JPS6018912A - Thin film formation by vacuum evaporation - Google Patents

Thin film formation by vacuum evaporation

Info

Publication number
JPS6018912A
JPS6018912A JP12819183A JP12819183A JPS6018912A JP S6018912 A JPS6018912 A JP S6018912A JP 12819183 A JP12819183 A JP 12819183A JP 12819183 A JP12819183 A JP 12819183A JP S6018912 A JPS6018912 A JP S6018912A
Authority
JP
Japan
Prior art keywords
electron beam
crucible
evaporation
width
supporting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12819183A
Other languages
Japanese (ja)
Other versions
JPH0330971B2 (en
Inventor
Tetsuo Tatsuno
龍野 哲男
Setsu Arikawa
有川 節
Hiroshi Takahashi
弘 高橋
Kikuo Inoue
井上 喜久雄
Fujio Hirouchi
広内 富士夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIKO ENG KK
Taiyo Yuden Co Ltd
Original Assignee
EIKO ENG KK
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EIKO ENG KK, Taiyo Yuden Co Ltd filed Critical EIKO ENG KK
Priority to JP12819183A priority Critical patent/JPS6018912A/en
Publication of JPS6018912A publication Critical patent/JPS6018912A/en
Publication of JPH0330971B2 publication Critical patent/JPH0330971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To make the width of a slot of a mask to be made large some extent and improve vertical magnetic characteristics by fixing an incident angle of an evaporation stream against a supporting material surface within a predetermined narrow range. CONSTITUTION:A high polymer film as a supporting material 1 is paid off from one roller 3 and laid along a cooling drum 2 and taken up by another roller 4. A mask 5 is provided between the drum 2 and a crucible 6 and a slit 7 is opened in the mask 5 on a center line Z connecting the center of the drum 2 and the center of the crucible 6. A deposition material S is contained in the crucible 6 and the material S is irradiated by an electron beam EB. The material S is heated and evaporated by the irradiation and incides against the surface of the supporting material 1 through the slit 7. The irradiation point of the electron beam EB is scanned along the width direction of the supporting material 1 only and at the same time the crucible 6 is moved along the running direction of the supporting material 12 while the deposition is carried out and the vertical magnetic characteristics of the supporting material 1 is improved.

Description

【発明の詳細な説明】 この発明は、真空蒸着により、基材の表面に薄膜を形成
させる方法に関するものであって、さらに限定していう
と、磁気テープ等の磁気記録体を製作するに際し、高分
子フィルム等の基材の表面に磁性金属、その他の蒸着材
料を垂直に入射させて真空蒸着を行うことにより、垂直
磁化膜やその下地膜等を形成する方法に関するものであ
る。
Detailed Description of the Invention The present invention relates to a method of forming a thin film on the surface of a base material by vacuum evaporation. The present invention relates to a method of forming a perpendicularly magnetized film, its base film, etc. by vertically injecting a magnetic metal or other vapor deposition material onto the surface of a substrate such as a molecular film and performing vacuum vapor deposition.

画像処理や情報処理等の分野で記録媒体として磁気テー
プ等の磁気記録体が多用されるに伴い、各種磁気記録方
式の開発や実用化が図られている。このような中で、近
年高密度の磁気記録方式として垂直磁気記録方式が注目
され、実用化に向け、記録方式、ヘッド、記録媒体等、
様々な方面からの技術改良が行われている。
2. Description of the Related Art As magnetic recording bodies such as magnetic tapes are increasingly used as recording media in fields such as image processing and information processing, various magnetic recording methods are being developed and put into practical use. Under these circumstances, in recent years, perpendicular magnetic recording has attracted attention as a high-density magnetic recording method.
Technological improvements are being made from various directions.

現在用いられている垂直磁気記録体は、スパッタリング
法や真空蒸着法により、高分子フィルム等、非磁性材料
からなる基材の表面に直接、またはパーマロイ等の高透
磁率材料の薄膜(下地膜)を介して、COとCrを主成
分とする磁性金属の薄膜(磁化膜)を凝着させたものが
主である。このうち、スパッタリング法は、生産性が低
いため、工業的に量産するのに幾つかの問題を残してい
るが、他方の真空蒸着法は、生産性に優れ、工業生産に
適した方法として有望視されている。
Currently used perpendicular magnetic recording media are produced by sputtering or vacuum deposition directly onto the surface of a base material made of non-magnetic material such as a polymer film, or by forming a thin film (base film) of high magnetic permeability material such as permalloy. The main type is a thin film (magnetized film) of a magnetic metal whose main components are CO and Cr adhered to each other through a film. Among these, the sputtering method has low productivity and has some problems in industrial mass production, but the other vacuum evaporation method has excellent productivity and is promising as a method suitable for industrial production. being watched.

真空蒸着法による垂直磁気記録体の製作に際己てば、C
軸配向性を高めるため、基材の表面に対して蒸着材料の
蒸発気流を垂直に入射させる必要がある。しかし、真空
蒸着法において蒸発気流の入射角を規制する場合は、マ
スクに開設した成る程度の幅を持つスリット(照射窓)
により行うため、蒸発気流の入射角は、基材の表面に垂
直に入射する成分を中心として現実には成る程度の幅を
持っている。
When producing a perpendicular magnetic recording medium using the vacuum evaporation method, C
In order to improve the axial orientation, it is necessary to make the evaporation airflow of the evaporation material perpendicular to the surface of the base material. However, when regulating the incident angle of the evaporation air flow in the vacuum evaporation method, it is necessary to use a slit (irradiation window) with a certain width opened in the mask.
Therefore, the angle of incidence of the evaporation air flow has a width that can actually be achieved with the component that is incident perpendicularly to the surface of the base material as the center.

また、蒸着月料の加熱蒸発は、これに電子線を照射する
ことによって行うが、この場合、基材の表面に均一な磁
化膜や下地膜を形成し、同時に坩堝内の蒸着材料か万遍
なく蒸発するよう上記電子線を蒸着材料の表面において
掃引しながら照射する。ところが、この掃引に伴って電
子線の照射点をスリットに対して移動させると、蒸発気
流の発射点も移動することから、同金属の基材表面への
入射角の範囲も変動することになる。
In addition, the vapor-deposited material is heated and evaporated by irradiating it with an electron beam. In this case, a uniform magnetized film or base film is formed on the surface of the base material, and at the same time, the vapor-deposited material in the crucible is uniformly evaporated. The electron beam is irradiated while sweeping the surface of the evaporation material so as to evaporate the material without any evaporation. However, if the irradiation point of the electron beam is moved relative to the slit along with this sweep, the emission point of the evaporated air stream also moves, and the range of the angle of incidence on the surface of the metal base material also changes. .

周知の通り、C軸配向性と基材表面への蒸着材料の入射
角とは密接な関係があり、さらに磁気記録体の垂直磁気
特性は、上記C軸配向性に大きな影響を受ける。従って
、垂直磁気特性の向上のためには、上記蒸発気流の入射
角の幅を許容できる範囲に抑えなければならない。
As is well known, there is a close relationship between the C-axis orientation and the incident angle of the vapor-deposited material onto the surface of the substrate, and the perpendicular magnetic properties of the magnetic recording medium are greatly influenced by the C-axis orientation. Therefore, in order to improve the perpendicular magnetic properties, the width of the incident angle of the evaporative air flow must be kept within an allowable range.

この点の問題を第1図によりさらに具体的に説明すると
、いまここでは、磁気記録体として磁気テープを製作す
る場合の例が示されている。
To explain this problem in more detail with reference to FIG. 1, an example is shown in which a magnetic tape is manufactured as a magnetic recording medium.

基材1となるテープ状の高分子フィルムは、一方のロー
ラ3からから冷却ドラム2に添えられた後、他方のロー
ラ4に巻き取られる。冷却ドラム2と坩堝6の間には、
マスク5があって、同マスク5には、冷却ドラム2と坩
堝6の中心を結んだ中心線Z上にスリット7が開設され
ている。坩堝6に収納された蒸着材料Sには、電子線E
Bが照射されるようになっており、これによって加熱蒸
発された同材料Sの蒸発気流が、上記スリット7を通過
して基材1の表面に入射する。
A tape-shaped polymer film serving as the base material 1 is applied to the cooling drum 2 from one roller 3 and then wound onto the other roller 4. Between the cooling drum 2 and the crucible 6,
There is a mask 5 in which a slit 7 is formed on a center line Z connecting the centers of the cooling drum 2 and the crucible 6. An electron beam E is applied to the vapor deposition material S stored in the crucible 6.
B is irradiated, and an evaporation airflow of the same material S, which is heated and evaporated thereby, passes through the slit 7 and enters the surface of the base material 1.

いまこごで冷却ドラム2の中心から蒸着材料S表面まで
の距離を2.同ドラム2の半径をR。
At this point, the distance from the center of the cooling drum 2 to the surface of the vapor deposition material S is set to 2. The radius of drum 2 is R.

スリット7の幅を上記中心線Zがら図中左右にそれぞれ
dとすると、基材1の表面に入射する蒸発気流の最大入
射角θmは、近似的に次式でめることができる。
Assuming that the width of the slit 7 is d on the left and right sides of the figure from the center line Z, the maximum incident angle θm of the evaporation air flow that enters the surface of the base material 1 can be approximately determined by the following equation.

θm #(d / R) 、 X Z / (z R)
即ぢ、この場合は、入射角がOを中心として±θmの幅
で存在することが示されている。
θm #(d/R), XZ/(zR)
That is, in this case, it is shown that the incident angle exists in a width of ±θm with O as the center.

ところが、電子線EBの掃引によって、その照射点が中
心線Zを中心として図中左右に移動することから、これ
に伴う蒸発気流の発射点の移動により、実際には最大入
射角がΔθだげ増加し、結局蒸発気流は、基材1の表面
に対して±(θ4.+Δθ)の範囲の入射角成分を含む
ことになる。
However, due to the sweep of the electron beam EB, its irradiation point moves left and right in the figure around the center line Z, and due to the accompanying movement of the emission point of the evaporation air flow, the maximum incident angle actually changes by Δθ. As a result, the evaporation air flow includes an incident angle component in the range of ±(θ4.+Δθ) with respect to the surface of the base material 1.

いま照射点の移動による上記中心線Zがらの照射点の最
大移動距離を図中左右にそれぞれXとすると、同照射点
が上記中心線Zから最も離れたときの最大入射角θ17
1の増加分Δθは、Δθ#x/ (z−R) となる;この式から明らかな通り、上記増加分Δθは、
Xが大きく、(z−R)が小さくなる程大きくなる。換
言すれば、電子線EBの照射点の移動幅2xが小さく、
蒸着材料Sから冷却ドラム2までの距離(z−R’)、
即ち蒸着材料Sから基材1までの距離を離す程上記Δθ
を小さくすることができる。
Now, if the maximum movement distance of the irradiation point from the center line Z due to the movement of the irradiation point is X to the left and right in the figure, then the maximum incident angle θ17 when the irradiation point is farthest from the center line Z is
The increment Δθ of 1 becomes Δθ#x/ (z−R); as is clear from this formula, the above increment Δθ is
It becomes larger as X becomes larger and (z-R) becomes smaller. In other words, the movement width 2x of the irradiation point of the electron beam EB is small,
Distance from vapor deposition material S to cooling drum 2 (z-R'),
That is, as the distance from the vapor deposition material S to the base material 1 increases, the above Δθ
can be made smaller.

しかしながら、照射点の移動幅2xを小さくすることは
、即ち坩堝6の容積を小さくすることであり、また、蒸
着材料Sから基材1までの距離を離すことは、磁気記録
体の製造装置が大型化されることであり、何れも製造上
不利な条件を含んでいる。殊に、最大入射角θmが小さ
な範囲では、蒸着効率ηが上記距離(z−R)に反比例
することから、冷却ドラム2と蒸発気流の発射点との距
離を離すことは、蒸着効率ηを低下させる原因となる。
However, reducing the moving width 2x of the irradiation point means reducing the volume of the crucible 6, and increasing the distance from the evaporation material S to the base material 1 means that the magnetic recording body manufacturing apparatus Both of these include disadvantageous conditions in terms of manufacturing. In particular, in a range where the maximum incident angle θm is small, the vapor deposition efficiency η is inversely proportional to the distance (z-R), so increasing the distance between the cooling drum 2 and the ejection point of the evaporative air flow increases the vapor deposition efficiency η. This causes a decrease in the amount of water.

これらの問題は、上記のような垂直磁化膜の形成におい
てのみならず、蒸着材料を基材1の表面に垂直に入射さ
せる必要がある全ての場合に共通して存在する。例えば
、垂直磁気記録体ノ製造ニオいて、基材1表面にパーマ
ロ仁Ti等の下地膜を介して磁化膜を形成する場合、そ
の下地膜の形成に際して、上記材料の蒸発気流を基材の
表面に対して垂直に入射させて蒸着する必要があり、従
ってこの場合も上記と同様の問題を含むことになる。
These problems exist not only in the formation of a perpendicularly magnetized film as described above, but also in all cases where it is necessary to make the vapor deposition material perpendicular to the surface of the base material 1. For example, when manufacturing a perpendicular magnetic recording material, when forming a magnetized film on the surface of the base material 1 via a base film such as permalonite Ti, when forming the base film, the evaporation air flow of the above material is directed to the surface of the base material. It is necessary to make the deposition perpendicular to the incident light, and therefore this case also involves the same problems as above.

この発明は、真空蒸着法により垂直磁化膜やその下地膜
等を形成する場合の上記問題を解消すべくなされたもの
であって、基材1の走行方向における電子線EBの照射
点を固定することにより、最大入射角θTllを固定し
、これを磁気記録体の性能上許容できる範囲に抑えると
共に、蒸着効率ηの向上を図ったものである。以下、こ
の発明の構成をその実施例と共に詳細に説明する。
This invention was made to solve the above-mentioned problems when forming a perpendicularly magnetized film, its base film, etc. by vacuum evaporation, and fixes the irradiation point of the electron beam EB in the running direction of the base material 1. As a result, the maximum incident angle θTll is fixed, suppressed within an allowable range for the performance of the magnetic recording medium, and the deposition efficiency η is improved. Hereinafter, the configuration of the present invention will be explained in detail together with its embodiments.

この発明による方法では、電子線EBの照射点を基材1
の幅方向にのみ掃引させると共に、坩堝6を電子線EB
の照射点に対して基材1の走行方向に移動さながら蒸着
を行う。即ち、電子線EBの照射点を基材1の幅方向に
移動させながら、同器材1の走行方向については、絶対
的にその位置を固定し、これに対して坩堝6、即ち蒸着
材料S側を相対的に移動させるものである。このため、
電子線EBの照射により蒸着材料Sから発射される蒸発
気流の発射点(電子線EBの照射点と同じ位置)は、上
記基材1及びマスク5に対して同基材1の走行方向へは
移動せず、同蒸発気流の最大入射角θmが、常に一定の
角度に固定される。
In the method according to the present invention, the irradiation point of the electron beam EB is
The crucible 6 is swept only in the width direction of the electron beam EB.
Vapor deposition is performed while moving in the running direction of the base material 1 with respect to the irradiation point. That is, while moving the irradiation point of the electron beam EB in the width direction of the base material 1, the position is absolutely fixed in the running direction of the device 1, whereas the crucible 6, that is, the vapor deposition material S side This is to move the relative. For this reason,
The emission point of the evaporation air flow emitted from the vapor deposition material S by irradiation with the electron beam EB (the same position as the irradiation point of the electron beam EB) is located in the traveling direction of the base material 1 with respect to the base material 1 and the mask 5. It does not move, and the maximum incident angle θm of the evaporation air flow is always fixed at a constant angle.

このことから、従来の場合に比べて、電子線EBの掃引
照射によって生していた上記最大入射角θmの増加分Δ
θだけ同最大入射角θmを小さくすることができる。換
言すれば、最大入射角θ、を従来の場合と同じ角度に抑
える限り、スリット7の幅をそれだけ広く開くことがで
きる。いまここでスリット7の幅をΔdだけ広くするこ
とができるものとし、同スリット7の幅をd’=d+Δ
dとすると、Δd=x(R/Z)であるから、 d ’ −d+x (R/z) となる。
From this, compared to the conventional case, the increase Δ in the maximum incident angle θm caused by the sweeping irradiation of the electron beam EB
The maximum incident angle θm can be reduced by θ. In other words, as long as the maximum incident angle θ is kept to the same angle as in the conventional case, the width of the slit 7 can be made wider. Now, suppose that the width of the slit 7 can be increased by Δd, and the width of the slit 7 is d'=d+Δ
If d, then Δd=x(R/Z), so d'-d+x(R/z).

ここで、蒸着効率ηは、上記スリット7の幅dに比例す
ることから、同スリット7の幅がdの場合とd′の場合
における蒸着効率をそれぞれη、η′とすると、その比
は次の式でめられる。
Here, since the vapor deposition efficiency η is proportional to the width d of the slit 7, if the vapor deposition efficiency when the width of the slit 7 is d and d' are respectively η and η', the ratio is as follows. It is determined by the formula.

η′/η−1+ (x/d) (R/z)この場合、(
x/d)は楯ね1 、(R/ z )は1/2前後であ
るから、スリット7の幅をd′とすることによって蒸着
効率を50%程度向上させることができることになる。
η'/η-1+ (x/d) (R/z) In this case, (
Since x/d) is the shield 1 and (R/z) is about 1/2, the vapor deposition efficiency can be improved by about 50% by setting the width of the slit 7 to d'.

次ぎに、上記理論的効果を追認するため行った試験の結
果を実施例1及び2として以下に説明する。
Next, the results of tests conducted to confirm the above theoretical effects will be described below as Examples 1 and 2.

(実施例1) 75w t%のCoと25w t%のCrとからなる合
金を、厚さ10μ5幅150m+aのポリエチレンテレ
フタレートからなるテープに、入射角を垂直方向に規制
したマスクを介して真空蒸着する。この場合に、上記蒸
着材料を収納した坩堝を上記テープの走行方向に40m
m/secの速度で±40龍幅の間を移動させながら蒸
着を行った。なお、その他の条件は、次の通りである。
(Example 1) An alloy consisting of 75wt% Co and 25wt% Cr is vacuum-deposited onto a polyethylene terephthalate tape with a thickness of 10μ5 and a width of 150m+a through a mask that regulates the incident angle in the vertical direction. . In this case, the crucible containing the vapor deposition material is placed 40 m in the running direction of the tape.
Vapor deposition was performed while moving between ±40 widths at a speed of m/sec. In addition, other conditions are as follows.

冷却ドラム半径=250關 テープの走行速度:2〜10m/min蒸着材料から冷
却ドラムまでの距離: 500mm蒸着雰囲気: 5 
X 10’ Torr電子線の照射点直径:3關 これに対し比較のため、比較例1として上記と同じ蒸着
条件で坩堝側を固定し、電子線をテープの走行方向に±
40mmの幅をもって49wm/secの速度で掃引照
射させながら蒸着を行った。
Cooling drum radius = 250 Tape running speed: 2 to 10 m/min Distance from vapor deposition material to cooling drum: 500 mm Vapor deposition atmosphere: 5
X 10' Torr Electron beam irradiation point diameter: 3 For comparison, as Comparative Example 1, the crucible side was fixed under the same vapor deposition conditions as above, and the electron beam was oriented ± in the tape running direction.
Vapor deposition was performed while sweeping irradiation with a width of 40 mm at a speed of 49 wm/sec.

そしてこれらの各場合について、それぞれマスクによっ
て規制される上記テープ表面に対する蒸発気流の最大入
射角θmを横軸にとり、蒸着膜の膜厚を3,000八と
したときのC軸配向性を示す(002)面に関するロッ
キングカーブの半値幅Δθ5oを縦軸にとって、これら
の関係を示した図表が第2図である。また、この図表で
は、上記最大入射角θmと蒸着効率ηとの関係を点線で
示しである。
For each of these cases, the horizontal axis is the maximum incident angle θm of the evaporated air flow with respect to the tape surface regulated by the mask, and the C-axis orientation is shown when the thickness of the evaporated film is 3,000 mm ( FIG. 2 is a chart showing these relationships, with the vertical axis representing the half-width Δθ5o of the rocking curve for the 002) surface. Further, in this chart, the relationship between the maximum incident angle θm and the vapor deposition efficiency η is shown by a dotted line.

この結果から明らかな通り、実施例1では、蒸着膜のロ
ッキングカーブの半値幅Δθ5oが10°の場合、蒸着
効率ηが26%であるのに対し、比較例1では、これが
19.5%であり、前者が後者に比べて優れていること
が理解できる。
As is clear from this result, in Example 1, when the half-value width Δθ5o of the rocking curve of the deposited film is 10°, the deposition efficiency η is 26%, whereas in Comparative Example 1, this is 19.5%. It can be seen that the former is superior to the latter.

(実施例2) 70w t%のCoと30wt%のNiとからなる合金
を、厚さ10μ1幅150龍のポリエチレンテレツクレ
ートからなるテープに、酸素ガスを導入しつつ入射角を
垂直方向に規制したマスクを介して真空蒸着するに際し
、上記実施例と同じ幅及び速度で坩堝を上記テープの走
行方向に移動させながら蒸着を行った。この場合の蒸着
条件は、上記実施例1と同じである。
(Example 2) An alloy consisting of 70wt% Co and 30wt% Ni was placed on a tape made of polyethylene telecrate with a thickness of 10 μm and a width of 150 mm, and the incident angle was regulated in the vertical direction while introducing oxygen gas. When performing vacuum deposition through a mask, the deposition was performed while moving the crucible in the running direction of the tape at the same width and speed as in the above example. The vapor deposition conditions in this case are the same as in Example 1 above.

これに対し比較のため、上記比較例1と同じ条件で坩堝
側を固定し、電子線をテープの走行方向に掃引照射させ
ながら蒸着を行い、これを比較例2とした。
On the other hand, for comparison, vapor deposition was carried out under the same conditions as in Comparative Example 1, with the crucible side fixed and the electron beam being swept in the running direction of the tape, and this was designated as Comparative Example 2.

そして、上記実施例1の場合と同様、最大入射角θmと
蒸着膜のロッキングカーブの半値幅Δθ5oとの関係を
上記比較例2と共に図表として示したのが第3図である
。この場合も、」1記実施例1と同様のことが理解でき
る。
As in the case of Example 1, FIG. 3 shows the relationship between the maximum incident angle θm and the half-width Δθ5o of the rocking curve of the deposited film as a graph together with Comparative Example 2. In this case as well, it can be understood that the same thing as in 1. Example 1 can be understood.

以上のようにして、この発明によれば、真空蒸着によっ
て高分子フィルム等の基材表面に磁化膜等の薄膜を形成
させるような場合に、基材表面に対する蒸発気流の入射
角を成る定められた狭い範囲に固定できることから、総
じて垂直磁気特性の優れた磁気記録体を製作することが
できる。また、蒸発気流の入射角を一定の範囲に抑える
場合に、マスクのスリットの幅を成る程度広く開くこと
ができることから、蒸着効率の向上を図ることができる
As described above, according to the present invention, when a thin film such as a magnetized film is formed on the surface of a substrate such as a polymer film by vacuum evaporation, the incident angle of the evaporation air flow with respect to the surface of the substrate is determined. Since it can be fixed within a narrow range, it is possible to manufacture a magnetic recording medium with generally excellent perpendicular magnetic properties. Further, when the incident angle of the evaporation air flow is suppressed within a certain range, the width of the slit in the mask can be widened to a certain degree, so that the vapor deposition efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明による方法を示す説明図、第2図及
び第3図は、その実施例における蒸発気流の最大入射角
と蒸着膜のロッキングカーブの半値幅との関係をそれぞ
れ比較例と共に示した図表である。 1−基材 5−マスク 6−坩堝 EB−電子線 S・−・蒸着材料 特許出願人 太陽誘電株式会社 同 上 株式会社エイコーエンジニアリング 代理人 弁理士 北條和由 $1図 82図 Δeso ’) 第3図 第1頁の続き ■出 願 人 株式会社エイコーエンジニアリング 水戸市酒門町字千束4254番地の
FIG. 1 is an explanatory diagram showing the method according to the present invention, and FIGS. 2 and 3 show the relationship between the maximum incident angle of the evaporation air flow and the half-width of the rocking curve of the deposited film in the example, respectively, together with a comparative example. This is the diagram shown. 1 - Base material 5 - Mask 6 - Crucible EB - Electron beam S... Vapor deposition material Patent applicant Taiyo Yuden Co., Ltd. Same as above Eiko Engineering Co., Ltd. Representative patent attorney Kazuyoshi Hojo $ 1 Figure 82 Figure Δeso') 3rd Continuing from Figure 1st page ■Applicant Eiko Engineering Co., Ltd. 4254 Senzoku, Sakamon-cho, Mito City

Claims (1)

【特許請求の範囲】[Claims] 1、電子線の照射により、真空状態の中で磁性金属等の
蒸着材料を加熱蒸発し、入射角規制用のマスクを通して
上記蒸発気流を一定方向に走行する高分子フィルム等の
基材の表面に垂直に入射させ、これを同表面に凝着させ
て、垂直磁化膜やその下地膜等の薄膜を形成させるよう
にした真空蒸着による薄膜形成方法において、電子線の
照射点を同基材の幅方向にのみ掃引させると共に、蒸着
材料が収納された坩堝を、上記基材の走行方向に移動さ
せながら上記蒸着を行うようにしたことを特徴とする真
空蒸着による薄膜形成方法
1. By irradiating an electron beam, a deposition material such as a magnetic metal is heated and evaporated in a vacuum state, and the evaporation air flow is passed in a fixed direction through a mask for regulating the incident angle onto the surface of a base material such as a polymer film. In a thin film formation method using vacuum evaporation, in which the electron beam is incident perpendicularly on the same surface and is adhered to the same surface to form a thin film such as a perpendicularly magnetized film or its base film, the irradiation point of the electron beam is set to the width of the substrate. A method for forming a thin film by vacuum evaporation, characterized in that the evaporation is performed while the crucible containing the evaporation material is moved in the traveling direction of the substrate.
JP12819183A 1983-07-13 1983-07-13 Thin film formation by vacuum evaporation Granted JPS6018912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12819183A JPS6018912A (en) 1983-07-13 1983-07-13 Thin film formation by vacuum evaporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12819183A JPS6018912A (en) 1983-07-13 1983-07-13 Thin film formation by vacuum evaporation

Publications (2)

Publication Number Publication Date
JPS6018912A true JPS6018912A (en) 1985-01-31
JPH0330971B2 JPH0330971B2 (en) 1991-05-01

Family

ID=14978698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12819183A Granted JPS6018912A (en) 1983-07-13 1983-07-13 Thin film formation by vacuum evaporation

Country Status (1)

Country Link
JP (1) JPS6018912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158861A (en) * 1985-12-28 1987-07-14 Ishikawajima Harima Heavy Ind Co Ltd Ion plating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158861A (en) * 1985-12-28 1987-07-14 Ishikawajima Harima Heavy Ind Co Ltd Ion plating device

Also Published As

Publication number Publication date
JPH0330971B2 (en) 1991-05-01

Similar Documents

Publication Publication Date Title
JPS5961105A (en) Magnetic recording medium
JPS6018912A (en) Thin film formation by vacuum evaporation
JPH06150289A (en) Magnetic recording medium and its manufacture
JP2001143235A (en) Magnetic recording medium, its manufacturing method and manufacturing device
JP3139181B2 (en) Manufacturing method of magnetic recording medium
JP2548232B2 (en) Method of manufacturing magnetic recording medium
US5505993A (en) Application of a thin metal layer to a polymeric substrate
JP2785272B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2546268B2 (en) Perpendicular magnetic recording media
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS5812133A (en) Production of magnetic recording medium
JP3446356B2 (en) Thin film manufacturing method and manufacturing apparatus
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JP2794662B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPH0319617B2 (en)
JPH01220216A (en) Magnetic recording medium
JPS59175036A (en) Production of magnetic recording medium
JPH06176360A (en) Production of magnetic recording medium
JPH0334614B2 (en)
JPH07220272A (en) Production of magnetic recording medium and device therefor
JPH06333225A (en) Thin film magnetic recording medium
JPH10312537A (en) Apparatus for producing magnetic recording medium
JPS58139338A (en) Manufacture of magnetic recording medium
JPH0121534B2 (en)
JPH11296854A (en) Manufacturing device of magnetic recording medium