JP2794662B2 - Method for manufacturing perpendicular magnetic recording medium - Google Patents

Method for manufacturing perpendicular magnetic recording medium

Info

Publication number
JP2794662B2
JP2794662B2 JP62119919A JP11991987A JP2794662B2 JP 2794662 B2 JP2794662 B2 JP 2794662B2 JP 62119919 A JP62119919 A JP 62119919A JP 11991987 A JP11991987 A JP 11991987A JP 2794662 B2 JP2794662 B2 JP 2794662B2
Authority
JP
Japan
Prior art keywords
oxygen gas
magnetic
recording medium
magnetization film
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62119919A
Other languages
Japanese (ja)
Other versions
JPS63285725A (en
Inventor
和春 岩崎
安夫 舘野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62119919A priority Critical patent/JP2794662B2/en
Publication of JPS63285725A publication Critical patent/JPS63285725A/en
Application granted granted Critical
Publication of JP2794662B2 publication Critical patent/JP2794662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度記録化に対応する垂直磁気記録媒体
の製造方法に関するものである。 〔発明の概要〕 本発明は、高密度記録化に対応する垂直磁気記録媒体
の製造方法において、非磁性支持体上に酸素ガスを導入
しながら強磁性金属を蒸発材料として真空蒸着によりCo
−O系垂直磁化膜を形成するに際し、酸素ガスの入射角
を所定の角度に制限して導入することにより、垂直磁気
異方性及び電磁変換特性に優れ、機械的強度の高いCo−
O系垂直磁化膜を製造することが可能な垂直磁気記録媒
体の製造方法を提供しようとするものである。 〔従来の技術〕 近年、磁気記録における短波長化と狭トラック化によ
る記録密度の向上は目覚ましく、光記録に近い面記録密
度の実用化が膜面の垂直方向に磁化可能な、所謂垂直磁
化膜を利用した垂直磁気記録媒体を用いることで期待さ
れている。このような状況の中にあって、垂直磁化膜と
してCo−O系垂直磁化膜を用いた垂直磁気記録媒体が提
案されている。 従来、上記Co−O系垂直磁化膜を用いた垂直磁気記録
媒体を製造するにあたっては、例えば特開昭61−208623
号公報に記載されるように、真空雰囲気中で化学活性の
小さいガスを非磁性支持体移動方向の上流側から導入
し、酸素ガスを非磁性支持体移動方向の下流側から導入
してCoを蒸発材料として真空蒸着によりCo−O系垂直磁
化膜を製造する方法が提案されている。この方法によっ
て、高湿下における磁気特性の劣化を抑制するととも
に、耐摩耗性に優れた垂直磁気記録媒体を提供しようと
している。 〔発明が解決しようとする問題点〕 ところが、上述の製造方法では、使用される真空蒸着
装置の構造上の制約により、酸素ガスを導入する際の入
射角ψが非磁性支持体に対して、高角度に設定されてCo
−O系垂直磁化膜を蒸着形成している。そのため、酸素
ガスの導入圧により非磁性支持体上に蒸着させるCo磁性
層の垂直異方性が乱れやすく、電磁変換特性等の磁気特
性の低下を招く虞がある。 さらに、高角度から酸素ガスを入射した場合には、蒸
着形成されるCo−O系垂直磁化膜と非磁性支持体との間
で充分な剥離強度が得られず、磁性層にクラックが生じ
易い等、機械的強度も充分とはいえない。 そこで、本発明は上述の実情に鑑みて提案されたもの
であって、Co−O系垂直磁化膜の結晶成長を乱すことな
く、垂直磁気異方性及び電磁変換特性に優れ、機械的強
度の高いCo−O系垂直磁化膜を製造することが可能な垂
直磁気記録媒体の製造方法を提供することを目的とする
ものである。 〔問題点を解決するための手段〕 本発明者等は、上述の目的を達成しようと鋭意研究の
結果、非磁性支持体上にCo−O系垂直磁化膜を形成する
際に導入される酸素ガスの入射角を所定の範囲内に制限
することによって良好な磁気特性を有するCo−O系垂直
磁化膜を形成することが可能であるとの知見を得るに至
った。 本発明は、上述の知見に基づいて提案されたものであ
って、非磁性支持体上に酸素ガスを導入しながら強磁性
金属を蒸発材料として真空蒸着によりCo−O系垂直磁化
膜を形成するに際し、酸素ガスを非磁性支持体移動方向
の上流側から導入するとともに、酸素ガスの入射角をφ
(゜)とした時、10゜≦φ≦30゜となるように酸素ガス
を導入することを特徴とするものである。 尚、上記入射角ψとは、第1図に示すように、Co蒸発
ルツボ(4)に対向する冷却キャン(1)の接面の法線
(A)に対する酸素ガス(B)の入射角度を示してい
る。 本発明の垂直磁気記録媒体の製造方法において、導入
される酸素ガスの入射角ψは、Co蒸発蒸気流の入射角に
近い状態で入射させ、Co−O垂直磁化膜の垂直異方性を
乱さないようにすることが好ましく、10゜≦ψ≦30゜の
範囲内とすることが好ましい。酸素ガスの入射角が10゜
未満の場合には、Co蒸発蒸気流の非磁性支持体上への入
射角と同一となってしまい装置構造上の問題から不適当
である。又、酸素ガスの入射角が30゜より大きい場合に
は、Co蒸発蒸気流の非磁性支持体上への入射の状態を乱
すことになり、Co−O系垂直磁化膜の垂直異方性が乱れ
やすく、電磁変換特性等の磁気特性の低下を招く虞があ
るためである。 また、酸素ガスは、非磁性支持体移動方向の下流側
(第1図中矢印D方向)から導入するよりも、非磁性支
持体移動方向の上流側(第1図中矢印C方向)から導入
する方がよい。非磁性支持体移動方向の上流側から酸素
ガスを導入した場合には、酸素ガスの濃度勾配が作製さ
れるCo−O垂直磁化膜の下層部分に酸素が多く存在する
ことになり、Co−O垂直磁化膜と非磁性支持体との剥離
強度を高めることができ、Co−O垂直磁化膜表面の強度
も高くなる。これに対して非磁性支持体移動方向の下流
側から酸素ガスを導入した場合には、酸素ガスの濃度勾
配が作製されるCo−O垂直磁化膜の上層部分に酸素が多
く存在することになり、Co−O垂直磁化膜表面が傷付き
易くなる虞がある。 本発明で使用される非磁性支持体の材料としては、通
常の磁気記録媒体の非磁性支持体として使用されている
材料であれば何れの材料をも使用することができる。特
に加工性、成形性、可撓性等の点で、有機重合体材料が
適しており、中でもポリエチレンテレフタレート,ポリ
エチレンナフタレート等のポリエステル、ポリエチレ
ン,ポリプロピレン等のポリオレフィン、ポリメチルメ
タアクリレート、ポリカーボネート、ポリスルフォン、
ポリアミド、芳香族ポリアミド、ポリフェニレンスルフ
ィド、ポリフェニレンオキサイド、ポリアミドイミド、
ポリイミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポ
リフッ化ビニリデン、ポリテトラフルオロエチレン、酢
酸セルロース、メチルセルロース、エチルセルロース、
エポキシ樹脂、ウレタン樹脂或いはこれらの混合物、共
重合物等が適している。又、非磁性支持体の形状として
は、ドラム状、ディスク状、シート状、テープ状、カー
ド状等いずれでもよい。これら非磁性支持体は、磁気記
録層を形成するに先立ち、易接着化、平面性改良、着
色、帯電防止、耐摩耗性付与等の目的で表面処理や前処
理が行われてもよい。 本発明で垂直磁気記録媒体を製造する際に適用される
真空蒸着法としては、抵抗加熱蒸着、誘導加熱蒸着、電
子ビーム蒸着、イオンビーム蒸着、イオンプレーティン
グ、レーザービーム蒸着、アーク放電蒸着等の真空蒸着
法のいずれもが実施可能であるが、垂直磁気記録媒体の
保磁力、異方性磁界等の磁気特性を向上させる上で、又
速い蒸着速度を得るために電子ビーム蒸着、イオンプレ
ーティング等の方法が適しており、さらに操作性、量産
性の工業的観点からは電子ビーム蒸着法が最も適してい
る。 〔作用〕 本発明の製造方法によれば、酸素ガスの入射角ψを10
゜≦ψ≦30゜とすることにより、Co蒸発蒸気流を乱すこ
となく非磁性支持体上に蒸着することができるため、垂
直磁気異方性に優れたCo−O系垂直磁化膜が形成され
る。 又、酸素ガスの導入箇所を非磁性支持体移動方向の上
流側に設定することにより、酸素濃度がCo−O系垂直磁
化膜の下層部分で高くなるため、Co−O系垂直磁化膜と
非磁性支持体との剥離強度が増し、機械的強度に優れた
Co−O系垂直磁化膜が形成される。 〔実施例〕 以下、本発明を適用した実施例について図面を参考に
して説明する。 第1図は、本発明に係る垂直磁気記録媒体の製造方法
を実施する電子ビーム蒸着装置の一例である。上記電子
ビーム蒸着装置は、排気系(5)と電子銃(8)を備え
たチャンバー(6)中に非磁性支持体(9)の供給ロー
ラー(2)、冷却キャン(1)、垂直磁気記録媒体
(9)の巻き取りローラー(3)からなる長尺状非磁性
支持体(9)の走行系と、Coを備えたルツボ(4)と酸
素ガス導入管(7)からなる蒸着系とを備えてなるもの
である。 Co−O系垂直磁化膜が蒸着形成される非磁性支持体
(9)は、非磁性支持体(9)の供給ローラー(2)か
ら供給され、冷却キャン(1)上でCo−O系垂直磁化膜
が形成された後、巻き取りローラー(3)によって巻き
取られる。尚、Co−O系垂直磁化膜を蒸着形成する冷却
キャン(1)は、その表面温度が0℃付近に制御される
ように図示されない冷却機能を有している。 上記Co−O系垂直磁化膜を蒸着形成する冷却キャン
(1)とCoを備えたルツボ(4)との間には遮蔽板(1
0),(10)が備えられ、ルツボ(4)からのCo蒸発蒸
気流の蒸着状態と酸素ガス導入管(7)からの酸素ガス
の導入状態を制御するようになっている。 Coを備えたルツボ(4)は、チャンバー(6)に備え
た電子銃(8)からの電子ビームによって加熱され蒸発
しCo蒸発蒸気流として冷却キャン(1)上に走行する非
磁性支持体(9)表面に蒸着する。その際、非磁性支持
体移動方向上流側に備えられた酸素ガス導入管(7)か
ら酸素ガスも同時に導入され、Co−O系垂直磁化膜が非
磁性支持体(9)上に蒸着形成される。尚、電子銃
(8)からの電子ビームによって加熱され蒸発するCo
は、その蒸着速度を任意に制御して蒸着することができ
る。又、Coを蒸着形成する際に酸素導入管(7)から導
入される酸素ガスの導入量を制御することにより所定の
酸素濃度勾配を有したCo−O系垂直磁化膜を形成するこ
とができる。 尚、本発明の製造方法に使用される装置は、上述の装
置に限定されるものではない。 実施例1 上述のような装置を使用して垂直磁気記録媒体を作製
した。このとき、ルツボ(4)には純度99.9%のCoを用
意し、蒸着速度3500Å/sec、非磁性支持体の走行速度16
m/minとし、Co−O系垂直磁化膜の膜厚が2000Åとなる
ようにした。また、酸素導入管(7)は非磁性支持体移
動方向の上流側(C)に設置し、導入酸素ガスの入射角
を10゜、酸素ガス流量を300cc/minに設定した。蒸着中
の雰囲気ガス圧は2×10-4Torrであった。以上のように
してサンプルテープを作製した。 実施例2 実施例1において、導入酸素ガスの入射角を20゜と
し、後は実施例1と同様の方法よりサンプルテープを作
製した。 実施例3 実施例1において、導入酸素ガスの入射角を30゜と
し、後は実施例1と同様の方法によりサンプルテープを
作製した。 実施例4 実施例1と同様の装置を使用して垂直磁気記録媒体を
作製した。このとき、ルツボ(4)には純度99.9%のCo
を用意し、蒸着速度3500Å/sec、非磁性支持体の走行速
度16m/minとし、Co−O系垂直磁化膜の膜厚が2000Åと
なるようにした。また、酸素導入管(7)は非磁性支持
体移動方向の下流側(D)に設置し、導入酸素ガスの入
射角を30゜、酸素ガス流量を300cc/minに設定した。蒸
着中の雰囲気ガス圧は2×10-4Torrであった。以上のよ
うにしてサンプルテープを作製した。 比較例1 実施例4において、導入酸素ガスの入射角を60゜と
し、後は実施例4と同様の方法によりサンプルテープを
作製した。 上述のようにして作製した各サンプルテープについ
て、飽和磁束密度Bs、垂直方向保磁力Hc、異方性磁界H
k、機械的耐久性について測定を行った。尚、機械的耐
久性については、磁性層表面にリン酸エステル循環剤を
塗布し、スチル耐久性及びスチル耐久性測定後の目視観
察による表面状態を評価した。表面状態は、スチル耐久
性測定後の磁性層表面に傷の発生がないものを○印で、
又スチル耐久性測定後の磁性層表面に傷の発生があった
ものを×印で表した。その結果を第1表に示す。また、
実施例1,実施例2及び比較例1についての記録波長と再
生出力の関係を第2図に示す。尚、第2図中記号Aは実
施例1に、記号Bは実施例2に、記号Cは比較例1にそ
れぞれ対応している。 第1表及び第2図より明らかなように、本発明による
製造方法を適用して製造した垂直磁気記録媒体は、優れ
た磁気特性、電磁変換特性、機械的耐久性を兼ね備えて
いることがわかる。尚、酸素ガスを下流側から導入した
場合には、磁気特性は良好であるものの、耐久性の点で
垂直磁気記録媒体の表面に傷が付き易いという問題があ
る。 〔発明の効果〕 以上の説明から明らかなように、Co−O系垂直磁化膜
を製造する際に導入する酸素ガスの入射角ψを10゜≦ψ
≦30゜の範囲内とすることにより、Co蒸発蒸気流の流れ
が乱れることなく良好に非磁性支持体上に蒸着するため
垂直異方性に優れた垂直磁気記録媒体となる。 又、酸素ガスの導入箇所を非磁性支持体移動方向の上
流側に設定することにより、酸素濃度がCo−O系垂直磁
化膜の下層部分で高くなるため、Co−O系垂直磁化膜と
非磁性支持体との剥離強度が増し、機械的強度に優れた
Co−O系垂直磁化膜を形成することができる。 従って、本発明方法を適用することによって、垂直磁
気異方性及び電磁変換特性に優れ、機械的強度の高いCo
−O系垂直磁化膜を製造することができる。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a perpendicular magnetic recording medium corresponding to high-density recording. [Summary of the Invention] The present invention relates to a method for manufacturing a perpendicular magnetic recording medium corresponding to high-density recording, wherein a ferromagnetic metal is evaporated by vacuum evaporation while introducing an oxygen gas onto a non-magnetic support.
-When forming the O-based perpendicular magnetization film, by introducing the oxygen gas with the incident angle restricted to a predetermined angle, it is excellent in perpendicular magnetic anisotropy and electromagnetic conversion characteristics, and has high mechanical strength.
An object of the present invention is to provide a method for manufacturing a perpendicular magnetic recording medium capable of manufacturing an O-based perpendicular magnetization film. [Prior Art] In recent years, the recording density has been remarkably improved by shortening the wavelength and narrowing the track in magnetic recording, and the practical use of a surface recording density close to optical recording has been achieved. It is expected to use a perpendicular magnetic recording medium that utilizes the technology. Under such circumstances, a perpendicular magnetic recording medium using a Co—O-based perpendicular magnetization film as the perpendicular magnetization film has been proposed. Conventionally, when manufacturing a perpendicular magnetic recording medium using the above-mentioned Co-O-based perpendicular magnetization film, for example, JP-A-61-208623
As described in the publication, a gas having a small chemical activity is introduced from the upstream side in the moving direction of the nonmagnetic support in a vacuum atmosphere, and oxygen gas is introduced from the downstream side in the moving direction of the nonmagnetic support to remove Co. A method of manufacturing a Co—O-based perpendicular magnetization film by vacuum evaporation as an evaporation material has been proposed. By this method, it is intended to provide a perpendicular magnetic recording medium having excellent abrasion resistance while suppressing deterioration of magnetic characteristics under high humidity. [Problems to be Solved by the Invention] However, in the above-described manufacturing method, the incident angle ψ at the time of introducing oxygen gas with respect to the non-magnetic support is Co set to high angle
A -O-based perpendicular magnetization film is formed by vapor deposition. Therefore, the perpendicular anisotropy of the Co magnetic layer deposited on the non-magnetic support is likely to be disturbed by the introduction pressure of the oxygen gas, and there is a possibility that the magnetic characteristics such as the electromagnetic conversion characteristics are reduced. Furthermore, when oxygen gas is incident from a high angle, sufficient peel strength cannot be obtained between the Co-O-based perpendicular magnetization film formed by vapor deposition and the non-magnetic support, and cracks are easily generated in the magnetic layer. Mechanical strength is not sufficient. Therefore, the present invention has been proposed in view of the above circumstances, and has excellent perpendicular magnetic anisotropy and electromagnetic conversion characteristics without disturbing the crystal growth of a Co-O-based perpendicular magnetization film, and has a high mechanical strength. It is an object of the present invention to provide a method for manufacturing a perpendicular magnetic recording medium capable of manufacturing a high Co—O-based perpendicular magnetic film. [Means for Solving the Problems] The present inventors have conducted intensive studies to achieve the above object, and as a result, oxygen introduced when forming a Co-O-based perpendicular magnetization film on a non-magnetic support. It has been found that it is possible to form a Co—O-based perpendicular magnetization film having good magnetic properties by restricting the incident angle of the gas within a predetermined range. The present invention has been proposed based on the above findings, and forms a Co-O-based perpendicular magnetization film by vacuum deposition using a ferromagnetic metal as an evaporation material while introducing oxygen gas onto a nonmagnetic support. At this time, oxygen gas is introduced from the upstream side in the moving direction of the non-magnetic support, and the incident angle of the oxygen gas is changed to φ.
When (゜) is set, oxygen gas is introduced so as to satisfy 10 ° ≦ φ ≦ 30 °. The incident angle ψ is, as shown in FIG. 1, the incident angle of the oxygen gas (B) with respect to the normal (A) of the contact surface of the cooling can (1) facing the Co evaporation crucible (4). Is shown. In the manufacturing method of the perpendicular magnetic recording medium of the present invention, the incident angle 酸 素 of the introduced oxygen gas is made to be incident in a state close to the incident angle of the Co vaporized vapor flow to disturb the perpendicular anisotropy of the Co—O perpendicular magnetization film. It is preferable that the temperature does not exceed 10 ° ≦ {≦ 30 °. If the incident angle of the oxygen gas is less than 10 °, the incident angle of the Co vaporized vapor flow on the non-magnetic support is the same, which is inappropriate from the viewpoint of the structure of the apparatus. If the incident angle of the oxygen gas is larger than 30 °, the state of incidence of the Co vaporized vapor flow on the non-magnetic support is disturbed, and the perpendicular anisotropy of the Co-O-based perpendicular magnetization film is reduced. This is because they are likely to be disturbed and may cause deterioration of magnetic characteristics such as electromagnetic conversion characteristics. Further, the oxygen gas is introduced from the upstream side (the direction of arrow C in FIG. 1) in the direction of movement of the nonmagnetic support, rather than from the downstream side (the direction of arrow D in FIG. 1) in the direction of movement of the nonmagnetic support. It is better to do. When oxygen gas is introduced from the upstream side in the direction of movement of the non-magnetic support, a large amount of oxygen exists in the lower layer portion of the Co-O perpendicular magnetization film where the concentration gradient of oxygen gas is produced, and Co-O The peel strength between the perpendicular magnetization film and the non-magnetic support can be increased, and the strength of the surface of the Co—O perpendicular magnetization film also increases. On the other hand, when oxygen gas is introduced from the downstream side in the direction of movement of the non-magnetic support, a large amount of oxygen exists in the upper layer portion of the Co-O perpendicular magnetization film where a concentration gradient of oxygen gas is produced. The surface of the Co-O perpendicular magnetization film may be easily damaged. As the material of the nonmagnetic support used in the present invention, any material can be used as long as it is a material used as a nonmagnetic support of an ordinary magnetic recording medium. In particular, organic polymer materials are suitable in terms of processability, moldability, flexibility, etc. Among them, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins such as polyethylene and polypropylene, polymethyl methacrylate, polycarbonate, and poly Sulfone,
Polyamide, aromatic polyamide, polyphenylene sulfide, polyphenylene oxide, polyamide imide,
Polyimide, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, cellulose acetate, methyl cellulose, ethyl cellulose,
Epoxy resins, urethane resins or mixtures or copolymers thereof are suitable. Further, the shape of the nonmagnetic support may be any of a drum shape, a disk shape, a sheet shape, a tape shape, a card shape and the like. Prior to forming the magnetic recording layer, these nonmagnetic supports may be subjected to surface treatment or pretreatment for the purpose of facilitating adhesion, improving flatness, coloring, preventing static charge, imparting abrasion resistance, and the like. The vacuum evaporation method applied when manufacturing a perpendicular magnetic recording medium in the present invention includes, for example, resistance heating evaporation, induction heating evaporation, electron beam evaporation, ion beam evaporation, ion plating, laser beam evaporation, and arc discharge evaporation. Either of the vacuum evaporation methods can be performed, but in order to improve the magnetic properties such as the coercive force and anisotropic magnetic field of the perpendicular magnetic recording medium, and to obtain a high evaporation rate, electron beam evaporation and ion plating are required. The electron beam evaporation method is the most suitable from the industrial viewpoint of operability and mass productivity. [Operation] According to the production method of the present invention, the incident angle 酸 素 of oxygen gas is set to 10
By setting ゜ ≦ ψ ≦ 30 °, a Co-O-based perpendicular magnetization film having excellent perpendicular magnetic anisotropy can be formed because it can be deposited on the non-magnetic support without disturbing the Co evaporation vapor flow. You. Further, by setting the oxygen gas introduction point on the upstream side in the direction of movement of the non-magnetic support, the oxygen concentration increases in the lower layer of the Co-O-based perpendicular magnetization film, so that the oxygen concentration is higher than that of the Co-O-based perpendicular magnetization film. Increased peel strength from magnetic support and excellent mechanical strength
A Co-O based perpendicular magnetization film is formed. Embodiment An embodiment to which the present invention is applied will be described below with reference to the drawings. FIG. 1 is an example of an electron beam evaporation apparatus for performing a method for manufacturing a perpendicular magnetic recording medium according to the present invention. The electron beam evaporation apparatus includes a supply roller (2) for a nonmagnetic support (9), a cooling can (1), and a perpendicular magnetic recording medium in a chamber (6) provided with an exhaust system (5) and an electron gun (8). A traveling system of a long non-magnetic support (9) composed of a take-up roller (3) for a medium (9), and a vapor deposition system composed of a crucible (4) with Co and an oxygen gas introduction pipe (7). It is provided. The non-magnetic support (9) on which the Co-O-based perpendicular magnetization film is formed by vapor deposition is supplied from the supply roller (2) of the non-magnetic support (9), and the Co-O-based vertical magnetization film is cooled on the cooling can (1). After the magnetic film is formed, it is wound by a winding roller (3). The cooling can (1) for depositing a Co-O-based perpendicular magnetization film by vapor deposition has a cooling function (not shown) so that the surface temperature is controlled to around 0 ° C. A shielding plate (1) is provided between a cooling can (1) for vapor-depositing the Co-O-based perpendicular magnetic film and a crucible (4) provided with Co.
0) and (10) are provided to control the vapor deposition state of the Co vaporized vapor flow from the crucible (4) and the oxygen gas introduction state from the oxygen gas introduction pipe (7). The crucible (4) provided with Co is heated and evaporated by an electron beam from an electron gun (8) provided in a chamber (6), and is run as a Co vaporized vapor stream on a cooling can (1). 9) Deposit on the surface. At this time, oxygen gas is also introduced simultaneously from the oxygen gas introduction pipe (7) provided on the upstream side in the non-magnetic support moving direction, and a Co—O-based perpendicular magnetization film is formed on the non-magnetic support (9) by vapor deposition. You. The Co vaporized and heated by the electron beam from the electron gun (8)
Can be deposited by arbitrarily controlling the deposition rate. Further, by controlling the amount of oxygen gas introduced from the oxygen introducing pipe (7) when forming Co by vapor deposition, a Co-O-based perpendicular magnetization film having a predetermined oxygen concentration gradient can be formed. . The apparatus used in the manufacturing method of the present invention is not limited to the above-described apparatus. Example 1 A perpendicular magnetic recording medium was manufactured using the apparatus as described above. At this time, Co with a purity of 99.9% was prepared for the crucible (4), the deposition rate was 3500Å / sec, and the running speed of the nonmagnetic support was 16
m / min, and the thickness of the Co—O-based perpendicular magnetization film was set to 2000 °. The oxygen introducing pipe (7) was installed on the upstream side (C) in the direction of movement of the non-magnetic support, and the incident angle of the introduced oxygen gas was set at 10 ° and the flow rate of the oxygen gas was set at 300 cc / min. The atmosphere gas pressure during the deposition was 2 × 10 −4 Torr. A sample tape was produced as described above. Example 2 In Example 1, the incident angle of the introduced oxygen gas was set to 20 °, and thereafter, a sample tape was manufactured in the same manner as in Example 1. Example 3 In Example 1, the incident angle of the introduced oxygen gas was set to 30 °, and thereafter, a sample tape was manufactured in the same manner as in Example 1. Example 4 A perpendicular magnetic recording medium was manufactured using the same apparatus as in Example 1. At this time, the crucible (4) contains 99.9% pure Co.
Was prepared, the deposition speed was 3500 ° / sec, the running speed of the nonmagnetic support was 16 m / min, and the thickness of the Co—O-based perpendicular magnetization film was 2,000 °. Further, the oxygen introduction pipe (7) was installed on the downstream side (D) in the moving direction of the non-magnetic support, the incident angle of the introduced oxygen gas was set at 30 °, and the flow rate of the oxygen gas was set at 300 cc / min. The atmosphere gas pressure during the deposition was 2 × 10 −4 Torr. A sample tape was produced as described above. Comparative Example 1 In Example 4, the incident angle of the introduced oxygen gas was set to 60 °, and thereafter, a sample tape was manufactured in the same manner as in Example 4. For each of the sample tapes prepared as described above, the saturation magnetic flux density Bs, the vertical coercive force Hc, and the anisotropic magnetic field H
k, the mechanical durability was measured. For mechanical durability, a phosphate ester circulating agent was applied to the surface of the magnetic layer, and the surface state was evaluated by visual observation after measuring still durability and still durability. The surface condition is indicated by a circle with no scratch on the magnetic layer surface after the still durability measurement.
In addition, those having scratches on the surface of the magnetic layer after the measurement of the still durability were indicated by crosses. Table 1 shows the results. Also,
FIG. 2 shows the relationship between the recording wavelength and the reproduction output in Example 1, Example 2, and Comparative Example 1. In FIG. 2, symbol A corresponds to Example 1, symbol B corresponds to Example 2, and symbol C corresponds to Comparative Example 1, respectively. As is clear from Table 1 and FIG. 2, the perpendicular magnetic recording medium manufactured by applying the manufacturing method according to the present invention has excellent magnetic characteristics, electromagnetic conversion characteristics, and mechanical durability. . When oxygen gas is introduced from the downstream side, although the magnetic properties are good, there is a problem that the surface of the perpendicular magnetic recording medium is easily damaged in terms of durability. [Effects of the Invention] As is clear from the above description, the incident angle 酸 素 of oxygen gas introduced when manufacturing a Co—O-based perpendicular magnetization film is set to 10 ° ≦ ψ.
By setting it within the range of ≦ 30 °, a perpendicular magnetic recording medium having excellent perpendicular anisotropy can be obtained because the vapor deposition of Co vapor is deposited on the non-magnetic support without disturbance. Further, by setting the introduction point of the oxygen gas on the upstream side in the moving direction of the non-magnetic support, the oxygen concentration becomes higher in the lower layer of the Co-O-based perpendicular magnetization film, so that the oxygen concentration is higher than that of the Co-O-based perpendicular magnetization film. Increased peel strength from magnetic support and excellent mechanical strength
A Co-O-based perpendicular magnetization film can be formed. Therefore, by applying the method of the present invention, Co having excellent perpendicular magnetic anisotropy and electromagnetic conversion characteristics and high mechanical strength can be obtained.
An -O-based perpendicular magnetization film can be manufactured.

【図面の簡単な説明】 第1図は本発明を適用した垂直磁気記録媒体を作製する
真空蒸着装置の一例を示す概略図である。 第2図は本発明を適用して作製した垂直磁気記録媒体の
記録波長と再生出力との関係を示す特性図である。 1……冷却キャン 2……供給ローラー 3……巻き取りローラー 4……ルツボ 7……酸素ガス導入管 8……電子銃 9……非磁性支持体
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an example of a vacuum evaporation apparatus for producing a perpendicular magnetic recording medium to which the present invention is applied. FIG. 2 is a characteristic diagram showing a relationship between a recording wavelength and a reproduction output of a perpendicular magnetic recording medium manufactured by applying the present invention. 1 Cooling can 2 Supply roller 3 Winding roller 4 Crucible 7 Oxygen gas inlet tube 8 Electron gun 9 Nonmagnetic support

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−97133(JP,A) 特開 昭62−185246(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 5/85────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-62-97133 (JP, A) JP-A-62-185246 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 5/85

Claims (1)

(57)【特許請求の範囲】 1.非磁性支持体上に酸素ガスを導入しながら強磁性金
属を蒸発材料として真空蒸着によりCo−O系垂直磁化膜
を形成するに際し、 酸素ガスを非磁性支持体移動方向の上流側から導入する
とともに、 酸素ガスの入射角をψ(゜)とした時、 10゜≦ψ≦30゜ となるように酸素ガスを導入することを特徴とする垂直
磁気記録媒体の製造方法。
(57) [Claims] When forming a Co-O-based perpendicular magnetization film by vacuum deposition using a ferromagnetic metal as an evaporation material while introducing oxygen gas onto the non-magnetic support, oxygen gas is introduced from the upstream side in the direction of movement of the non-magnetic support. A method for manufacturing a perpendicular magnetic recording medium, characterized in that oxygen gas is introduced so that 10 ° ≦ ゜ ≦ 30 ° when the incident angle of oxygen gas is ψ (゜).
JP62119919A 1987-05-16 1987-05-16 Method for manufacturing perpendicular magnetic recording medium Expired - Fee Related JP2794662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62119919A JP2794662B2 (en) 1987-05-16 1987-05-16 Method for manufacturing perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62119919A JP2794662B2 (en) 1987-05-16 1987-05-16 Method for manufacturing perpendicular magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63285725A JPS63285725A (en) 1988-11-22
JP2794662B2 true JP2794662B2 (en) 1998-09-10

Family

ID=14773424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62119919A Expired - Fee Related JP2794662B2 (en) 1987-05-16 1987-05-16 Method for manufacturing perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2794662B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687306B2 (en) * 1985-10-24 1994-11-02 松下電器産業株式会社 Method of manufacturing magnetic recording medium
JPS62185246A (en) * 1986-02-10 1987-08-13 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Also Published As

Publication number Publication date
JPS63285725A (en) 1988-11-22

Similar Documents

Publication Publication Date Title
CA1235808A (en) Vertical magnetic recording medium and process for preparation thereof
US4521482A (en) Magnetic recording medium
JP2794662B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS6148128A (en) Manufacture of magnetic recording medium
US4713262A (en) Manufacturing method for a magnetic recording medium
JP2785272B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2546268B2 (en) Perpendicular magnetic recording media
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS61276124A (en) Production of vertical magnetic recording medium
JP2508711B2 (en) Perpendicular magnetic recording media
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS59157828A (en) Magnetic recording medium
JPH01109531A (en) Production of perpendicular magnetic recording medium
JPH033118A (en) Production of magnetic recording medium
JPH01303623A (en) Magnetic recording medium
JPH06333225A (en) Thin film magnetic recording medium
JPH02216610A (en) Magnetic recording medium and its production
JPS61227222A (en) Magnetic recording medium
JPH04132015A (en) Perpendicular magnetic recording tape consisting of cocr and production thereof
JPH01307914A (en) Perpendicular magnetic recording medium
JPH06176360A (en) Production of magnetic recording medium
JPS61214136A (en) Method and apparatus for producing magnetic recording medium
JPS6154044A (en) Manufacture and its device of magnetic recording medium
JPH0479043B2 (en)
JPH01319120A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees