JPS6154044A - Manufacture and its device of magnetic recording medium - Google Patents
Manufacture and its device of magnetic recording mediumInfo
- Publication number
- JPS6154044A JPS6154044A JP17706684A JP17706684A JPS6154044A JP S6154044 A JPS6154044 A JP S6154044A JP 17706684 A JP17706684 A JP 17706684A JP 17706684 A JP17706684 A JP 17706684A JP S6154044 A JPS6154044 A JP S6154044A
- Authority
- JP
- Japan
- Prior art keywords
- ferromagnetic material
- incident angle
- incidence angle
- cylindrical
- degrees
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は強磁性金属薄膜層を記録層とする磁気記録媒
体の製造方法およびその実施に使用する装置に関し、さ
らに詳しくは、磁気特性が良好で耐食性に優れた前記の
磁気記録媒体の製造方法およびその実施に使用する装置
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer, and an apparatus used for carrying out the method, and more particularly, to The present invention relates to a method for manufacturing the above-mentioned magnetic recording medium having excellent corrosion resistance, and an apparatus used for carrying out the method.
強磁性金属薄膜層を記録層とする磁気記録媒体は、通常
、ポリエステルフィルムなどの基体を真゛空槽内に取り
つけた円筒状キャンの周側面に沿って移動させ、この基
体に強磁性材を真空蒸着するなどしてつくられており、
磁気特性を良好にするため、最低入射角を調整して斜め
に入射蒸着することが広く行われれている。〔中村久三
、他3名、第28回応用物理学関係連合講演会、講演予
稿集、P470 (1981))
〔発明が解決しようとする問題点〕
ところが、この従来の最低入射角を調整して斜め入射蒸
着を行う方法では、保磁力が高くなり磁気特性は向上さ
れるものの、基体上に析出して強磁性金属薄膜層を形成
する強磁性材粒子の粒子径が極めて小さく、しかも基体
と強磁性金属薄膜層との界面近傍の強磁性材粒子間の間
隙が極めて大きいため、大気中に静置しておくと、大気
中の水分や塩素と反応して腐食され、飽和磁束密度など
の磁気特性が劣化するという難点がある。Magnetic recording media with a ferromagnetic metal thin film layer as the recording layer are usually made by moving a base such as a polyester film along the circumferential side of a cylindrical can installed in a vacuum chamber, and then coating the base with a ferromagnetic material. It is made by vacuum evaporation, etc.
In order to improve magnetic properties, it is widely practiced to perform oblique incident deposition by adjusting the minimum incident angle. [Kyuzo Nakamura, 3 others, 28th Applied Physics Association Lectures, Proceedings, P470 (1981)] [Problems to be solved by the invention] However, by adjusting this conventional minimum angle of incidence, Although the oblique incidence deposition method increases the coercive force and improves the magnetic properties, the particle size of the ferromagnetic material particles deposited on the substrate to form the ferromagnetic metal thin film layer is extremely small, and The gaps between the ferromagnetic material particles near the interface with the ferromagnetic metal thin film layer are extremely large, so if left in the atmosphere, they will react with moisture and chlorine in the atmosphere and corrode, causing problems such as saturation magnetic flux density. The disadvantage is that the magnetic properties deteriorate.
この発明はかかる欠点を改善するため種々検討を行った
結果なされたもので、真空槽内に、最低入射角を調整す
る防着板とともに、最高入射角を75度〜85度の範囲
内に調整する防着板を新たに配設し、強磁性材蒸発源か
ら基体に至る強磁性材の蒸気流の最高入射角を75度〜
85度の範囲内とすることによって、粒子径が大きく、
比表面積が小さい強磁性材粒子からなる強磁性金属薄膜
層を形成するとともに、基体と強磁性金属薄膜層との界
面近傍の強磁性材粒子間の間隙を小さくし、磁気特性を
あまり低下させることなく耐食性を充分に改善したもの
である。This invention was made as a result of various studies to improve this drawback, and includes a deposition prevention plate inside the vacuum chamber that adjusts the minimum angle of incidence, and adjusts the maximum angle of incidence within the range of 75 degrees to 85 degrees. A new adhesion prevention plate has been installed to increase the maximum angle of incidence of the ferromagnetic material vapor flow from the ferromagnetic material evaporation source to the substrate from 75 degrees.
By setting the angle within the range of 85 degrees, the particle size is large.
To form a ferromagnetic metal thin film layer made of ferromagnetic material particles with a small specific surface area, and to reduce the gap between the ferromagnetic material particles near the interface between the substrate and the ferromagnetic metal thin film layer, so as not to significantly reduce magnetic properties. However, the corrosion resistance has been sufficiently improved.
以下、図面を参照しながらこの発明について説明する。The present invention will be described below with reference to the drawings.
第1図は真空蒸着装置の断面図を示したものであり、1
は真空槽でこの真空槽1の内部は排気系2により真空に
保持される。3は真空槽1の中央部に配設された円筒状
キャンであり、プラスチックフィルム等の基体4は原反
ロール5よりこの円筒状キャン3の周側面に沿って移動
し、巻き取りロール6に巻き取られる。この間円筒状キ
ャン3の周側面に沿って移動する基体4に対向して真空
槽1の下部に配設された強磁性材料蒸発源7で強磁性材
8が加熱蒸発され、この蒸気流Aが円筒状キャン3近傍
の下方に配設された最低入射角調整用防着板9および円
筒状キャン3近傍の側方から下方にかけて配設された最
高入射角調整用防着板10の作用で基体4に斜め入射蒸
着される。ここで最高入射角調整用防着板10は、蒸気
流Aの最高入射角αが75度〜85度の範囲内となるよ
うに、その蒸気流遮断先端面10aを円筒状キャン3の
周側面に沿って延設配置するのが好ましく、このように
配置された防着板10の蒸気流遮断先端面tOaによっ
て、最高入射角αを75度〜85度の範囲内にして真空
蒸着を行うと、基体4上に析出して強磁性金属薄膜層を
形成する強磁性材粒子の粒子径が大きくなり、基体と強
磁性金属薄膜層との界面近傍の強磁性材粒子間の間隙が
小さくなって、耐食性が向上される。これに対し、蒸気
流Aの最高入射角αが75度より小さくなると、耐食性
は改善されるものの充分な保磁力が得られず、反対に8
5度より大きくな゛ると、強磁性材粒子の粒子径が小さ
くなり、基体と強磁性金属薄膜層との界面近傍の強磁性
材粒子間の間隙が大きくなって、高い保磁力が得られる
ものの耐食性が充分に改善されない、また、最低入射角
調整用防着板9によって一部遮断調整される蒸気流Aの
最低入射角βは、保磁力が充分に高くて磁気特性に優れ
た磁気記録媒体が得られるように、45度以上にするの
が好ましい、なお、図中11はガス導入管である。Figure 1 shows a cross-sectional view of the vacuum evaporation apparatus,
is a vacuum chamber, and the inside of this vacuum chamber 1 is maintained in a vacuum by an exhaust system 2. Reference numeral 3 denotes a cylindrical can disposed in the center of the vacuum chamber 1, and a substrate 4 such as a plastic film is moved along the circumferential side of the cylindrical can 3 from a raw roll 5, and is transferred to a take-up roll 6. It is wound up. During this time, the ferromagnetic material 8 is heated and evaporated in the ferromagnetic material evaporation source 7 disposed at the bottom of the vacuum chamber 1, facing the base 4 moving along the circumferential side of the cylindrical can 3, and this vapor flow A is Due to the effects of the minimum incidence angle adjustment adhesion prevention plate 9 disposed below near the cylindrical can 3 and the maximum incidence angle adjustment adhesion prevention plate 10 disposed from the side to the bottom near the cylindrical can 3, 4 is obliquely incident evaporated. Here, the maximum incident angle adjustment adhesion prevention plate 10 is configured such that its vapor flow blocking tip surface 10a is attached to the circumferential surface of the cylindrical can 3 so that the maximum incident angle α of the vapor flow A is within the range of 75 degrees to 85 degrees. It is preferable to extend the vapor flow along the vapor flow blocking tip surface tOa of the deposition prevention plate 10 arranged in this way, and perform vacuum evaporation with the maximum incident angle α within the range of 75 degrees to 85 degrees. , the particle size of the ferromagnetic material particles deposited on the substrate 4 to form the ferromagnetic metal thin film layer becomes larger, and the gap between the ferromagnetic material particles near the interface between the substrate and the ferromagnetic metal thin film layer becomes smaller. , corrosion resistance is improved. On the other hand, if the maximum incident angle α of the steam flow A becomes smaller than 75 degrees, corrosion resistance is improved but sufficient coercive force cannot be obtained;
When the angle is greater than 5 degrees, the particle diameter of the ferromagnetic material particles becomes smaller, and the gap between the ferromagnetic material particles near the interface between the base and the ferromagnetic metal thin film layer becomes larger, resulting in a high coercive force. In addition, the minimum incident angle β of the vapor flow A, which is partially blocked and adjusted by the minimum incident angle adjustment adhesion prevention plate 9, is not sufficient for magnetic recording with sufficiently high coercive force and excellent magnetic properties. In order to obtain a medium, the angle is preferably 45 degrees or more. Note that 11 in the figure is a gas introduction pipe.
このように、この発明の磁気記録媒体製造装置は、真空
槽1内に配設した円筒状キャン3の近傍に最低入射角を
調整する最低入射角調整用防着板9を配設するとともに
、最高入射角を75度〜85度の範囲内に調整する最高
入射角調整用防着板10を新たに配設し、強磁性材蒸発
源7から基体4に至る強磁性材8の蒸気流Aの最高入射
角を75度〜85度の範囲内に調整しているため、粒子
径が大きくて比表面積が小さい強磁性材粒子からなる強
磁性金属薄膜層が形成され、基体と強磁性金属薄膜層と
の界面近傍の強磁性材粒子間の間隙も小さくなって、磁
気特性が良好で耐食性に優れた磁気記録媒体が得られる
。As described above, the magnetic recording medium manufacturing apparatus of the present invention has the minimum incident angle adjusting adhesion prevention plate 9 disposed near the cylindrical can 3 disposed in the vacuum chamber 1, and A maximum incidence angle adjustment adhesion prevention plate 10 is newly installed to adjust the maximum incidence angle within the range of 75 degrees to 85 degrees, and the vapor flow A of the ferromagnetic material 8 from the ferromagnetic material evaporation source 7 to the base 4 is increased. Since the maximum incident angle of The gaps between the ferromagnetic material particles near the interface with the layer also become smaller, resulting in a magnetic recording medium with good magnetic properties and excellent corrosion resistance.
基体としては、ポリエステル、ポリイミド、ポリアミド
等一般に使用されている高分子成形物からなるプラスチ
ックフィルムおよび銅などの非磁性金属からなる金属フ
ィルムが使用され、また、強磁性金属薄膜層を形成する
強磁性材料としては、G O% N i−、F eなど
の強磁性金属単体の他、これらの強磁性金属単体を少な
(とも1種含む合金あるいは酸化物、およびCo−P、
Co−N1−Pの如き強磁性金属との化合物など、一般
に真空蒸着に使用される強磁性材料がいずれも使用され
る。As the substrate, a plastic film made of commonly used polymer moldings such as polyester, polyimide, polyamide, etc. and a metal film made of non-magnetic metal such as copper are used. Materials include ferromagnetic metals such as GO%Ni- and Fe, alloys or oxides containing a small amount of these ferromagnetic metals (alloys or oxides containing one of these metals, and Co-P,
Any ferromagnetic material commonly used for vacuum deposition may be used, such as a compound with a ferromagnetic metal such as Co--N1-P.
また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどのプラスチックフィルムを基体
とする磁気テープ、プラスチックフィルム、アルミニウ
ム板およびガラス板等からなる円盤やドラムを基体とす
る磁気ディスクや磁気ドラムなど、磁気ヘッドと摺接す
る構造の種々の形態を包含する。In addition, as magnetic recording media, polyester film,
Includes various forms of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on plastic films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of plastic films, aluminum plates, glass plates, etc. do.
、 次に、この発明の実施例について説明する。 , Next, embodiments of the present invention will be described.
実施例
第1図に示す真空蒸着装置を使用し、約10μ厚のポリ
エステルフィルム4を、原反ロール5より円筒状キャン
3の周側面に沿って移動させ、巻き取りロール6に巻き
取るようにセットするとともに、蒸発源7内にコバルト
8をセントした0次いで、ポリエステルフィルム4の走
行速度を20〜25m/分の範囲内で調整するとともに
、排気系2で真空槽1内を約5XIO−6)−ルにまで
真空排気し、ガス導入管11から酸素ガスを120cc
/分の流量で導入し、真空度を9X10−5)−ルとし
て、コバルト8を加熱蒸発させ、最高入射角αおよび最
低入射角βを、下記第1表に示すように種々に代えて、
斜め入射蒸着を行い、ポリエステルフィルム4上にコバ
ルトからなる厚さ1500人の強磁性金属薄膜層を形成
した。しかる後、所定の幅に裁断して多数の磁気テープ
をつくった。Example Using the vacuum evaporation apparatus shown in FIG. At the same time, cobalt 8 was added to the evaporation source 7. Next, the traveling speed of the polyester film 4 was adjusted within the range of 20 to 25 m/min, and the inside of the vacuum chamber 1 was pumped with about 5XIO-6 by the exhaust system 2. ) - 120cc of oxygen gas is evacuated from the gas introduction pipe 11.
Cobalt 8 was introduced at a flow rate of /min, and the degree of vacuum was set to 9 x 10-5) to heat and evaporate cobalt 8, and the maximum incident angle α and the minimum incident angle β were varied as shown in Table 1 below.
A ferromagnetic metal thin film layer made of cobalt and having a thickness of 1500 nm was formed on the polyester film 4 by performing oblique incidence deposition. After that, it was cut into a predetermined width to make a large number of magnetic tapes.
第1表
実施例で得られた磁気テープについて、保磁力を測定し
、耐食性を試験した。耐食性試験は、60°C190%
RHの雰囲気中に得られた磁気テープを1週間静置して
静置後の飽和磁束密度Ifを測定し、初期の飽和磁束密
度1.からの劣化率を式((Io I+)/Io)X
100から算出して行った。The magnetic tapes obtained in the Examples in Table 1 were measured for coercive force and tested for corrosion resistance. Corrosion resistance test: 60°C 190%
The magnetic tape obtained in the RH atmosphere was left standing for one week, and the saturation magnetic flux density If was measured after the standing, and the initial saturation magnetic flux density 1. The deterioration rate from is expressed as ((Io I+)/Io)X
It was calculated from 100.
下記第2表はその結果である。Table 2 below shows the results.
第2表
〔発明の効果〕
上表から明らかなように、試料2ないし4および7ない
し10で得られた磁気テープは、試料5および6で得ら
れた磁気テープに比し、保磁力が高(、また試料1で得
られた磁気テープに比し、飽和磁束密度の劣化率が小さ
く、このことからこの発明の製造方法および装置によれ
ば、磁気特性が良好で耐食性が一段と向上された磁気記
録媒体が得られることがわかる。Table 2 [Effects of the Invention] As is clear from the above table, the magnetic tapes obtained with Samples 2 to 4 and 7 to 10 have higher coercive force than the magnetic tapes obtained with Samples 5 and 6. (Also, compared to the magnetic tape obtained in Sample 1, the deterioration rate of the saturation magnetic flux density is small. Therefore, according to the manufacturing method and apparatus of the present invention, the magnetic tape has good magnetic properties and further improved corrosion resistance. It can be seen that a recording medium is obtained.
第1図はこの発明の磁気記録媒体製造装置の概略断面図
である。
1・・・真空槽、3・・・円筒状キャン、4・・・基体
、7・・・強磁性材蒸発源、8・・・強磁性材、9・・
・最低入射角調整用防着板、10・・・最高入射角関整
用防着板、A・・・蒸気流、α・・・最高入射角、β・
・・最低入射角特許出願人 日立マクセル株式会社
第1図FIG. 1 is a schematic sectional view of a magnetic recording medium manufacturing apparatus of the present invention. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 3... Cylindrical can, 4... Substrate, 7... Ferromagnetic material evaporation source, 8... Ferromagnetic material, 9...
- Deposition prevention plate for adjusting the minimum incident angle, 10... Deposition prevention plate for adjusting the maximum incidence angle, A... Vapor flow, α... Maximum incident angle, β.
...Minimum angle of incidence patent applicant Hitachi Maxell Ltd. Figure 1
Claims (1)
性材の蒸気流を、円筒状キャンの周側面に沿って高入射
角部から低入射角部へ移動する基体に斜めに入射して蒸
着する磁気記録媒体の製造方法において、強磁性材の蒸
気流の最高入射角を75度〜85度の範囲内としたこと
を特徴とする磁気記録媒体の製造方法 2、真空槽内に、円筒状キャンと、この円筒状キャンの
周側面に沿って高入射角部から低入射角部へ移動する基
体と、この円筒状キャンの周側面に沿って移動する基体
と対向する強磁性材蒸発源と、強磁性材蒸発源から基体
に至る強磁性材の蒸気流を部分的に遮断する防着板とを
配設してなる磁気記録媒体製造装置において、防着板を
最低入射角調整用防着板と最高入射角調整用防着板とに
分割して、最低入射角調整用防着板を円筒状キャン近傍
の低入射角部に配設するとともに、最高入射角調整用防
着板を高入射角部の最高入射角が75度〜85度の範囲
内となる位置に配設し、強磁性材の蒸気流の最高入射角
が75度〜85度の範囲内となるようにしたことを特徴
とする磁気記録媒体製造装置[Claims] 1. A base that moves a vapor flow of a ferromagnetic material evaporated from an evaporation source from a high incidence angle part to a low incidence angle part along the circumferential side of a cylindrical can in a vacuum atmosphere. A method for manufacturing a magnetic recording medium in which the vapor flow of the ferromagnetic material is deposited with oblique incidence, the method comprising: setting the maximum angle of incidence of the vapor flow of the ferromagnetic material within the range of 75 degrees to 85 degrees; In a vacuum chamber, there is a cylindrical can, a substrate that moves along the circumferential side of the cylindrical can from a high incidence angle part to a low incidence angle part, and a substrate that moves along the circumferential side of this cylindrical can and is opposed to it. In a magnetic recording medium manufacturing apparatus equipped with a ferromagnetic material evaporation source and an adhesion prevention plate that partially blocks the vapor flow of the ferromagnetic material from the ferromagnetic material evaporation source to the substrate, the adhesion prevention plate is installed. The deposition prevention plate is divided into a deposition prevention plate for adjusting the minimum incident angle and a deposition prevention plate for adjusting the maximum incidence angle, and the deposition prevention plate for adjusting the minimum incidence angle is placed in the low incidence angle part near the cylindrical can, and the deposition prevention plate for adjusting the maximum incidence angle is The adjustment anti-adhesion plate is arranged at a position where the maximum incidence angle of the high incidence angle part is within the range of 75 degrees to 85 degrees, and the maximum incidence angle of the vapor flow of the ferromagnetic material is within the range of 75 degrees to 85 degrees. A magnetic recording medium manufacturing apparatus characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17706684A JPS6154044A (en) | 1984-08-25 | 1984-08-25 | Manufacture and its device of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17706684A JPS6154044A (en) | 1984-08-25 | 1984-08-25 | Manufacture and its device of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6154044A true JPS6154044A (en) | 1986-03-18 |
Family
ID=16024519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17706684A Pending JPS6154044A (en) | 1984-08-25 | 1984-08-25 | Manufacture and its device of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6154044A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57133519A (en) * | 1981-02-10 | 1982-08-18 | Fuji Photo Film Co Ltd | Magnetic recording medium |
-
1984
- 1984-08-25 JP JP17706684A patent/JPS6154044A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57133519A (en) * | 1981-02-10 | 1982-08-18 | Fuji Photo Film Co Ltd | Magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0411625B2 (en) | ||
JPH0123853B2 (en) | ||
US4835070A (en) | Magnetic recording medium and method of producing the same | |
JPS6153770B2 (en) | ||
JPS6154044A (en) | Manufacture and its device of magnetic recording medium | |
JPS61236025A (en) | Production of magnetic recording medium | |
JPH0154776B2 (en) | ||
JPS5984407A (en) | Magnetic recording medium | |
JP2794662B2 (en) | Method for manufacturing perpendicular magnetic recording medium | |
JPS59157828A (en) | Magnetic recording medium | |
JP2529395B2 (en) | Method for manufacturing metal thin film magnetic recording medium | |
JP2785272B2 (en) | Method for manufacturing perpendicular magnetic recording medium | |
JPS61139919A (en) | Magnetic recording medium | |
JP3665906B2 (en) | Magnetic recording medium | |
JPS6139233A (en) | Manufacture of metal thin film magnetic recording medium | |
JPS6154040A (en) | Manufacture of magnetic recording medium | |
JPS61227222A (en) | Magnetic recording medium | |
JPS59175030A (en) | Production of magnetic recording medium | |
JPS592232A (en) | Production of magnetic recording medium | |
JPH07111773B2 (en) | Magnetic recording medium | |
JPH01319119A (en) | Magnetic recording medium | |
JPH057766B2 (en) | ||
JPS62102414A (en) | Magnetic recording medium | |
JPS6113437A (en) | Magnetic recording medium | |
JPS63117320A (en) | Production of magnetic recording medium |