-03-23 Formfactor, Inc. Method for interconnecting an integrated circuit multiple die assembly
JP2010239162A (en) * 2010-07-26 2010-10-21 Oki Semiconductor Co Ltd Semiconductor device and method of manufacturing the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884657B1 (en) 1995-08-16 2005-04-26 Micron Technology, Inc. Angularly offset stacked die multichip device and method of manufacture
US6051886A (en) * 1995-08-16 2000-04-18 Micron Technology, Inc. Angularly offset stacked die multichip device and method of manufacture
US6563205B1 (en) 1995-08-16 2003-05-13 Micron Technology, Inc. Angularly offset and recessed stacked die multichip device and method of manufacture
US5721452A (en) * 1995-08-16 1998-02-24 Micron Technology, Inc. Angularly offset stacked die multichip device and method of manufacture
US8134237B2 (en) 1997-03-10 2012-03-13 Seiko Epson Corporation Electronic component and semiconductor device, method of fabricating the same, circuit board mounted with the same, and electronic appliance comprising the circuit board
US7932612B2 (en) 1997-03-10 2011-04-26 Seiko Epson Corporation Electronic component and semiconductor device, method of fabricating the same, circuit board mounted with the same, and electronic appliance comprising the circuit board
US7598619B2 (en) 1997-03-10 2009-10-06 Seiko Epson Corporation Electronic component and semiconductor device, method of fabricating the same, circuit board mounted with the same, and electronic appliance comprising the circuit board
JP2009010436A (en) * 1997-03-10 2009-01-15 Seiko Epson Corp Electronic component and semiconductor device, and manufacturing method thereof
US6989605B2 (en) 1997-03-10 2006-01-24 Seiko Epson Corporation Electronic component and semiconductor device, method of fabricating the same, circuit board mounted with the same, and electronic appliance comprising the circuit board
US7436071B2 (en) 1997-03-10 2008-10-14 Seiko Epson Corporation Electronic component and semiconductor device, method of fabricating the same, circuit board mounted with the same, and electronic appliance comprising the circuit board
US7119445B2 (en) 1997-03-10 2006-10-10 Seiko Epson Corporation Electronic component and semiconductor device, method of fabricating the same, circuit board mounted with the same, and electronic appliance comprising the circuit board
US7112468B2 (en) 1998-09-25 2006-09-26 Stmicroelectronics, Inc. Stacked multi-component integrated circuit microprocessor
JP2002170918A (en) * 2000-12-01 2002-06-14 Nec Corp Semiconductor device and its manufacturing method
KR100406448B1 (en) * 2001-04-02 2003-11-19 앰코 테크놀로지 코리아 주식회사 Semiconductor package and its manufacturing method
US6633081B2 (en) 2001-05-30 2003-10-14 Matsushita Electric Industrial Co., Ltd. Semiconductor device on a packaging substrate
JP2002359342A (en) * 2001-05-31 2002-12-13 Dainippon Printing Co Ltd Middle board for multichip module
US6847105B2 (en) * 2001-09-21 2005-01-25 Micron Technology, Inc. Bumping technology in stacked die configurations
US6706557B2 (en) 2001-09-21 2004-03-16 Micron Technology, Inc. Method of fabricating stacked die configurations utilizing redistribution bond pads
US7681309B2 (en) 2001-10-03 2010-03-23 Formfactor, Inc. Method for interconnecting an integrated circuit multiple die assembly
DE10349692B4 (en) * 2002-11-29 2006-07-06 Rohm Co. Ltd. Through-electrode semiconductor device and method of making the same
CN1305133C (en) * 2002-11-29 2007-03-14 株式会社瑞萨科技 Semiconductor device and method of manufacturing the same
US6995455B2 (en) 2002-11-29 2006-02-07 Renesas Technology Corp. Semiconductor device
US7452751B2 (en) 2002-11-29 2008-11-18 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
JP2007507879A (en) * 2003-10-01 2007-03-29 オプトパック、インコーポレイテッド Electronic package for semiconductor device for photodetection and packaging method thereof
JP2008028284A (en) * 2006-07-25 2008-02-07 Matsushita Electric Ind Co Ltd Semiconductor mounting construction
JP2010239162A (en) * 2010-07-26 2010-10-21 Oki Semiconductor Co Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP3119927B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
US6940169B2 (en) Torch bump
US6025640A (en) Resin-sealed semiconductor device, circuit member for use therein and method of manufacturing resin-sealed semiconductor device
TW492120B (en) Semiconductor device and its manufacturing method, stacked type semiconductor device, circuit substrate and electronic machine
JP3313547B2 (en) Manufacturing method of chip size package
JP4400802B2 (en) Lead frame, manufacturing method thereof, and semiconductor device
JP3050812B2 (en) Multilayer printed wiring board
JP3119927B2 (en) Semiconductor device
JP2004343030A (en) Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board
JP3285919B2 (en) Semiconductor device
JP2001110831A (en) External connecting protrusion and its forming method, semiconductor chip, circuit board and electronic equipment
US6936927B2 (en) Circuit device having a multi-layer conductive path
JP3823636B2 (en) Semiconductor chip module and manufacturing method thereof
JPH1092865A (en) Semiconductor device and its manufacture
JP2002217354A (en) Semiconductor device
JPH11163024A (en) Semiconductor device and lead frame for assembling the same, and manufacture of the device
JP3281591B2 (en) Semiconductor device and manufacturing method thereof
JP3313058B2 (en) Semiconductor device and manufacturing method thereof
JP3529915B2 (en) Lead frame member and method of manufacturing the same
JP2899956B2 (en) Semiconductor device and manufacturing method thereof
JP2005150417A (en) Substrate for semiconductor device, its manufacturing method, and semiconductor device
JP4440494B2 (en) Manufacturing method of semiconductor device
JP2005158777A (en) Semiconductor device and its manufacturing method
JP2872548B2 (en) Method for manufacturing semiconductor device
JP3084648B2 (en) Semiconductor device
JP3323091B2 (en) Semiconductor integrated circuit device and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12