JPH057766B2 - - Google Patents

Info

Publication number
JPH057766B2
JPH057766B2 JP58018688A JP1868883A JPH057766B2 JP H057766 B2 JPH057766 B2 JP H057766B2 JP 58018688 A JP58018688 A JP 58018688A JP 1868883 A JP1868883 A JP 1868883A JP H057766 B2 JPH057766 B2 JP H057766B2
Authority
JP
Japan
Prior art keywords
magnetic
angle
base material
vapor deposition
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58018688A
Other languages
Japanese (ja)
Other versions
JPS59144048A (en
Inventor
Kazuhiko Nakamura
Hideaki Matsuyama
Kyotaka Kuroda
Hiroyuki Sagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1868883A priority Critical patent/JPS59144048A/en
Publication of JPS59144048A publication Critical patent/JPS59144048A/en
Publication of JPH057766B2 publication Critical patent/JPH057766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 この発明は磁気記録媒体の製造方法に関するも
のであり、更に詳細には、酸素雰囲気中におい
て、適当な磁性金属または合金などの蒸着物質を
非磁性基材に蒸着させて得られる薄膜型の磁気記
録媒体の製造方法に関するものであつて、特に磁
気記録媒体の保磁力を向上させることを目的とす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium, and more specifically, the present invention relates to a method for manufacturing a magnetic recording medium, and more specifically, a method for producing a magnetic recording medium by depositing a deposition material such as a suitable magnetic metal or alloy on a non-magnetic base material in an oxygen atmosphere. The present invention relates to a method for manufacturing the resulting thin-film magnetic recording medium, and is particularly aimed at improving the coercive force of the magnetic recording medium.

従来、蒸着装置内の酸素分圧を他の気体の分圧
よりも高くした酸素雰囲気中で磁性金属または合
金を非磁性基材を蒸着させることによつて、得ら
れる磁気テープの保磁力を向上させることが可能
であるとの報告がある。しかし、この方法では、
酸素の分圧を大きくすると、蒸着物質の自由行程
が短くなり十分な蒸着効率が得られないかまたは
全く蒸着されないという欠点がある。また蒸着物
質が酸素によつて散乱される方向もランダムにな
り不都合である。更に、この方法では、斜方蒸着
において、蒸着物質の入射角が小さく、したがつ
て蒸着率の大きい領域に優先的に酸素を導入する
ことができず実用的ではない。
Conventionally, the coercive force of the resulting magnetic tape was improved by depositing a magnetic metal or alloy on a non-magnetic base material in an oxygen atmosphere in which the partial pressure of oxygen in the deposition apparatus was higher than that of other gases. There are reports that it is possible to do so. However, with this method,
If the partial pressure of oxygen is increased, the free path of the deposited material becomes shorter, resulting in insufficient deposition efficiency or no deposition at all. Further, the direction in which the vapor deposited material is scattered by oxygen is also random, which is disadvantageous. Furthermore, this method is not practical in oblique evaporation because the angle of incidence of the evaporation substance is small and therefore oxygen cannot be introduced preferentially into regions where the evaporation rate is high.

そこで、この発明は、従来の方法における欠点
を大巾に改善することができる方法であつて、特
に、従来のものに比べて格段に保磁力が向上した
磁気記録媒体を得ることができる方法を提供する
ものである。
Therefore, the present invention is a method that can greatly improve the drawbacks of the conventional methods, and in particular, a method that can obtain a magnetic recording medium with significantly improved coercive force compared to the conventional methods. This is what we provide.

この発明によれば、磁気記録媒体の製造方法
は、酸素雰囲気中おいて蒸着物質を一定範囲の入
射角をもつて非磁性基材上に吹き付けて蒸着させ
ることによつて強磁性体薄膜を形成させることか
らなる方法であつて、蒸着物質を非磁性基材に吹
き付けて蒸着させる領域において、前記基材へ蒸
着物質が最低入射角で蒸着される位置における基
材の移動方向に対して0゜〜+10゜に酸素ガスを導
入するようにして蒸着を行なうことからなつてい
る。
According to the present invention, a method for manufacturing a magnetic recording medium is to form a ferromagnetic thin film by spraying and depositing a deposition substance onto a non-magnetic substrate at an incident angle within a certain range in an oxygen atmosphere. 0° with respect to the direction of movement of the base material at a position where the deposition substance is deposited onto the base material at the lowest incident angle in a region where the deposition substance is sprayed onto the non-magnetic base material to be deposited. The process consists of vapor deposition by introducing oxygen gas at ~+10°.

この発明において使用される蒸着物質とは、磁
気記録媒体の強磁性薄膜を形成しうるものであれ
ば何れでもよく、例えば、Fe,Co,Niなどの金
属あるいはFe−Co合金、Fe−Ni合金、Co−Ni
−Fe−B合金などの合金からなる強磁性体など
が列挙できる。蒸着物質は、電熱線、電子線など
を用いて加熱し蒸発させて非磁性基材上に蒸着さ
れる。この蒸着物質を非磁性基材上へ蒸着させる
ための入射角(θ)は、斜方蒸着できる入射角で
あればよく、好ましくは約30゜ないし90゜になるよ
うにするのがよい。また蒸着物質はまず入射角の
大きい領域で非磁性基材上に蒸着され、その基材
の移動に従つて入射角が小さくなる領域で蒸着さ
れるようにするのが好ましい。なお、使用できる
非磁性基材としては、磁気記録媒体を製造するの
に従来使用されているものであれば何れも使用で
きる。かかる非磁性基材としては、例えば、ポリ
エチレンテレフタレートなどのポリエステル、ポ
リプロピレンなどのポリオレフイン、セルロース
トリアセテート、セルロースジアセテートなどの
セルロース誘導体、ポリカーボネート、ポリ塩化
ビニル、ポリイミドなどの高分子物質などが挙げ
られる。
The deposition material used in this invention may be any material that can form a ferromagnetic thin film of a magnetic recording medium, such as metals such as Fe, Co, and Ni, Fe-Co alloy, Fe-Ni alloy, etc. , Co−Ni
Examples include ferromagnetic materials made of alloys such as -Fe-B alloys. The deposition material is heated and evaporated using a heating wire, an electron beam, or the like, and then deposited on the nonmagnetic substrate. The incident angle (θ) for depositing this vapor deposition material onto the non-magnetic substrate may be any angle of incidence that allows oblique vapor deposition, and is preferably about 30° to 90°. Further, it is preferable that the vapor-deposited substance is first vapor-deposited on the non-magnetic substrate in a region where the angle of incidence is large, and as the substrate moves, it is vapor-deposited in a region where the angle of incidence becomes small. Note that any non-magnetic base material that can be used may be any of those conventionally used for manufacturing magnetic recording media. Examples of such nonmagnetic substrates include polyesters such as polyethylene terephthalate, polyolefins such as polypropylene, cellulose derivatives such as cellulose triacetate and cellulose diacetate, and polymeric substances such as polycarbonate, polyvinyl chloride, and polyimide.

この発明において、蒸着物質を非磁性基材上に
蒸着させる領域(以下、「蒸着領域」という)と
は、前述したように、斜方蒸着ができる一定範囲
の入射角θによつてその蒸着物質が非磁性基材上
に蒸着されて強磁性薄膜が形成されうる領域を意
味する。
In this invention, the region where the vapor deposition material is deposited on the non-magnetic substrate (hereinafter referred to as the "evaporation region") means that the vapor deposition material is refers to a region where a ferromagnetic thin film can be formed by depositing on a non-magnetic substrate.

本発明によれば、この領域において、前記基材
へ蒸着物質が最低入射角で蒸着される位置におけ
る基材の移動方向に対して0゜〜+10゜に酸素ガス
を導入される。酸素ガス導入のための方法として
は、蒸着領域において、基材へ蒸着物質が最低入
射角で蒸着される位置において、蒸着物質が基材
に付着するのを妨げない位置に酸素ガス吹出機構
を設ければよい。この酸素ガス吹出機構は、酸素
ガス流の方向が基材の移動方向に対して0゜〜+
10゜になるようにガス吹出口を調節できるように
するのがよい。本明細書においては、酸素ガス流
の方向(角度α)は、基材の走行方向と平行(α
=0゜)もしくは基材向きに+10゜までの角度であ
る。
According to the present invention, in this region, oxygen gas is introduced at an angle of 0° to +10° with respect to the moving direction of the substrate at a position where the vapor deposition material is deposited onto the substrate at the lowest incident angle. As a method for introducing oxygen gas, an oxygen gas blowing mechanism is installed in the vapor deposition region at a position where the vapor deposition substance is vapor deposited onto the substrate at the lowest incident angle and at a position that does not prevent the vapor deposition substance from adhering to the substrate. That's fine. This oxygen gas blowing mechanism is designed so that the direction of the oxygen gas flow is between 0° and + with respect to the moving direction of the base material.
It is best to be able to adjust the gas outlet so that the angle is 10°. In this specification, the direction of oxygen gas flow (angle α) is parallel to the running direction of the substrate (α
= 0°) or up to +10° towards the substrate.

この発明に係る方法によれば、非磁性基材上の
蒸着領域において、優先的に酸素分圧を高くしな
がら、蒸着物質の蒸発粒子の自由行程を短かくす
ることなく、蒸着効率を上げることができる。ま
た、斜方蒸着において、蒸着物質の蒸発粒子の少
ない部分から多い部分に移るに従つて酸素の量を
多くして行くことができ、蒸着物質と酸素との反
応率が上昇し、この反応により蒸着物質の結晶の
大きさが小さくなるために結晶異方性により保磁
力が著しく向上するものと思われる。更にまた、
実際の入射角が見掛けの入射角よりも大きな蒸発
粒子が現われることにより保磁力の向上に寄与し
ていることも考えられる。
According to the method of the present invention, it is possible to increase the vapor deposition efficiency while preferentially increasing the oxygen partial pressure in the vapor deposition region on the non-magnetic substrate without shortening the free path of the evaporated particles of the vapor deposition material. I can do it. In addition, in oblique deposition, the amount of oxygen can be increased as the amount of evaporated particles of the evaporated material moves from a part with few to a part with many, and the reaction rate between the evaporation material and oxygen increases, and this reaction increases the amount of oxygen. It is thought that coercive force is significantly improved due to crystal anisotropy as the crystal size of the deposited material becomes smaller. Furthermore,
It is also conceivable that the appearance of evaporated particles whose actual angle of incidence is larger than the apparent angle of incidence contributes to the improvement of the coercive force.

以下、この発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は、この発明を実施するための装置の一
例を示すものである。所定の真空度、例えば約1
×10-3Torr以下にした真空槽1に、蒸着物質を
蒸着させる非磁性基材2が、繰出しローラ3から
案内ローラ4を介して巻取りローラに巻取られる
ように配置されている。真空槽1の下部に設けた
Coなどの蒸着物質6を電熱線、電子線などの加
熱手段7によつて加熱して蒸発させ、非磁性基材
2の表面に所定の入射角θで蒸着させて強磁性薄
膜を形成できるようになつている。真空槽1は排
気系11によつて所定の真空度に維持される。な
お、所定の入射角を確保するために、遮蔽部8を
設けて、非磁性基材の表面に蒸着物質の蒸発粒子
が不要部分に直接入射しないようにする。また、
ノズル9を有するパイプ10を真空槽1内に配設
して、付着した蒸発粒子の最も少ない基材上の部
分から多い部分へ行くに従つて酸素量が多くなる
ように、基材へ蒸着物質が最低入射角で蒸着され
る位置における基材の移動方向に対して0゜〜+
10゜に酸素ガスを導入するように構成されている。
本明細書では、前記の通り酸素ガス流の方向(角
度α)は、基材の走行方向と平行でかつ逆向きの
場合がα=0゜であり、基材向きの方向が+の角度
であり、さらに基材と反対側の向きの方向を−の
角度とする。
FIG. 1 shows an example of an apparatus for carrying out the invention. A predetermined degree of vacuum, e.g. approximately 1
A non-magnetic base material 2 on which a deposition substance is deposited is arranged in a vacuum chamber 1 kept at a temperature of ×10 -3 Torr or less so as to be wound up by a take-up roller from a feed roller 3 via a guide roller 4. installed at the bottom of vacuum chamber 1
A ferromagnetic thin film can be formed by heating and evaporating the vapor deposition substance 6 such as Co with a heating means 7 such as a heating wire or an electron beam, and depositing it on the surface of the non-magnetic base material 2 at a predetermined incident angle θ. It's getting old. The vacuum chamber 1 is maintained at a predetermined degree of vacuum by an exhaust system 11. In order to ensure a predetermined angle of incidence, a shielding portion 8 is provided to prevent evaporated particles of the vapor-deposited material from directly entering unnecessary portions on the surface of the non-magnetic base material. Also,
A pipe 10 having a nozzle 9 is disposed in the vacuum chamber 1, and a vapor deposited substance is applied to the substrate so that the amount of oxygen increases from the part of the base material with the least amount of adhered evaporated particles to the part with the most adhered evaporated particles. 0° to + with respect to the direction of movement of the substrate at the position where is deposited at the lowest incident angle
It is configured to introduce oxygen gas at 10°.
In this specification, as described above, the direction of the oxygen gas flow (angle α) is α = 0° when it is parallel to and opposite to the running direction of the base material, and when the direction facing the base material is a + angle. Furthermore, the direction opposite to the base material is defined as a - angle.

以下、この発明を実施例により説明する。 This invention will be explained below with reference to Examples.

真空槽5×10-5Torrに維持した第1図に示す
ような真空槽を用いて、ポリエチレンテレフタレ
ートフイルム上に、入射角θを50゜ないし90゜にし
て蒸着層厚が800ないし900ÅになるようにCoを
蒸着した。この場合、第1図に示すようなノズル
から酸素ガス流を、100cm3/分と400cm3/分の間の
種々の割合で、Coが最低入射角で蒸着される位
置において基材の走行方向と平行かつ逆向き(α
=0゜)ないしα=+10゜の角度で導入して、磁気
テープを作成した。
Using a vacuum chamber as shown in Figure 1 maintained at 5 × 10 -5 Torr, deposit a layer on a polyethylene terephthalate film at an incident angle θ of 50° to 90° to obtain a deposited layer thickness of 800 to 900 Å. Co was deposited in the same way. In this case, a flow of oxygen gas from a nozzle as shown in Figure 1 is applied at various rates between 100 cm 3 /min and 400 cm 3 /min in the direction of travel of the substrate at the position where the Co is deposited at the lowest angle of incidence. parallel and opposite direction (α
= 0°) or α = +10° to create magnetic tapes.

また、比較例として、α=+30゜、+60゜、+90゜ま
たは−30゜とした以外は前記実施例と同様にして
磁気テープを作成した。また、別の比較例とし
て、酸素ガス流を全く導入しない以外は前記実施
例と同様にして磁気テープを作成した。
Further, as comparative examples, magnetic tapes were prepared in the same manner as in the above embodiments except that α=+30°, +60°, +90° or -30°. As another comparative example, a magnetic tape was prepared in the same manner as in the previous example except that no oxygen gas flow was introduced.

これらの磁気テープについて保磁力を測定して
得られた結果を第3図に示す。この図から明らか
なように、α=0゜〜+10゜の方向で酸素ガス流を
導入した場合に高い保磁力を有する磁気テープが
得られ、特にα=0゜の場合に、各酸素ガスの流量
に対して最も高い保磁力が得られる。α+30゜、+
60゜、+90゜又は−30゜の角度では蒸着物質の蒸発粒
子が酸素によつて著しく散乱されて蒸着効率が低
下するので好ましくない。
FIG. 3 shows the results obtained by measuring the coercive force of these magnetic tapes. As is clear from this figure, a magnetic tape with a high coercive force is obtained when an oxygen gas flow is introduced in the direction of α = 0° to +10°, and especially when α = 0°, each oxygen gas The highest coercive force can be obtained for the flow rate. α+30゜、+
An angle of 60°, +90° or -30° is not preferred because the evaporated particles of the deposition material are significantly scattered by oxygen, resulting in a decrease in deposition efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に適用できる装置の一例を
示す概略断面図、第2図は酸素ガス流の導入の方
向を示す角度の説明図、第3図は酸素ガス流の導
入角度と酸素ガスの流量を変えた場合に得られる
磁気テープの保磁力を示すグラフである。 なお、図面に用いられている符号において、1
……真空槽、2……非磁性基材、6……蒸着物
質、8……遮蔽部、9……ノズル、θ……入射
角、α……酸素ガス流の方向(角度)である。
Fig. 1 is a schematic sectional view showing an example of a device applicable to the present invention, Fig. 2 is an explanatory diagram of the angle showing the direction of introduction of the oxygen gas flow, and Fig. 3 is an illustration of the introduction angle of the oxygen gas flow and the oxygen gas 3 is a graph showing the coercive force of the magnetic tape obtained when the flow rate of the magnetic tape is changed. In addition, in the symbols used in the drawings, 1
. . . Vacuum chamber, 2 . . . Nonmagnetic substrate, 6 . . . Vapor deposition material, 8 .

Claims (1)

【特許請求の範囲】[Claims] 1 酸素雰囲気中において蒸着物質を一定範囲の
入射角をもつて非磁性基材上に吹き付けて蒸着さ
せることによつて強磁性体薄膜を形成させること
からなる磁気記録媒体の製造方法であつて、蒸着
物質を非磁性基材に吹き付けて蒸着させる領域に
おいて、前記基材へ蒸着物質が最低入射角で蒸着
される位置における基材の移動方向に対して0゜〜
+10゜に酸素ガスを導入することを特徴とする磁
気記録媒体の製造方法。
1. A method for manufacturing a magnetic recording medium, which comprises forming a ferromagnetic thin film by spraying and depositing a vapor deposition substance onto a non-magnetic substrate at an incident angle within a certain range in an oxygen atmosphere, the method comprising: In a region where a vapor deposition substance is sprayed onto a non-magnetic base material to be vapor deposited, the angle is 0° to 0° with respect to the movement direction of the base material at a position where the vapor deposition substance is vapor deposited onto the base material at the lowest incident angle.
A method for producing a magnetic recording medium, characterized by introducing oxygen gas at +10°.
JP1868883A 1983-02-07 1983-02-07 Production of magnetic recording medium Granted JPS59144048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1868883A JPS59144048A (en) 1983-02-07 1983-02-07 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1868883A JPS59144048A (en) 1983-02-07 1983-02-07 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS59144048A JPS59144048A (en) 1984-08-17
JPH057766B2 true JPH057766B2 (en) 1993-01-29

Family

ID=11978549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1868883A Granted JPS59144048A (en) 1983-02-07 1983-02-07 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59144048A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155375A (en) * 1981-03-20 1982-09-25 Matsushita Electric Ind Co Ltd Vacuum evaporation apparatus
JPS5837843A (en) * 1981-08-31 1983-03-05 Sony Corp Production of magnetic recording medium
JPS5841439A (en) * 1981-09-01 1983-03-10 Matsushita Electric Ind Co Ltd Magnetic recording medium and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155375A (en) * 1981-03-20 1982-09-25 Matsushita Electric Ind Co Ltd Vacuum evaporation apparatus
JPS5837843A (en) * 1981-08-31 1983-03-05 Sony Corp Production of magnetic recording medium
JPS5841439A (en) * 1981-09-01 1983-03-10 Matsushita Electric Ind Co Ltd Magnetic recording medium and its manufacture

Also Published As

Publication number Publication date
JPS59144048A (en) 1984-08-17

Similar Documents

Publication Publication Date Title
US4387136A (en) Magnetic recording medium and apparatus for preparing the same
EP0151445B1 (en) Production of magnetic recording medium
JPH057766B2 (en)
JPS5837843A (en) Production of magnetic recording medium
JPS5860432A (en) Manufacture of magnetic recording medium
JPH053052B2 (en)
JPH083902B2 (en) Method for manufacturing thin film magnetic recording medium
JPS60157728A (en) Production of magnetic recording medium
JP2794662B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS59157847A (en) Metallic thin film type magnetic recording medium
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPH0798831A (en) Magnetic recording medium, its production and producing device
JPH0121534B2 (en)
JPH0757260A (en) Device for producing magnetic recording medium
JPS59203223A (en) Thin metallic film type magnetic recording medium
JPS6154044A (en) Manufacture and its device of magnetic recording medium
JPH06176360A (en) Production of magnetic recording medium
JPS60160027A (en) Magnetic recording medium
JPH06103571A (en) Production of magnetic recording medium
JPH09198642A (en) Magnetic recording medium
JPH0798832A (en) Magnetic recording medium, its production and producing device
JPH11161952A (en) Production of magnetic recording medium
JPH04328325A (en) Manufacture of magnetic recording medium
JPS6018912A (en) Thin film formation by vacuum evaporation
JPS60237625A (en) Magnetic recording medium