JPS63117320A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS63117320A
JPS63117320A JP26228586A JP26228586A JPS63117320A JP S63117320 A JPS63117320 A JP S63117320A JP 26228586 A JP26228586 A JP 26228586A JP 26228586 A JP26228586 A JP 26228586A JP S63117320 A JPS63117320 A JP S63117320A
Authority
JP
Japan
Prior art keywords
substrate
magnetic
film
nitrogen
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26228586A
Other languages
Japanese (ja)
Other versions
JPH0799581B2 (en
Inventor
Minoru Kume
久米 実
Tsuyoshi Tsujioka
強 辻岡
Kotaro Matsuura
松浦 宏太郎
Yuzo Abe
祐三 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26228586A priority Critical patent/JPH0799581B2/en
Publication of JPS63117320A publication Critical patent/JPS63117320A/en
Publication of JPH0799581B2 publication Critical patent/JPH0799581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To permit formation of a nitrided film having a uniform nitrogen concn. in a depth direction on a moving film substrate by forming nitrogen ions by plural pieces of ion sources and adjusting the ion current density from the ion sources in such a manner that the nitrogen concn. of a magnetic layer is kept constant in the depth direction. CONSTITUTION:The nitrogen ions are formed by plural pieces of the ion sources 11, 12, 13 arranged in the progressing direction of the moving nonmagnetic substrate 7 and the ion current densities from the ion sources 11, 12, 13 are individually so adjusted that the nitrogen concn. of the magnetic layer is kept constant in the depth direction in the case of producing a magnetic recording medium by forming the magnetic layer on the substrate by projecting a magnetic metal diagonally to the above-mentioned substrate 7 and projecting the nitrogen ions onto the substrate 7. Formation of the magnetic layer having the excellent characteristics, corrosion resistance and wear resistance even on the moving magnetic substrate is permitted by maintaining nearly the uniform nitrogen concn. of the magnetic layer in the depth direction.

Description

【発明の詳細な説明】 (イ1 産業上の利用分野 本発明は磁気テープ等の磁気記録媒体の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to a method of manufacturing a magnetic recording medium such as a magnetic tape.

(口1 従来の技術 近年、磁気記録の高密度化の要求が高まるに従い、真空
蒸着法、スパッタリング法、イオンブレーティング法等
の薄膜形成法τ二より磁気記録媒体を製造している。こ
れらの方法C二より形成された磁気記録媒体は、6)残
留磁束密度が高い■保磁力が大きい■磁性層を薄くでき
る等の特徴を有し。
(1. Conventional technology) In recent years, as the demand for higher density magnetic recording has increased, magnetic recording media have been manufactured using thin film forming methods such as vacuum evaporation, sputtering, and ion blasting. The magnetic recording medium formed by method C2 has the following characteristics: 6) a high residual magnetic flux density; 2) a large coercive force; and 2) the ability to make the magnetic layer thinner.

従来の塗布型磁気記録媒体C比べ、高密度記録が可能で
ある。
Compared to the conventional coated magnetic recording medium C, high-density recording is possible.

従来、金属薄膜型磁気記録媒体の磁性材料としては、l
Jiをzo〜5oat%含んだCo−Ni合金が主シー
用いられている。しかし乍ら、cod70チ以上含むた
め高価であり、また、高温高湿下での耐食性も十分では
ない。
Conventionally, l is used as a magnetic material for metal thin film magnetic recording media.
A Co--Ni alloy containing zo to 5 oat% of Ji is used as the main material. However, it is expensive because it contains 70 or more cod, and its corrosion resistance under high temperature and high humidity is not sufficient.

上述の欠点を改善するため、特開昭60−59537号
公報(I Pに G11 B5/85 )を二開示され
ているようC,磁性材料として窒化鉄(FeN系)を用
いたものが提案・されている。
In order to improve the above-mentioned drawbacks, a method using iron nitride (FeN-based) as the magnetic material was proposed, as disclosed in Japanese Patent Application Laid-Open No. 60-59537 (IP G11 B5/85). has been done.

これは、第4図C二示すよう(:真空槽(1)内で固定
された基板(2)に蒸着材料容器(3)内のFe(4)
を電子ビーム蒸着すると同時1;、イオン源(5)から
の窒素イオン(61を照射することによりFeN薄膜を
形成していた(r’/D法、 工on  ana va
porDeposition法)。このFeN薄膜の保
磁力(He)、角形比131はQo−Ni系の薄膜トホ
トんど同じである。
As shown in Figure 4C2 (: Fe (4) in the evaporation material container (3) is attached to the substrate (2) fixed in the vacuum chamber (1).
Simultaneously with electron beam evaporation, a FeN thin film was formed by irradiating with nitrogen ions (61) from the ion source (5) (r'/D method, process on analyte).
porDeposition method). The coercive force (He) and squareness ratio 131 of this FeN thin film are almost the same as those of the Qo-Ni thin film.

このようC1静止している基板上にF15N薄膜を形成
する際(;は、Feの堆積速度と基板に到着する窒素イ
オンのイオン電流量を一定に制御すれば、FeN薄膜の
組成比は深さ方向Cはぼ均一である。第6図はこの方法
で形成されたFeN膜の深さ方向における濃度分布をB
50A(光電子分光法)で分析した結果を示す図であり
、この図から分かる様に濃度分布は膜表面から基板界面
までほぼ均一である。
In this way, when forming an F15N thin film on a stationary substrate (;), if the deposition rate of Fe and the amount of ion current of nitrogen ions arriving at the substrate are controlled constant, the composition ratio of the FeN thin film will change depending on the depth. Direction C is almost uniform. Figure 6 shows the concentration distribution in the depth direction of the FeN film formed by this method.
This is a diagram showing the results of analysis using 50A (photoelectron spectroscopy), and as can be seen from this diagram, the concentration distribution is almost uniform from the film surface to the substrate interface.

一方、IVD法1:より形成されるFeN膜を蒸着テー
プとして量産する場合には、第5図に示すように高分子
フィルム基板(7)t−巻出しローラ(8)から冷却キ
ャン(911:l−Gって巻取りローラα(Ic輸送し
On the other hand, when mass-producing the FeN film formed by IVD method 1 as a vapor deposition tape, as shown in FIG. l-G is the winding roller α (Ic transport).

前記冷却キャン(9)の周面上で前記高分子フィルム基
板(71CF e (4)を電子ビーム蒸着すると同時
に窒素イオン(611に照射してFeN薄膜を形成して
いた。
On the circumferential surface of the cooling can (9), the polymer film substrate (71CF e (4)) was deposited with an electron beam and at the same time nitrogen ions (611) were irradiated to form a FeN thin film.

その際、Faの斜め入射角及び堆積速度は前記基板(7
1の位置が変わるに伴い刻々と変化する。
At that time, the oblique incidence angle and deposition rate of Fa were set as above substrate (7).
It changes moment by moment as the position of 1 changes.

即ち、第5図C;おいて、A、B、Oの各点におけるF
・の堆積速度を夫々R(l囚、 R41Bl、 R(1
[01+!:スルト、その関係1R(ltAl>R11
iBl>R(LIC+となる。従って、窒素イオン(6
)のイオン電流密度が斜線領域内で均一であるとすると
、A、B、0各点C;おける膜の窒化度Y囚、 YIB
I、 YIOIは夫々Y囚< Y (R1(Y (C1
という関係になり、膜表面に行く程、窒化度が#、a少
する。第7図はこの方法で形成されたFeN膜の深さ方
向ζ二おける濃度分布をB80Aで分析した結果を示す
図であり、この図から膜表[fI+−行く程窒素チ劇度
が低くなっていることが分かる。
That is, in FIG. 5C, F at each point A, B, and O
・The deposition rate of R(l, R41Bl, R(1
[01+! : Surt, the relationship 1R (ltAl>R11
iBl>R(LIC+. Therefore, nitrogen ion (6
) is uniform within the shaded area, then the degree of nitridation of the film at points A, B, 0 and C;
I, YIOI are respectively Y prisoner < Y (R1(Y (C1
The relationship is as follows, and the degree of nitridation decreases by # and a toward the film surface. Figure 7 is a diagram showing the results of analyzing the concentration distribution in the depth direction ζ2 of the FeN film formed by this method using B80A. I can see that

第4図及び第5図の装置で形成したFeN膜の磁気特性
は下表のようになる。
The magnetic properties of the FeN film formed using the apparatus shown in FIGS. 4 and 5 are as shown in the table below.

上表から分かるように、移動フィルム上C二停止フィル
ム上と同等の保磁力を有するFeN膜を形成するためC
二は、窒化度を一層高める必要がある。
As can be seen from the above table, C is
Second, it is necessary to further increase the degree of nitridation.

しかし、窒化度を高めると第7図から分かるように、基
板との界面での窒素濃度が著しく増加し。
However, as shown in FIG. 7, when the degree of nitridation is increased, the nitrogen concentration at the interface with the substrate increases significantly.

飽和磁化(M8)が低下してしまうという問題が生じる
A problem arises in that the saturation magnetization (M8) decreases.

また、上述のようなFeN膜では、膜表面の窒素濃度が
小さくなり、耐摩耗性、耐食性が劣化していることが分
かった。
In addition, it was found that in the FeN film as described above, the nitrogen concentration on the film surface was reduced, and the wear resistance and corrosion resistance were deteriorated.

l/、l  発明が解決しようとする問題点本発明は上
記従来例の欠点に鑑みなされたものであり、深さ方向に
おける窒素濃度が均一である窒化膜を移動するフィルム
基板上に形成することを可能1ニジた磁気記録媒体の製
造方法を提供することを目的とするものである。
l/, l Problems to be Solved by the Invention The present invention has been made in view of the drawbacks of the conventional examples described above, and involves forming a nitride film having a uniform nitrogen concentration in the depth direction on a moving film substrate. The object of the present invention is to provide a method for manufacturing a magnetic recording medium that makes it possible to achieve the following.

に))問題点を解決するための手段 移動する非磁性基板上に磁性金属を斜方入射すると共に
、前記基板上に窒素イオンを照射することにより前記基
板上(:磁性層を形成する磁気記録媒体の製造方法にお
いて、前記窒素イオンを複数個のイオン源で作成し、該
イオン源からのイオン電流密度を前記磁性層の窒素濃度
が深さ方向に一定:二なるよう【;個々:;調整する。
2)) Means for solving the problem A magnetic metal is obliquely incident on a moving non-magnetic substrate, and at the same time, the substrate is irradiated with nitrogen ions to form a magnetic layer on the substrate (magnetic recording). In the method for producing a medium, the nitrogen ions are created using a plurality of ion sources, and the ion current density from the ion sources is adjusted so that the nitrogen concentration of the magnetic layer is constant in the depth direction: do.

(ホ))作 用 ゛上記方法(:依れば、基板上【:照射されるイオン電
流密度の大きさは、照射部分C二よって夫々異なり、該
照射部分における磁性金属の堆積速度(:応じて、イオ
ン源からのイオン電流密度を調整することC二より、前
記照射部分(:おける窒素濃度が均一【二なり、移動す
る基板上1:形成される磁性層の窒素濃度は深さ方向に
おいて一定となる。
(e)) Effect: According to the method described above, the magnitude of the ion current density irradiated on the substrate differs depending on the irradiated portion C2, and the deposition rate of magnetic metal in the irradiated portion (: Then, by adjusting the ion current density from the ion source, the nitrogen concentration in the irradiated part (1) is uniform in the depth direction. It becomes constant.

(へ)実施例 以下1図面を参照しつつ本発明の一実施例を詳細に説明
する。
(F) Embodiment An embodiment of the present invention will be described in detail below with reference to one drawing.

第1図は本実施例の磁気テープの製造装置の断面図であ
る。
FIG. 1 is a sectional view of the magnetic tape manufacturing apparatus of this embodiment.

真空槽(11内に巻出しローラ(8)1巻取りローラf
iol 。
Vacuum chamber (inside the unwinding roller (8) 1 winding roller f
iol.

冷却キャン(9)、蒸着材料収納容器(3)、及び第1
゜第2.第3イオン源aυfi21(13が夫々配置さ
れている。
cooling can (9), vapor deposition material storage container (3), and first
゜Second. Third ion sources aυfi21 (13) are arranged.

(7)はポリエチレンテレフタレート(PET)、ポリ
イミド等の高分子フィルム基板で、該フィルム基板(7
)は巻出しローラ(8)から冷却キャン(9)を経て巻
取りローラfileに送られる。
(7) is a polymer film substrate such as polyethylene terephthalate (PET) or polyimide;
) is sent from the unwinding roller (8) to the winding roller file via the cooling can (9).

蒸着材料(Fl(41は前記蒸着材料収納容器(3)内
(ユ入れられ、前記冷却キャン(9)と対向して配置さ
れ、電子ビーム発生源(図示せず)からの電子ビームに
より加熱される。加熱された蒸着材料(4)は蒸気流I
とな9.前記冷却キャン(9)上のフィルム基板(7)
C付着するが、遮へい板051によりフィルム基板(7
)上に到達する蒸気流a4の入射角(蒸気流α4の向き
とフィルム基板(7)の法線とが為す角度)は最小55
 に規制されている。
A vapor deposition material (Fl (41) is placed in the vapor deposition material storage container (3), is placed facing the cooling can (9), and is heated by an electron beam from an electron beam generation source (not shown). The heated vapor deposition material (4) is
Tona 9. Film substrate (7) on the cooling can (9)
C adheres to the film substrate (7) due to the shielding plate 051.
) The incident angle of the vapor flow a4 reaching the top (the angle between the direction of the vapor flow α4 and the normal to the film substrate (7)) is at least 55
is regulated.

前記第1.第2.第6イオン源αUαハ3は前記フィル
ム基板(7)の進行方向に沿って配列されたカクフマン
型のイオン源で、該イオン源はガス導入管(図示せず)
より導入した窒素ガスを内部でイオン化し、その窒素イ
オンより成るイオン電流(161αDC18)を1Q記
蒸気流(14)と同時に前記フィルム基板(7)に照射
する。
Said 1st. Second. The sixth ion source αUα 3 is a Kakufuman type ion source arranged along the traveling direction of the film substrate (7), and the ion source is connected to a gas introduction tube (not shown).
The introduced nitrogen gas is internally ionized, and an ionic current (161αDC18) made of the nitrogen ions is applied to the film substrate (7) at the same time as the 1Q vapor flow (14).

前記フィルム基板(7)には、蒸気流a4により磁性材
料が堆積すると同時に、第1イオン源α1.第2イオン
源Q3.第6イオン源α3の順でイオン電流σe10n
+21. I 1on(3)を夫tz 、 rion(
1)(I i o n(2K I 1 o n(3Jと
すること1:より、第7図1−示したような不均一な組
成分布は改善される。
At the same time, magnetic material is deposited on the film substrate (7) by the vapor flow a4, and at the same time, the first ion source α1. Second ion source Q3. Ion current σe10n in the order of sixth ion source α3
+21. I 1on(3) to husband tz, rion(
1) (I on (2K I 1 on (3J) 1: From this, the non-uniform composition distribution as shown in FIG. 7-1 is improved.

尚、前記真空槽(1)内は排気装置 t19 Cより成
膜中の真空度が一定に保持されている。
Note that the degree of vacuum in the vacuum chamber (1) is kept constant during film formation by an exhaust device t19C.

次に、上述の方法で磁気テープを作成した実施例1.2
について説明する。
Next, Example 1.2 in which a magnetic tape was created using the method described above.
I will explain about it.

(実施例1) 下記の条件下でフィルム基板上(−磁性層を作成した。(Example 1) A magnetic layer was prepared on a film substrate under the following conditions.

蒸発材料      F e (99,99%)電子ビ
ーム電力   10.OKW フィルム送り速度  78m/min イオン電流の斜め入射角 第1イオン源(Ill   90 〜70゜第2イオン
源a3 70〜60゜ 第6イオン#fi3  60 〜55゜窒素イオン電流
密度 第1イオン源(lu   2mA/at第2イオン諒(
12120rnA/ai第6イオン源(13100mA
/− この条件下で膜厚0.2μmのFeN膜をフィルム基板
上に形成し、そのF e N 1%の深さ方向における
7eとNの濃度分布を第2図に示す。この第2因を見る
とこのFeN膜の深さ方向における組成分布は第7図1
−示した従来のFeN膜に比べてはるかに均一であるこ
とが分かる。
Evaporation material F e (99,99%) Electron beam power 10. OKW Film feed speed 78 m/min Oblique incidence angle of ion current First ion source (Ill 90 ~ 70° Second ion source a3 70 ~ 60° Sixth ion #fi3 60 ~ 55° Nitrogen ion current density First ion source ( lu 2mA/at second ion (
12120rnA/ai 6th ion source (13100mA
/- Under these conditions, a FeN film with a thickness of 0.2 μm was formed on a film substrate, and the concentration distribution of 7e and N in the depth direction of 1% FeN is shown in FIG. Looking at this second factor, the composition distribution in the depth direction of this FeN film is shown in Figure 7-1.
- It can be seen that the film is much more uniform than the conventional FeN film shown.

また、このF 8 N 11%の磁気特性は、保磁力(
HO)雪1050(oθ)、角形比(81−0,80,
飽和磁化(M a )−250”u/CCとなり、停止
フィルム基板上(:形成されたFeN膜とほぼ同等の結
果が得られた。また、耐摩耗性及び耐食性:二ついても
停止フィルム基板上に形成されたFlilN膜と比べ遜
色のない結果が得られた。
In addition, the magnetic properties of this F 8 N 11% are determined by the coercive force (
HO) Snow 1050 (oθ), squareness ratio (81-0, 80,
The saturation magnetization (M a ) was -250"u/CC, and almost the same result as the FeN film formed on the stop film substrate was obtained.Also, the wear resistance and corrosion resistance: The results were comparable to those of the FilN film formed in 1995.

(実施例2) 実施例1の条件において、窒化度を高めるために第1.
第2.第6イオン源αLlα2σ3を下記のとおり変更
してフィルム基板上:;磁性層を作成した。
(Example 2) Under the conditions of Example 1, in order to increase the degree of nitridation, the first.
Second. A magnetic layer was prepared on a film substrate by changing the sixth ion source αLlα2σ3 as follows.

イオン電流の斜め入射角 第1イオン源1υ   80〜65゜ 第2イオン源α21  65〜58゜ 第3イオン諒03  58〜55゜ 窒素イオン電流家糺 第1イオン源fill    2mA/j第2イオyf
fp、ri7J    10 m A/ cd第51オ
ン#113   150mA/jこの条件下で膜厚0.
2μmのFeN膜をフィルム基板上に形成し、そのFe
N膜の深さ方向CユおけるFeとNの濃度分布を第3図
に示す。この第6図を見ると膜表面に行く程、窒化度が
高くなっていることが分かる。
Oblique incidence angle of ion current First ion source 1υ 80 to 65° Second ion source α21 65 to 58° Third ion 03 58 to 55° Nitrogen ion current source First ion source fill 2 mA/j Second ion source yf
fp, ri7J 10 mA/cd 51st on #113 150mA/j Under these conditions, the film thickness was 0.
A 2 μm FeN film is formed on a film substrate, and the FeN film is
FIG. 3 shows the concentration distribution of Fe and N in the depth direction C of the N film. Looking at FIG. 6, it can be seen that the degree of nitridation increases toward the film surface.

また、このFeN膜の磁気特性は保持力(HQ)−98
0(Oe)、角形比−0,83,飽和磁化(M s )
−350emu/ca  となり、高い飽和磁化(Ma
)を有するFeN膜が得られた。また。
In addition, the magnetic properties of this FeN film are coercive force (HQ) -98
0 (Oe), squareness ratio -0.83, saturation magnetization (M s )
-350emu/ca, with high saturation magnetization (Ma
) was obtained. Also.

耐摩耗性、耐食性は共に、停止フィルム基板上に形成さ
れたFISN膜を上回った。
Both abrasion resistance and corrosion resistance exceeded FISN films formed on stop film substrates.

尚1本実施例では、蒸発材料としてFet−用いた場合
についてのみg及したが1本発明はこれ(=限定される
ものではなく、Feを主成分とした磁性材料、即ちFa
−Co、Fe−0r、Fe−N1及びそれらの合金を蒸
着材料として用いた場合にも有効である。
In this example, only the case where Fet was used as the evaporation material was described; however, the present invention is not limited to this, but a magnetic material mainly composed of
It is also effective when -Co, Fe-0r, Fe-N1, and alloys thereof are used as vapor deposition materials.

(ト1 発明の効果 本発明二値れば、深さ方向における磁性層の窒素濃度を
ほぼ均一(−することにより移動する非磁性基板上Cも
磁気特性、耐食性、及び耐摩耗性の優れた磁性層を形成
することを可能にした磁気記録媒体の製造方法を提供し
得る。
(G1) Effects of the Invention According to the present invention, by making the nitrogen concentration of the magnetic layer almost uniform in the depth direction (-), C on the moving non-magnetic substrate also has excellent magnetic properties, corrosion resistance, and wear resistance. A method for manufacturing a magnetic recording medium that makes it possible to form a magnetic layer can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明に係り、第1図は磁気テープ
の製造装置の断面図、第2図及び第3図は夫々、FIN
膜の深さ方向(:おける組成分布を示す因である。第4
図乃至第7図は従来例(−係り第4図及び第5図は夫々
磁気テープの製造装置の断面図、第6図及び第7図は夫
々、FIN膜の組成分布を示す図である。 (4)・・・磁性材料(Fe)(磁性金属) 、 (7
)・・・フィルム基板(非磁性基板)、 au’a(L
3・・・第1.第2゜第3イオン源、 C161(l加
a・・・イオン電流。
1 to 6 relate to the present invention, FIG. 1 is a sectional view of a magnetic tape manufacturing apparatus, and FIGS. 2 and 3 are FIN
This is a factor that indicates the composition distribution in the depth direction of the film.
7 to 7 are conventional examples (-) FIGS. 4 and 5 are sectional views of a magnetic tape manufacturing apparatus, respectively, and FIGS. 6 and 7 are views showing the composition distribution of a FIN film, respectively. (4)...Magnetic material (Fe) (magnetic metal), (7
)...Film substrate (non-magnetic substrate), au'a (L
3... 1st. 2nd ° 3rd ion source, C161 (l addition a... ion current.

Claims (1)

【特許請求の範囲】[Claims] (1)移動する非磁性基板上に磁性金属を斜方入射する
と共に、前記基板上に窒素イオンを照射することにより
前記基板上に磁性層を形成する磁気記録媒体の製造方法
において、前記非磁性基板の進行方向に沿つて配列され
た複数個のイオン源によつて前記窒素イオンを作成し、
前記イオン源からのイオン電流密度を前記磁性層の窒素
濃度が深さ方向に一定になるように個々に調整したこと
を特徴とする磁気記録媒体の製造方法。
(1) A method for manufacturing a magnetic recording medium in which a magnetic layer is formed on a moving non-magnetic substrate by obliquely injecting a magnetic metal onto the substrate and irradiating the substrate with nitrogen ions, the method comprising: creating the nitrogen ions with a plurality of ion sources arranged along the direction of movement of the substrate;
A method of manufacturing a magnetic recording medium, characterized in that the ion current density from the ion source is individually adjusted so that the nitrogen concentration of the magnetic layer is constant in the depth direction.
JP26228586A 1986-11-04 1986-11-04 Method of manufacturing magnetic recording medium and manufacturing apparatus used therefor Expired - Lifetime JPH0799581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26228586A JPH0799581B2 (en) 1986-11-04 1986-11-04 Method of manufacturing magnetic recording medium and manufacturing apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26228586A JPH0799581B2 (en) 1986-11-04 1986-11-04 Method of manufacturing magnetic recording medium and manufacturing apparatus used therefor

Publications (2)

Publication Number Publication Date
JPS63117320A true JPS63117320A (en) 1988-05-21
JPH0799581B2 JPH0799581B2 (en) 1995-10-25

Family

ID=17373660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26228586A Expired - Lifetime JPH0799581B2 (en) 1986-11-04 1986-11-04 Method of manufacturing magnetic recording medium and manufacturing apparatus used therefor

Country Status (1)

Country Link
JP (1) JPH0799581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184926A (en) * 1987-01-28 1988-07-30 Fuji Photo Film Co Ltd Method and apparatus for producing thin film type magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63184926A (en) * 1987-01-28 1988-07-30 Fuji Photo Film Co Ltd Method and apparatus for producing thin film type magnetic recording medium

Also Published As

Publication number Publication date
JPH0799581B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
EP0053811B1 (en) Magnetic recording media
JPS5961105A (en) Magnetic recording medium
JPS6153770B2 (en)
JPS63152017A (en) Magnetic recording medium
JPS63117320A (en) Production of magnetic recording medium
JPH0582652B2 (en)
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
JPS5974606A (en) Magnetic recording medium
JP3665906B2 (en) Magnetic recording medium
JP2785272B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPS6154040A (en) Manufacture of magnetic recording medium
JPS60217531A (en) Production of magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH0451888B2 (en)
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JPS60209927A (en) Magnetic recording medium and its production
JPH09128751A (en) Production of magnetic recording medium
JPS63152018A (en) Magnetic recording medium
JPH028371B2 (en)
JPH1092683A (en) Manufacturing method of magnetic recording medium
JPH04238109A (en) Magnetic recording medium
JPS6262430A (en) Production of magnetic recording medium
JPH0125144B2 (en)