JPH0613094B2 - メタノ−ル合成用流動触媒の製造法 - Google Patents

メタノ−ル合成用流動触媒の製造法

Info

Publication number
JPH0613094B2
JPH0613094B2 JP58229578A JP22957883A JPH0613094B2 JP H0613094 B2 JPH0613094 B2 JP H0613094B2 JP 58229578 A JP58229578 A JP 58229578A JP 22957883 A JP22957883 A JP 22957883A JP H0613094 B2 JPH0613094 B2 JP H0613094B2
Authority
JP
Japan
Prior art keywords
copper
aluminum
catalyst
precipitate
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58229578A
Other languages
English (en)
Other versions
JPS60122040A (ja
Inventor
実 大杉
実 高川
忠士 中村
孝 小島
欣哉 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP58229578A priority Critical patent/JPH0613094B2/ja
Publication of JPS60122040A publication Critical patent/JPS60122040A/ja
Publication of JPH0613094B2 publication Critical patent/JPH0613094B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明はメタノール合成用流動触媒に関する。一酸化炭
素と水素を反応させてメタノールを製造する方法は固定
床触媒存在下で行なわれるのが一般であるが、近年エネ
ルギー価格の高騰に伴ない反応器内で発生する反応熱の
除去方法に種々の工夫がこらされている。しかしメタノ
ール合成反応はかなりの発熱反応であり、特に化学工業
用原料の転換に伴ない重質油や石炭、更には製鉄所等で
発生する余剰ガスに原料源を求めようとする近年の傾向
は、これらから得られる原料ガス中の一酸化炭素、およ
び二酸化炭素の割合を水素のそれに対して相対的に増加
せしめることとなり、これは反応器内の温度分布を不均
一とし、従来の固定床方式の反応器ではこれらの原料ガ
ス組成の変化に十分対応することが困難視されている。
また従来固定床方式において一般に行なわれている未反
応ガスの大量循環方式は動力費用を増加せしめ、特に近
年の装置の大型化傾向はこの問題を更に深刻なものとし
ている。かかる問題を解決するにはメタノール合成を流
動床で行なう方法が考えられるが、この場合には触媒粒
子同志および触媒粒子と反応器壁との衝突により、触媒
粒子が摩耗、粉砕されるという問題点があり、従来の固
定床用メタノール合成触媒をそのまま用いたのでは必要
な耐摩耗性が得られず、流動床式メタノール合成法の実
現の妨げとなっていた。
本発明者は炭化水素油などの不活性媒体中に触媒を分散
させて、液相でメタノール合成を行なわせる気−液−固
の三相流動層方式は基より、気相流動床方式においても
実用に耐えうる耐摩耗性を有し、しかもメタノール合成
に高活性な触媒の開発を目的として鋭意検討を重ねた結
果、大量のアルミニウム酸化物を触媒中に含有させる事
によりかかる目的が達成し得る事を見出し特願昭58−
193649(特開昭60−84142)として特許出
願した。
しかるにかかる大量のアルミニウム酸化物を触媒中に含
有させるときはアルミナの有する酸性が活性成分である
銅を一部失活させ、メタノール合成用触媒としての活性
を若干損なうことが見出され、更にこの欠点を解消すべ
く検討した結果、アルミニウム成分の溶解工程において
銅またはマグネシウム、カルシウム、バリウムから選ば
れた少なくとも1種の元素の可溶性化合物と共に溶解さ
せることにより、アルミニウム酸化物が活性成分である
銅を失活させる作用を緩らげることが出来ると共に、流
動床触媒として必要な耐摩耗性を有するアルミニウム酸
化膜の含量の範囲も更に広がることを見出し本発明に到
達した。
即ち本発明は、銅、亜鉛およびアルミニウムの酸化物、
又は銅、亜鉛、アルミニウムの酸化物およびマグネシウ
ム、カルシウム、バリウムから選ばれた少なくとも1種
の酸化物からなり、或いはこれらの酸化物にクロム、バ
ナジウム、マグネシウム、ジルコニウムの酸化物、リン
のオキシ酸およびその塩から選ばれた一種以上の活性成
分を加えた成分からなり、アルミニウム酸化物含量が3
0〜70重量%である、一酸化炭素および/または二酸
化炭素と水素の混合ガスからのメタノール合成用流動触
媒を製造するに際し、アルミニウム化合物を、銅、マグ
ネシウム、カルシウム、バリウムから選ばれた少なくと
も1種の元素の可溶性化合物と共に溶解させたアルミニ
ウム成分液を、銅及び亜鉛を含む成分の沈殿物と混合す
るか、もしくは該アルミニウム成分液の沈殿物を、銅及
び亜鉛を含む成分液又はその沈殿物と混合したのち、沈
殿物を得ることを特徴とするメタノール合成用流動触媒
の製造法である。
本発明においてアルミニウム酸化物含量は30〜70重
量%、好ましくは35〜65重量%である。アルミニウ
ム酸化物含量が30重量%以下であるときはたとえば銅
や周期率表第II族元素をアルミニウム成分の沈殿時に添
加しても流動床触媒として必要な耐摩耗性を得ることは
出来ない。又、アルミニウム酸化物含量が70重量%以
上であるときは活性成分量が少なくなり、メタノールの
空時収量が低下するので工業的に不利である。
本発明触媒中の銅及び亜鉛酸化物の量は原子比でCu:Zn
=0.5〜10.0:1.0の範囲であり、好ましくは
Cu:Zn=0.8〜3.0:1.0の範囲である。
本発明においては、銅、亜鉛およびアルミニウムの酸化
物に、更に必要に応じて他の活性成分として、クロム、
バナジウム、マグネシウム、ジルコニウムの酸化物や、
リンのオキシ酸およびその塩を加えることができる。こ
れらの活性成分は、銅および亜鉛の酸化物に対して1〜
50重量%加えることができ、触媒活性を高めるために
用いられる。
本発明において使用するアルミニウム酸化物の原料とし
ては、適当な溶媒に可溶で適切な条件下で沈殿を生成す
るものであれば、いかなる化合物を用いても良いが、実
用的な観点からアルミニウムイソプロポキシドなどの如
きアルミニウムアルコキシド、硝酸アルミニウム、酢酸
アルミニウムの如きアルミニウム塩、アルミン酸ナトリ
ウムなどの如きアルミン酸アルカリが用いられる。また
担体となる上述の酸化物の原料となる化合物溶液からの
沈殿生成剤としては特に限定はなくアルミニウム塩の場
合には、水酸化アルカリ、(重)炭酸アルカリ、(重)
炭酸アンモニウムの如きアルカリ性物質が用いられ、ア
ルミン酸アルカリの場合には、硝酸の如き酸性物質、ア
ルミニウムアルコキシドの場合には、これらの他に水も
沈殿剤として用いることができる。
本発明においてはアルミニウム成分液として上記のアル
ミニウム化合物を、銅またはマグネシウム、カルシウ
ム、バリウムから選ばれた少なくとも1種の元素の可溶
性化合物と共に溶解させることが必要である。かかる可
溶性化合物は、例えば硝酸銅、シユウ酸銅、酢酸銅、硝
酸カルシウム、酢酸カルシウム、硝酸マグネシウム、酢
酸マグネシウム、硝酸バリウム、酢酸バリウム等であ
る。これらの中で好ましいのは、銅と、マグネシウム、
カルシウムまたはバリウムの可溶性化合物を併用した場
合である。銅またはマグネシウム、カルシウム、バリウ
ムの可溶性化合物の添加割合は原子比でアルミニウム1
に対し0.05〜1.00、好ましくは0.10〜0.
60の範囲である。
触媒活性成分である銅酸化物の原料としては通常用いら
れている銅の水溶性塩が使用され、例えば、硝酸銅、シ
ユウ酸銅、酢酸銅等の水溶性銅塩が挙げられるが、中で
も、ハロゲンや硫黄などの触媒毒となるような元素を含
まない塩が好ましく、硝酸塩が特に適している。
かかる水溶性銅塩は水性媒体、例えば水中に溶解した状
態で、炭酸アルカリ、重炭酸アルカリ、カセイアルカリ
等のアルカリ性物質により沈殿せしめられる。
この水溶性銅塩の水溶液から銅成分を不溶性固体として
沈殿させるための沈殿剤として使用されるアルカリ性物
質とは例えば炭酸ナトリウム、炭酸カリウム、炭酸リチ
ウム、炭酸アンモニウム、重炭酸ナトリウム、重炭酸カ
リウム、重炭酸アンモニウム、水酸化ナトリウム、水酸
化カリウム、水酸化リチウム等を意味する。
一方亜鉛酸化物の原料としては通常使用されている任意
の水溶性亜鉛が同様に使用され、例えば、硝酸亜鉛、酢
酸亜鉛等の水溶性亜鉛塩が包含され、中でもハロゲン、
イオウ等の触媒毒となる元素を含まないもの、殊に硝酸
亜鉛が好適である。
かかる水溶性亜鉛塩の水性溶液から亜鉛成分を不溶性固
体として沈殿させるための沈殿剤としては炭酸ナトリウ
ム、炭酸カリウム、炭酸リチウム、炭酸アンモニウム、
重炭酸ナトリウム、重炭酸カリウム、重炭酸アンモニウ
ム、水酸化ナトリウム、水酸化カリウム、水酸化リチウ
ム等のアルカリ性物質が利用出来る。又場合により水酸
化亜鉛、酸化亜鉛を水に分散させスラリー溶液とし、こ
れに炭酸ガスを吹込み塩基性炭酸亜鉛として沈殿させる
ことも出来る。
上記銅及び亜鉛成分の沈殿生成反応は常温において行な
うことができ、或いは適宜約90℃までの温度の加温下
に行なってもよい。かかる条件下に沈殿生成反応は極め
て円滑に進行し、通常約15分以内にほぼ定量的に反応
を完了せしめることができる。
本発明触媒の構成成分である銅及び亜鉛を含む成分とア
ルミニウム成分液の混合は、銅及び亜鉛を含む成分の沈
殿物を生成させた後、この中にアルミニウム成分液を入
れて沈殿を生成させても良く、或いはアルミニウム成分
液の沈殿物を、銅及び亜鉛を含む成分液又はその沈殿物
と混合しても良く、もしくは銅及び亜鉛を含む成分とア
ルミニウム成分を別々に沈殿させたのちスラリー溶液の
状態で混合しても良く、各々の沈殿物を分取後捏和混合
しても良い。
なお本発明においては前述の如く更に必要に応じて他の
活性成分として、クロム、バナジウム、マグネシウム、
ジルコニウムの酸化物や、リンのオキシ酸およびその塩
を加えることができる。これらの活性成分を加える方法
は特に制限が無く、これらの活性成分は水溶性塩として
アルミニウム成分液に加えても良く、アルミニウム成分
液の沈殿物に加えても良く、銅及び亜鉛を含む成分に加
えても良い。また銅及び亜鉛を含む成分の沈殿物とアル
ミニウム成分液の沈殿物を混合した後にこれらの活性成
分を加えることもできる。
かかる手段により得られた触媒前駆体は沈殿溶液を必要
に応じて、ろ過、洗浄した後適当な濃度のスラリーと
し、このスラリー溶液を噴霧乾燥するか、あるいは油中
滴下することにより球状の微粉末とすることができる。
スラリーの濃度は使用する触媒前駆体の種類、その構成
比など、さらには噴霧乾燥機の構造、運転条件などによ
り異なるが、おおむね水溶媒に対して、固形分の量が5
重量%から40重量%が好ましく、10重量%から30
重量%が更に好ましい。
触媒粉末は、通常の流動層反応器に用いられる3000
ミクロンまでの間の粒子径の粒子を用いることができる
が、気相流動層反応に用いる場合には500ミクロン以
上の粒子が大量に存在すると、応応にして良好な流動化
状態が損なわれる場合も多く、通常は、適正な粒度分布
を持つた200ミクロンから20ミクロンの間の球状に
近い粒子が好ましい。
本発明にかかわる流動層用触媒により、メタノールを製
造する際の反応条件は、原料ガス中の一酸化炭素および
/または二酸化炭素と水素の濃度や、触媒中の活性成分
の含有量、更には三相流動層か気相流動層かにより異な
ってくるが、おおむね反応圧力20〜300kg/cm2
好ましくは30〜200kg/cm2であり、反応温度は1
50〜350℃、好ましくは、200〜300℃であ
る。又、空間速度は、1000〜8×10hr−1の範
囲にあるが、特に、気相流動方式で用いる場合には、触
媒粒子が十分流動するようにガス空塔速度も考慮される
べきである。
本発明によれば三相流動層においても気相流動層におい
ても使用でき、メタノール合成に高活性且つ耐摩耗性に
富んだすぐれた性能のメタノール合成用流動触媒を得る
ことが出来る。
実施例1 重炭酸アンモニウム216.52gをイオン交換水6に溶解
し、50℃に保持した。これに、硝酸銅(三水塩)171.
50gと硝酸亜鉛(六水塩)158.90gとをイオン交換水3
に溶解し、50℃としたものを攪拌下に注加し、沈殿
を生成させた。その後、1℃/minの速度で80℃に昇
温し、この温度にて30分間保持した後、同じ速度で4
0℃まで降温した。
次に硝酸アルミニウム(九水塩)799.02gと硝酸マグネ
シウム(六水塩)54.62gとをイオン交換水8に溶解
し、40℃とした溶液と、水酸化ナトリウム272.64gを
イオン交換水23に溶解し、40℃とした溶液とを、
先に溶液中に攪拌下に注加し、沈殿を生成させ、この温
度にて30分間保持した。その後、放冷し、ろ過を行な
った後、10のイオン交換水で4回洗浄を行なった。
こうして得られた沈殿を、水分の量を調整することによ
り、スラリー濃度が15重量%のスラリーになるように
調製した。このスラリーをディスク型の噴霧乾燥器に、
10kg/Hの速度で供給し、乾燥空気入口温度220℃
で乾燥し、球状粉末を得た。この粉末を空気流通下で流
動させて38℃で1.5時間焼成し、第1表に示した性
状の触媒Aの焼成品170gを得た。
実施例2 実施例1において、硝酸マグネシウムを硝酸カルシウム
(四水塩)50.30gに変更した以外、全て同じ条件で調
製し、第1表に示した性状の触媒Bの焼成品170gを
得た。
実施例3 実施例1において、硝酸マグネシウムを硝酸バリウム5
5.67gに変更した以外、全て同じ条件で調製し、第1表
に示した性状の触媒Cの焼成品170gを得た。
実施例4 実施例1において硝酸マグネシウムを硝酸銅(三水塩)
51.46gに変更した以外、全て同じ条件で調製し、第1
表に示した性状の触媒Dの焼成品170gを得た。
実施例5 重炭酸アンモニウム216.52gをイオン交換水9に溶解
し、50℃に保持した。これに、硝酸銅(三水塩)171.
62gと硝酸亜鉛(六水塩)159.02gとをイオン交換水4
に溶解し、50℃としたものを攪拌下に注加し、沈殿
を生成させた。その後、1℃/minの速度で80℃に昇
温し、この温度にて30分間保持した後、同じ速度で4
0℃まで降温した。
次に硝酸アルミニウム(九水塩)528.93gと硝酸マグネ
シウム(六水塩)36.15gと硝酸銅(三水塩)68.13gと
をイオン交換水6に溶解し、40℃とした溶液と水酸
化ナトリウム203.04gをイオン交換水16に溶解し、
40℃とした溶液とを、先の沈殿溶液に攪拌下に同時に
注加し、沈殿を生成させ混合した。放冷後、実施例1と
同様に、ろ過、洗浄を行ない、スラリー濃度15重量%
のスラリーを調製した。以下、実施例1と同様に噴霧乾
燥、焼成を行ない、第1表に示した性状の触媒Eの焼成
品165gを得た。
実施例6 硝酸銅(三水塩)171.62gと硝酸亜鉛(六水塩)159.02
gとをイオン交換水4に溶解し、50℃に保持した。
これに重炭酸アンモニウム216.52gをイオン交換水9
に溶解し、50℃とした溶液を攪拌下に注加し、沈殿を
生成させた。ただちに、1℃/minの速度で80℃へ昇
温し、この温度にて30分間保持した。その後、同じ速
度で50℃まで降温した。
一方、硝酸アルミニウム(九水塩)528.93g、硝酸マグ
ネシウム(六水塩)36.15g、硝酸銅(三水塩)63.13g
をイオン交換水6に一緒に溶解し、50℃に保持し
た。これに水酸化ナトリウム203.04gをイオン交換水1
6に溶解し、50℃した溶液を攪拌下に注加し、沈殿
を生成させた。
この沈殿溶液に、先に生成させておいた沈殿溶液を攪拌
下に注加し、混合した。放冷後、実施例1と同様に、ろ
過、洗浄を行ない、スラリー濃度15重量%のスラリー
を調製した。以下、実施例1と同様に噴霧乾燥、焼成を
行ない、第1表に示した性状の触媒Fの焼成品165g
を得た。
実施例7 硝酸アルミニウム(九水塩)883.01g、硝酸銅(三水
塩)60.75g、硝酸マグネシウム(六水塩)95.41gとを
イオン交換水10に溶解し、40℃とした溶液と、水
酸化ナトリウム332.35gをイオン交換水28に溶解
し、40℃とした溶液とを、イオン交換水10中に攪
拌下、同時に注加し、沈殿を生成せしめた。
次に重炭酸アンモニウム216.52gをイオン交換水9に
溶解し、40℃とした溶液と、硝酸銅(三水塩)171.62
gと硝酸亜鉛(六水塩)159.02gとをイオン交換水2.
3に溶解し、40℃とした溶液とを先の溶液中に攪拌
下に同時に注加し、沈殿を生成させた。その後、1℃/
minの速度で80℃に昇温し、この温度にて30分間保
持した後、同じ速度で40℃まで降温した。得られた混
合溶液は放冷して、実施例1と同様に、ろ過、洗浄を行
なった後、スラリー濃度15重量%のスラリーとして、
噴霧乾燥、焼成の工程を経て、第1表に示した性状の触
媒Gの焼成品180gを得た。
比較例1 硝酸アルミニウム(九水塩)735.52gをイオン交換水7
に溶解し、30℃とした溶液に、水酸化ナトリウム23
5.28gをイオン交換水6に溶解し、30℃とした溶液
を、攪拌下に注加し沈殿を生成させた。その後、2℃/
minの速度で90℃まで昇温し、90℃にて30分間保
持した後1℃/minの速度で80℃まで降温した。
次に重炭酸アンモニウム216.60gをイオン交換水6に
溶解し、50℃に保持した。これに、硝酸銅(三水塩)
171.50gと硝酸亜鉛158.90gとをイオン交換水3に溶
解し、50℃とした溶液を攪拌下に注加し、沈殿を生成
させた。ただちに1℃/minの速度で80℃まで昇温
し、この温度にて30分間保持した。
次に、この沈殿溶液を先の沈殿溶液に攪拌下に、80℃
にて注加し、混合した。その後、80℃にて10分間保
持した後、放冷した。得られた混合溶液は実施例1と同
様に、ろ過、洗浄を行なった後、スラリー濃度15重量
%のスラリーとして、噴霧乾燥、焼成の工程を経て、第
1表に示した性状の、触媒Hの焼成品150gを得た。
比較例2 硝酸アルミニウム(九水塩)408.54gをイオン交換水4
に溶解し、30℃とした溶液に、水酸化ナトリウム13
0.69gをイオン交換水11に溶解し、30℃とした溶
液を、攪拌下に注加し沈殿を生成させた。その後、2℃
/minの速度で90℃まで昇温し、90℃にて30分間
保持した後、1℃/minの速度で80℃まで降温した。
次に重炭酸アンモニウム216.60gをイオン交換水6に
溶解し、50℃に保持した。これに、硝酸銅(三水塩)
171.50gと硝酸亜鉛(六水塩)158.90gとをイオン交換
水3に溶解し、50℃とした溶液を攪拌下に注加し、
沈殿を生成させた。ただちに1℃/minの速度で80℃
まで昇温し、この温度にて30分間保持した。
次に、この沈殿溶液を先の沈殿溶液に攪拌下に、80℃
にて注加し、混合した。その後、80℃にて10分間保
持した後、放冷した。得られた混合溶液は実施例1と同
様に、ろ過、洗浄を行なつた後、スラリー濃度15重量
%のスラリーとして、噴霧乾燥、焼成の工程を経て、第
1表に示した性状の、触媒Iの焼成品120gを得た。
比較例3 硝酸アルミニウム405.84gをイオン交換水17に溶解
し、50℃に保持した。これに、硝酸銅(三水塩)321.
97gと硝酸亜鉛(六水塩)298.08gとをイオン交換水8
に溶解し、50℃としたものを攪拌下に注加し、沈殿
を生成させた。その後1℃/minの速度で80℃に昇温
し、この温度にて30分間保持した後、同じ速度で40
℃まで降温した。
次に硝酸アルミニウム(九水塩)528.93gと硝酸マグネ
シウム(六水塩)36.15gと硝酸銅(三水塩)68.13gと
をイオン交換水6に溶解し、40℃とした溶液と、水
酸化ナトリウム194.92gをイオン交換水16に溶解し
40℃とした溶液とを、先の沈殿溶液に攪拌下に同時に
注加し、沈殿を生成させ混合した。放冷後、実施例1と
同様に、ろ過、洗浄を行ない、スラリー濃度15重量%
のスラリーを調製した。以下、実施例1と同様に噴霧乾
燥、焼成を行ない、第1表に示した性状の、触媒Jの焼
成品230gを得た。
比較例4 重炭酸アンモニウム86.61gをイオン交換水4に溶解
し、50℃に保持した。これに、硝酸銅(三水塩)68.6
7gと硝酸亜鉛(六水塩)63.58gとをイオン交換水2
に溶解し、50℃としたものを攪拌下に注加し、沈殿を
生成させた。その後、1℃/minの速度で80℃に昇温
し、この温度にて30分間保持した後、同じ速度で40
℃まで降温した。
次に硝酸アルミニウム(九水塩)1103.76gと硝酸マグ
ネシウム(六水塩)12.72gと硝酸銅(三水塩)24.30g
とをイオン交換水6に溶解し、40℃とした溶液と、
水酸化ナトリウム365.09gをイオン交換水16に溶解
し40℃とした溶液とを、先の沈殿溶液に攪拌下に同時
注加し、沈殿を生成させ混合した。放冷後、実施例1と
同様に、ろ過、洗浄を行ない、スラリー濃度15重量%
のスラリーを調製した。以下、実施例1と同様に噴霧乾
燥、焼成を行ない、第1表に示した性状の、触媒Kの焼
成品165gを得た。
実施例8 重炭酸アンモニウム216.5gをイオン交換水6に
溶解し、50℃に保持した。これに硝酸銅(三水塩)1
71.50gと硝酸亜鉛(六水塩)158.90gとを
イオン交換水3に溶解し、50℃としたものを攪拌下
に注加し、沈澱を生成させた。その後、1℃/minの速
度で80℃に昇温し、この温度にて30分間保持した
後、同じ速度で40℃まで降温した。次に硝酸アルミニ
ウム(九水塩)799.02gと硝酸マグネシウム(六
水塩)54.62gとをイオン交換水8に溶解し、4
0℃とした溶液と、水酸化ナトリウム272.64gを
イオン交換水23に溶解し、40℃とした溶液とを、
先の溶液中に攪拌下に注加し、沈澱を生成させ、この温
度にて30分間保持した。その後、放冷し、濾過を行つ
た後、10のイオン交換水で4回洗浄を行った。
こうして得られた沈澱に、無水クロム酸5.73gを加
え、2時間擂潰した後、水分を調整することにより、ス
ラリー濃度が15重量%のスラリーを調整した。このス
ラリーをディスク型の噴霧乾燥機に10kg/hrの速度で
供給し、乾燥機入口温度220℃で乾燥し、球状粉末を
得た。この粉末を空気流通下流動させ、380℃で1.
5時間焼成し第1表に示した性状の触媒Lの焼成品17
0gを得た。
実施例9 重炭酸アンモニウム222.10をイオン交換水6に
溶解し、50℃に保持した。これに硝酸銅(三水塩)1
71.50gと硝酸亜鉛(六水塩)158.90gとオ
キシ硝酸バナジウム6.74gとをイオン交換水3に
溶解し、50℃としたものを攪拌下に注加し、沈澱を生
成させた。その後、1℃/minの速度で80℃に昇温
し、この温度にて30分間保持した後、同じ速度で40
℃まで降温した。次に硝酸アルミニウム(九水塩)79
9.02gと硝酸カルシウム(四水塩)50.30gと
をイオン交換水8に溶解し、40℃とした溶液と、水
酸化ナトリウム272.64gをイオン交換水23に
溶解し40℃とした溶液とを、先の溶液中に攪拌下に注
加し、沈澱を生成させ、この温度にて30分間保持し
た。その後、放冷し、濾過を行った後、10のイオン
交換水で4回洗浄を行った。
こうして得られた沈澱を、水分を調整することにより、
スラリー濃度が15重量%のスラリーを調整した。この
スラリーをディスク型の噴霧乾燥機に10kg/hrの速度
で供給し、乾燥機入口温度220℃で乾燥し、球状粉末
を得た。この粉末を空気流通下流動させ、380℃で
1.5時間焼成し第1表に示した性状の触媒Mの焼成品
170gを得た。
実施例10 重炭酸アンモニウム216.50をイオン交換水6に
溶解し、50℃に保持した。これに硝酸銅(三水塩)1
71.50gと硝酸亜鉛(六水塩)158.90gとを
イオン交換水3に溶解し50℃としたものを攪拌下に
注加し、沈澱を生成させた。その後、1℃/minの速度
で80℃に昇温し、この温度にて30分間保持した後、
同じ速度で40℃まで降温した。次に硝酸アルミニウム
(九水塩)799.02gと硝酸マグネシウム(六水
塩)54.62gとをイオン交換水8に溶解し40℃
とした溶液を先の溶液中に攪拌下に注加した後、直ちに
水酸化ナトリウム270.50gをイオン交換水23
に溶解し40℃に保持した溶液を攪拌下に注加し沈澱を
生成させた。
放冷後、実施例1と同様に濾過、洗浄を行ない、得られ
たケーキにリン酸水素カルシウム36.65gを加え、
2時間擂潰した後、水分を調整し、スラリー濃度15重
量%のスラリーを調製した。以下、実施例1と同様に噴
霧乾燥、焼成を行ない、第1表に示した性状の、触媒N
の焼成品167gを得た。
実施例11 重炭酸アンモニウム222.1gをイオン交換水6に
溶解し、50℃に保持した。これに硝酸銅(三水塩)1
71.50g、硝酸亜鉛(六水塩)158.90g、オ
キシ硝酸ジルコニウム(二水塩)56.92gをイオン
交換水3に溶解し50℃としたものを攪拌下に注加
し、沈殿を生成させた。その後、1℃/minの速度で8
0℃に昇温し、この温度にて30分間保持した後、同じ
速度で40℃まで降温した。次に硝酸アルミニウム(九
水塩)799.02gと硝酸マグネシウム(六水塩)5
4.62gをイオン交換水8に溶解し40℃とした溶
液を攪拌下に先の溶液に注加した後、直ちに水酸化ナト
リウム270.50gをイオン交換水23に溶解し4
0℃に保持した溶液を攪拌下に注加した。
放冷後、実施例1と同様に濾過洗浄を行ない、スラリー
濃度15重量%のスラリーを調製した。以下、実施例1
と同様に噴霧乾燥、焼成を行ない、第1表に示した性状
の触媒Oの焼成品165gを得た。
試験例1〜15及び参考例1〜2(摩擦試験) 実施例1〜11および比較例1〜4で得られた球状触媒
粉末(焼成品)の各々50gを窒素気流中で流動化さ
せ、140℃に保持した。次に窒素ガスを徐々に、水素
ガスに置き換えながら、約5時間かけて窒素ガスの全量
を水素ガスに置き換えた後、240℃まで昇温し、この
温度で3時間保持し、触媒の還元を行なった。次に下部
に0.4mmφの小穴の開いたステンレス板を備えた内径
27mmφの肉厚ガラス管に、先に還元した触媒を充填
し、ガラス管上部に触媒粉末が系外に飛び出さないよう
に、円筒ろ紙を備えた排気管を挿入した。ついで下部小
穴より510/Hの速度で窒素を1時間噴出させ、触
媒粒子を摩耗させた後、窒素を止め、空気を微量徐々に
15時間流しながら、触媒を再酸化し、粉末のほぼ全量
を回収した。この試験の前後に触媒粒子の粒度分布を、
音波式ハンドシフターにより測定し、次式により摩耗速
度を求めた。
AR(−44)=(A−B)/C×100(wt%/H) AR(−44):44ミクロン以下の粒子の割合の変化
から求めた摩耗速度(wt%/H) A:摩耗試験後に、回収された触媒粒子(再酸化品)中
に占める粒径44ミクロン以下の粒子の割合(wt%) B:焼成品粒子中に占める粒径44ミクロン以下の粒子
の割合(wt%) C:焼成品粒子中に占める粒径44ミクロン以上の粒子
の割合(wt%) こうして得られた結果を、公知のFCC触媒による参考
例1〜2と共に試験例(活性試験)として第1表に示し
た。
試験例1〜15(活性試験) 下部に焼結金属性フィルターを備えた内径30mmφのス
テンレス製反応器に、触媒A〜Fの焼成品100mlを充
填し、反応器下部フィルターを通して窒素ガスを導入
し、140℃に保った。次いで、徐々に窒素ガスを水素
ガスに代えながら、約5時間かけて窒素ガスの全量を水
素ガスに置き換えた後、240℃に3時間保持し、触媒
の還元を行った。
その後、水素67.4(mol%)、一酸化炭素24.0
(mol%)、二酸化炭素6.6(mol%)、メタン1.5
(mol%)、窒素0.5(mol%)からなる合成ガスを用
いて、触媒の活性試験を行い、第2表の結果を得た。
なお触媒の活性試験における反応条件は次の通りであ
る。
反応温度 260℃ 反応圧力 70kg/cm2G SV 2.0X10hr−1
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 29/154 8827−4H 31/04 6958−4H // C07B 61/00 300 (72)発明者 辻 欣哉 新潟県新潟市太夫浜字新割182番地 三菱 瓦斯化学株式会社新潟研究所内 審判の合議体 審判長 渡辺 順之 審判官 唐戸 光雄 審判官 柳 和子

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】銅、亜鉛およびアルミニウムの酸化物、又
    は銅、亜鉛、アルミニウムの酸化物およびマグネシウ
    ム、カルシウム、バリウムから選ばれた少なくとも1種
    の酸化物からなり、或いはこれらの酸化物にクロム、バ
    ナジウム、マグネシウム、ジルコニウムの酸化物、リン
    のオキシ酸およびその塩から選ばれた一種以上の活性成
    分を加えた成分からなり、アルミニウム酸化物含量が3
    0〜70重量%である、一酸化炭素および/または二酸
    化炭素と水素の混合ガスからのメタノール合成用流動触
    媒を製造するに際し、アルミニウム化合物を、銅、マグ
    ネシウム、カルシウム、バリウムから選ばれた少なくと
    も1種の元素の可溶性化合物と共に溶解させたアルミニ
    ウム成分液を、銅及び亜鉛を含む成分の沈殿物と混合す
    るか、もしくは該アルミニウム成分液の沈殿物を、銅及
    び亜鉛を含む成分液又はその沈殿物と混合したのち、沈
    殿物を得ることを特徴とするメタノール合成用流動触媒
    の製造法
JP58229578A 1983-12-05 1983-12-05 メタノ−ル合成用流動触媒の製造法 Expired - Lifetime JPH0613094B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58229578A JPH0613094B2 (ja) 1983-12-05 1983-12-05 メタノ−ル合成用流動触媒の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58229578A JPH0613094B2 (ja) 1983-12-05 1983-12-05 メタノ−ル合成用流動触媒の製造法

Publications (2)

Publication Number Publication Date
JPS60122040A JPS60122040A (ja) 1985-06-29
JPH0613094B2 true JPH0613094B2 (ja) 1994-02-23

Family

ID=16894368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58229578A Expired - Lifetime JPH0613094B2 (ja) 1983-12-05 1983-12-05 メタノ−ル合成用流動触媒の製造法

Country Status (1)

Country Link
JP (1) JPH0613094B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8521650D0 (en) * 1985-08-30 1985-10-02 Ici Plc Catalyst
JP2560311B2 (ja) * 1987-02-27 1996-12-04 三菱瓦斯化学株式会社 メタノ−ルないし混合アルコ−ルの製造法
CN112169800A (zh) * 2019-07-02 2021-01-05 中石化南京化工研究院有限公司 一种甲醇合成催化剂及其制备方法

Also Published As

Publication number Publication date
JPS60122040A (ja) 1985-06-29

Similar Documents

Publication Publication Date Title
JPH0470946B2 (ja)
JP3786297B2 (ja) 触媒の製造方法
US3923694A (en) Methanol synthesis catalyst
EP1138385B1 (en) Preparation of catalyst and use for acrylic acid production
JP5031946B2 (ja) アクロレインへのプロペンの接触気相酸化の方法
KR900009016B1 (ko) 산화 촉매 조성물의 제조방법
JP2007530257A (ja) アルカンの不飽和カルボン酸への選択的転化のための触媒組成物、その製造方法およびその使用方法
US3961037A (en) Process for forming hydrogen and carbon dioxide using a catalyst consisting essentially of oxides of copper, zinc and aluminum or magnesium
EP0057796A1 (en) Catalyst, catalyst support and oxychlorination process
US7229945B2 (en) Process of making mixed metal oxide catalysts for the production of unsaturated aldehydes from olefins
JP3865848B2 (ja) メタノール合成用の触媒
EP0255295B1 (en) Process for producing fluidized catalyst for synthesis of methanol
JPH0613094B2 (ja) メタノ−ル合成用流動触媒の製造法
JP3342794B2 (ja) メタクロレイン及びメタクリル酸合成用担持触媒の製造法
JPH0526543B2 (ja)
JPH06254414A (ja) 触媒調製法
JP3341808B2 (ja) ジメチルエーテル製造用触媒およびジメチルエーテルの製造方法
JP2535876B2 (ja) 混合アルコ−ル合成用流動触媒
US3404099A (en) Process for the preparation of iron-base catalytic masses and the resulting products
JPH0133217B2 (ja)
JP3789550B2 (ja) アルキル化用触媒とその触媒を用いたヒドロキシ芳香族化合物の製造法
JPH09173848A (ja) ジメチルエーテル製造用触媒およびその製造方法ならびにジメチルエーテルの製造方法
JPH0622679B2 (ja) メタクリル酸製造用触媒の調整方法
JPS5965032A (ja) アルキルフエノ−ルの製造法
JPH09117666A (ja) エチレンのオキシクロリネーション触媒