JPH053052B2 - - Google Patents

Info

Publication number
JPH053052B2
JPH053052B2 JP57230340A JP23034082A JPH053052B2 JP H053052 B2 JPH053052 B2 JP H053052B2 JP 57230340 A JP57230340 A JP 57230340A JP 23034082 A JP23034082 A JP 23034082A JP H053052 B2 JPH053052 B2 JP H053052B2
Authority
JP
Japan
Prior art keywords
magnetic recording
oxygen gas
cylindrical
recording medium
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57230340A
Other languages
Japanese (ja)
Other versions
JPS59124035A (en
Inventor
Kunio Wakai
Tsunemi Ooiwa
Hideaki Niimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP23034082A priority Critical patent/JPS59124035A/en
Publication of JPS59124035A publication Critical patent/JPS59124035A/en
Publication of JPH053052B2 publication Critical patent/JPH053052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は強磁性金属薄膜層を記録層とする磁
気記録媒体の製造方法に関し、その目的とすると
ころは特に磁気特性に優れた前記の磁気記録媒体
の製造方法を提供することにある。 強磁性金属薄膜層を記録層とする磁気記録媒体
は、通常、プラスチツクフイルムなどの基板を真
空蒸着装置内に取りつけた円筒状キヤンの周側面
に沿つて移動させ、この基板に強磁性材料を真空
蒸着することによつてつくられており、磁気特性
に優れた前記の磁気記録媒体を製造する場合に
は、斜め入射蒸着を行なつたり、また基板近傍に
種々の方法で酸素ガスを導入して酸素ガス雰囲気
中で真空蒸着したりしている。 ところが、単に斜め入射蒸着を行なうだけでは
それほど大きな保磁力が得られず、また従来の方
法で基板近傍を酸素ガス雰囲気にして真空蒸着を
行なう場合にも保磁力が充分に向上されない。 この発明者らはかかる現状に鑑み種々検討を行
なつた結果、真空雰囲気内で、円筒状キヤンの周
側面に沿つて移動する基板に、強磁性材を加熱蒸
発させて得た蒸気流をその入射角が20°以上とな
るように差し向けるとともに、最小入射角となる
部分に集中的に酸素ガス等の反応性ガスを吹きつ
け、反応性ガスの分圧と強磁性材の蒸着速度の比
(反応性ガス分圧/蒸着速度)を1×10-5〜1×
10-8トール・sec/Åの範囲内にして真空蒸着を
行うと、保磁力および角型の良好な強磁性金属薄
膜層が形成されて磁気特性に優れた磁気記録媒体
が得られることを見いだし、この発明をなすに至
つた。 即ち、この発明は真空蒸着を斜め入射蒸着によ
つて行なうとともにこの斜め入射蒸着時に最小入
射角となる部分に集中的に酸素ガス等の反応性ガ
スを吹きつけ、反応性ガスの分圧と強磁性材の蒸
着速度の比(反応性ガス分圧/蒸着速度)を1×
10-5〜1×10-8トール・sec/Åの範囲内にする
ことを特徴とするもので、反応性ガスを特に最小
入射角となる部分に集中的に吹きつけることによ
つて強磁性材と反応性ガスとの反応性蒸着を一段
と効率よくするとともに強磁性材を基板状に良好
に折出させて保磁力および角型を一段と向上した
ものである。 以下、図面を参照しながらこの発明について説
明する。 第1図は真空蒸着装置の断面図を示したもので
あり、1は真空槽でこの真空槽1の内部は排気系
2により真空に保持される。3は真空槽1の中央
部に配設された円筒状キヤンであり、プラスチツ
クフイルム等の基板4は原反ロール5よりガイド
ローラ6を介してこの円筒状キヤン3の周側面に
沿つて移動し、ガイドローラ7を介して巻き取り
ロール8に巻き取られる。この間円筒状キヤン3
の周側面に沿つて移動する基板4に対向して真空
槽1の下底に配設された強磁性材蒸発源9で強磁
性材10が加熱蒸発され、この蒸発が円筒状キヤ
ン3の下方に設置された防着板11の作用で基板
4に斜め入射蒸着されるが、このとき同時に円筒
状キヤン3の近傍に導入配設されたガス導入管1
2から最小入射角となる部分に反応性ガスが集中
的に吹きつけられる。このように反応性ガスが最
小入射角となる部分に集中的に吹きつけられると
基板4上に折出される強磁性材粒子の初期の成長
が阻害されることもなく、折出速度の最も早い最
小入射角となる部分で反応性ガスが最も有効に作
用するため強磁性材と反応性ガスとの反応性蒸着
が効率よく行なわれ、保持力および角型が一段と
優れた磁気記録媒体が得られる。 斜め入射蒸着する際の入射角αは、20°より小
さくすると基板4上に析出する強磁性材の成長が
良好に行なわれず保磁力を充分に向上することが
できないため20°以上にするのが好ましい。 また、斜め入射蒸着の際、基板4に吹きつける
反応性ガスは最小入射角とする部分に集中的に吹
きつけるのが好ましく、この部分では強磁性材の
折出速度が最も早く反応性ガスが最も有効に作用
するため強磁性材と反応性ガスとの反応性蒸着が
効率よく行なわれ、保持力および角型が一段と向
上する。これに対して反応性ガスを最大入射角と
なる部分に吹きつけた場合には基板上に折出する
強磁性材粒子の初期の成長が阻害されてかえつて
保磁力および角型が低下し、また円筒状キヤンの
周側面に沿つて移動する基板に均一に差し向けた
のでは保磁力および角型を充分に向上することが
できない。 最小入射角となる部分に吹きつける反応性ガス
のガス圧は、強磁性材の蒸着速度と密接に関係
し、反応性ガスの分圧と蒸着速度の比(反応性ガ
ス分圧/蒸着速度)と得られる磁気記録媒体の保
磁力とは相関関係があつてこの比の値が1×10-5
〜1×10-8トール・sec/Åのとき最も良好な保
磁力が得られる。このためこのような条件下で斜
め入射蒸着を行なうのが好ましく、このような方
法で真空蒸着を行なうと真空槽内全体を反応性ガ
ス雰囲気に保持する場合に比べて格段と保磁力お
よび角型が向上される。 反応性ガスとしては、酸素ガスが良好なものと
して使用され、この他窒素ガス、アルゴンガス、
ヘリウムガス等も好適なものとして使用される。 基板としては、ポリエステル、ポリイミド、ポ
リアミド等一般に使用されている高分子成形物か
らなるプラスチツクスフイルムおよび銅などの非
磁性金属からなる金属フイルムが使用され、ま
た、強磁性金属薄膜層を形成する強磁性材として
は、コバルト、ニツケル、鉄などの金属単体の
他、これらの合金あるいは酸化物、およびCo−
P、Co−Ni−Pなど一般に真空蒸着に使用され
る強磁性材がいずれも使用される。 次に、この発明の実施例について説明する。 実施例 1 第1図に示す真空蒸着装置を使用し、約10μ厚
のポリエステルベースフイルム4を、原反ロール
5よりガイドローラ6を介して直径25cmの円筒状
キヤン3の周側面に沿つて移動させ、ガイドロー
ラ7を介して巻き取りロール8に巻き取るように
セツトするとともに、蒸発源9内にコバルト−ニ
ツケル合金(重量比8:2)10をセツトした。
次いで排気系2で真空槽1内を約5×10-6トール
にまで真空排気し、コバルト−ニツケル合金10
を加熱蒸発させて入射角50°で斜め入射蒸着を開
始すると同時に、ガス導入管12か最小入射角と
なる部分に酸素ガスを種々にガス圧を変化させて
吹きつけ、ポリエステルベースフイルム4上にコ
バルト−ニツケル合金からなる磁性層を形成して
多数の磁気記録媒体をつくつた。なおガス導入管
12はそのノズル先端から円筒状キヤン3の軸心
までの距離が20cmとなるように配設して使用し
た。 第2図はこのようにして得られた磁気記録媒体
の保磁力と、蒸着時の酸素ガス分圧と蒸着速度の
比(酸素ガス分圧/蒸着速度)との関係をグラフ
で表わしたものであり、このグラフから明らかな
ように、この比の値が5×10-5〜2×10-8の範囲
内では比較的高い保磁力が得られるのがわかる。 実施例 2 実施例1において、蒸着速度を600Å/secと一
定にし、ガス導入管から吹きつける酸素ガスの圧
力を種々に変えた以外は実施例1と同様にして多
数の磁気記録媒体をつくつた。 実施例 3 実施例2において、ガス導入管のノズル先端か
ら円筒状キヤンの軸心に至る距離を15cmに変更し
た以外は実施例2と同様にして多数の磁気記録媒
体をつくつた。 実施例 4 実施例2において、ガス導入管のノズル先端か
ら円筒状キヤンの軸心に至る距離を25cmに変更し
た以外は実施例2と同様にして多数の磁気記録媒
体をつくつた。 第3図および第4図はそれぞれ実施例2乃至4
で得られた磁気記録媒体の保磁力と酸素ガス圧と
の関係および角型比と酸素ガス圧との関係をグラ
フで表わしたものであり、グラフAは実施例2で
得られた磁気記録媒体、グラフBは実施例3で得
られた磁気記録媒体、グラフCは実施例4で得ら
れた磁気記録媒体のそれぞれの関係をグラフで示
したものである。 これらのグラフから明らかなようにガス導入管
のノズル先端から円筒状キヤンの軸心に至る距離
の変更によつて最適な酸素ガス圧が若干変動する
ものの保磁力および角型がいずれも高く、このこ
とからこの発明によれば磁気特性に優れた磁気記
録媒体が得られるのがわかる。 比較例 1 第1図に示す真空蒸着装置に代えて、第5図に
示すように円筒状キヤン3の近傍に3本の並行な
ガス導入枝管12a,12b,12cを導入配設
した真空蒸着装置を使用し、これらのガス導入枝
管12a,12b,12cから円筒状キヤン周側
面の基板4の被蒸着面に酸素ガスをそのガス圧を
種々に変えながら均一に差し向けた以外は実施例
2と同様にして多数の磁気記録媒体をつくつた。 第6図および第7図はこのようにして得られた
磁気記録媒体の保磁力と酸素ガス圧との関係およ
び角型比と酸素ガス圧との関係をグラフで表わし
たものである。これらのグラフから明らかなよう
に、保磁力は酸素ガス圧が高くなるに従つて高く
なるものの角型比は逆に低くなり、角型比をそれ
ほど低下せずに保磁力を500エルステツド以上に
することは難かしく、このことからたとえ斜め入
射蒸着によるものであつても酸素ガスを基板の被
蒸着面に均一に差し向けたのでは保磁力および角
型比を充分に向上できないことがわかる。 比較例 2 実施例1において使用する第1図の真空蒸着装
置に代えて、第8図に示すように防着板11a,
11bを円筒状キヤン3の近傍両側に配設すると
ともに強磁性材蒸発源9を円筒状キヤン3の直下
に配設し、かつガス導入管12dを円筒状キヤン
3の近傍に配設した真空蒸着装置を使用し、ガス
導入管12dから酸素ガスを基板4の被蒸着面に
均一に差し向け、酸素ガス分圧と蒸着速度の比
(酸素ガス分圧/蒸着速度)を2×10-7トール・
sec/Åとした以外は実施例1と同様にして磁気
記録媒体をつくつた。 比較例 3 実施例1において使用する第1図の真空蒸着装
置に代えて、第9図に示すように、防着板11c
を円筒状キヤン3の下方に配設するとともに、強
磁性材蒸発源9を円筒状キヤン3の直下に配設
し、かつ防着板11cの上方円筒状キヤン3側に
ガス導入管12eを配設した真空蒸着装置を使用
し、ガス導入管12eから酸素ガスを円筒状キヤ
ン3の接線方向に吹きつけ、酸素ガス分圧と蒸着
速度の比(酸素ガス分圧/蒸着速度)を2×10-7
トール・sec/Åとした以外は、実施例1と同様
にして磁気記録媒体をつくつた。 比較例 4 実施例1において使用する第1図の真空蒸着装
置に代えて、第10図に示すように、防着板11
dを円筒状キヤン3の下方に配設するとともに、
強磁性材蒸発源9を円筒状キヤン3の直下に配設
し、かつ円筒状キヤン3の周面に沿つてガス導入
管12fを配設した真空蒸着装置を使用し、ガス
導入管12fに設けた多数のガス吹き出し口12g
から酸素ガスを最小入射角となる部分に最も多く
なるように調整しながら吹きつけ、酸素ガス分圧
と蒸着速度の比(酸素ガス分圧/蒸着速度)を2
×10-7トール・sec/Åとした以外は、実施例1
と同様にして磁気記録媒体をつくつた。 比較例 5 実施例1において使用する第1図の真空蒸着装
置に代えて、第11図に示すように、防着板11
eを円筒状キヤン3の下方に配設するとともに、
強磁性材蒸発源9を円筒状キヤン3の直下に配設
し、かつ防着板11eの下面に沿つてガス導入管
12hを配設した真空蒸着装置を使用し、ガス導
入管12hの先端から酸素ガスを噴射し、酸素ガ
ス分圧と蒸着速度の比(酸素ガス分圧/蒸着速
度)を2×10-7トール・sec/Åとした以外は、
実施例1と同様にして磁気記録媒体をつくつた。 実施例1で酸素ガス分圧と蒸着速度の比(酸素
ガス分圧/蒸着速度)を2×10-7トール・sec/
Åとして得られた磁気記録媒体(試料1)と比較
例2ないし5で得られた磁気記録媒体について保
磁力および角型比を測定した。 下表はその結果である。
The present invention relates to a method of manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer, and an object of the invention is to provide a method of manufacturing the above-mentioned magnetic recording medium particularly having excellent magnetic properties. A magnetic recording medium with a ferromagnetic metal thin film layer as a recording layer is usually produced by moving a substrate such as a plastic film along the circumferential side of a cylindrical can installed in a vacuum evaporation device, and depositing a ferromagnetic material onto this substrate under vacuum. When manufacturing the above-mentioned magnetic recording medium, which is made by vapor deposition and has excellent magnetic properties, it is possible to perform oblique incidence vapor deposition or introduce oxygen gas near the substrate by various methods. Vacuum deposition is performed in an oxygen gas atmosphere. However, simply performing oblique incidence evaporation does not provide a very large coercive force, and the conventional method of performing vacuum evaporation in an oxygen gas atmosphere near the substrate does not sufficiently improve the coercive force. The inventors conducted various studies in view of the current situation, and found that a vapor flow obtained by heating and vaporizing a ferromagnetic material was applied to a substrate moving along the circumferential side of a cylindrical can in a vacuum atmosphere. The angle of incidence is 20° or more, and a reactive gas such as oxygen gas is sprayed concentratedly on the area where the angle of incidence is minimum, and the ratio of the partial pressure of the reactive gas to the deposition rate of the ferromagnetic material is determined. (Reactive gas partial pressure/evaporation rate) from 1×10 -5 to 1×
It was discovered that when vacuum evaporation is performed within the range of 10 -8 Torr sec/Å, a ferromagnetic metal thin film layer with good coercive force and square shape is formed, and a magnetic recording medium with excellent magnetic properties can be obtained. , and came to make this invention. That is, this invention performs vacuum evaporation by oblique incidence evaporation, and during this oblique incidence evaporation, a reactive gas such as oxygen gas is sprayed concentratedly at the part where the angle of incidence is the minimum, and the partial pressure and intensity of the reactive gas are adjusted. The ratio of deposition rate of magnetic material (reactive gas partial pressure/deposition rate) is 1×
10 -5 to 1 × 10 -8 Torr・sec/Å, and it is characterized by the fact that the ferromagnetism is achieved by blowing a reactive gas concentratedly on the part where the angle of incidence is the minimum. The reactive vapor deposition of the material and the reactive gas is made more efficient, and the ferromagnetic material is better deposited into the substrate shape, thereby further improving the coercive force and square shape. The present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of a vacuum evaporation apparatus, in which numeral 1 denotes a vacuum chamber, and the inside of the vacuum chamber 1 is maintained in a vacuum by an exhaust system 2. 3 is a cylindrical can disposed in the center of the vacuum chamber 1, and a substrate 4 such as a plastic film is moved along the circumferential side of the cylindrical can 3 from a raw roll 5 via a guide roller 6. , and is wound onto a winding roll 8 via a guide roller 7. During this time, the cylindrical can 3
The ferromagnetic material 10 is heated and evaporated by a ferromagnetic material evaporation source 9 disposed at the bottom of the vacuum chamber 1 facing the substrate 4 moving along the circumferential side of the can. Due to the action of the deposition prevention plate 11 installed at
From 2 onwards, the reactive gas is sprayed intensively onto the part where the angle of incidence is the minimum. In this way, when the reactive gas is blown intensively to the part where the incident angle is the minimum, the initial growth of the ferromagnetic material particles deposited on the substrate 4 is not inhibited, and the deposition rate is the fastest. Since the reactive gas acts most effectively at the part where the incident angle is the minimum, reactive vapor deposition between the ferromagnetic material and the reactive gas is performed efficiently, resulting in a magnetic recording medium with even better coercive force and square shape. . When performing oblique incidence deposition, the incident angle α should be set to 20° or more because if it is smaller than 20°, the ferromagnetic material deposited on the substrate 4 will not grow well and the coercive force will not be sufficiently improved. preferable. In addition, during oblique incidence deposition, it is preferable that the reactive gas blown onto the substrate 4 be concentrated on the part where the angle of incidence is the minimum, and in this part the deposition rate of the ferromagnetic material is fastest and the reactive gas is blown onto the substrate 4. Because it works most effectively, the reactive vapor deposition of the ferromagnetic material and the reactive gas is performed efficiently, further improving the coercive force and square shape. On the other hand, if the reactive gas is blown onto the part where the incident angle is maximum, the initial growth of the ferromagnetic material particles deposited on the substrate will be inhibited, and the coercive force and squareness will decrease. Furthermore, if the beam is uniformly directed at the substrate moving along the circumferential side of the cylindrical can, the coercive force and square shape cannot be sufficiently improved. The gas pressure of the reactive gas that is blown onto the part with the minimum incidence angle is closely related to the deposition rate of the ferromagnetic material, and is the ratio of the reactive gas partial pressure to the deposition rate (reactive gas partial pressure/deposition rate). There is a correlation between the coercive force of the magnetic recording medium obtained and the value of this ratio is 1×10 -5
The best coercive force is obtained when it is ~1×10 −8 Tor·sec/Å. For this reason, it is preferable to perform oblique incidence evaporation under these conditions. When vacuum evaporation is performed using this method, the coercivity and rectangular shape are significantly reduced compared to when the entire vacuum chamber is maintained in a reactive gas atmosphere. is improved. As a reactive gas, oxygen gas is used as a good one, and other gases such as nitrogen gas, argon gas,
Helium gas and the like are also suitably used. As substrates, plastic films made of commonly used polymer moldings such as polyester, polyimide, polyamide, etc., and metal films made of non-magnetic metals such as copper are used. Magnetic materials include single metals such as cobalt, nickel, and iron, as well as their alloys or oxides, and Co-
Any ferromagnetic material commonly used in vacuum deposition, such as P or Co-Ni-P, can be used. Next, embodiments of the invention will be described. Example 1 Using the vacuum evaporation apparatus shown in FIG. 1, a polyester base film 4 with a thickness of approximately 10 μm was moved from a raw roll 5 via a guide roller 6 along the circumferential side of a cylindrical can 3 with a diameter of 25 cm. The material was then set so as to be wound onto a take-up roll 8 via a guide roller 7, and a cobalt-nickel alloy (weight ratio 8:2) 10 was set in the evaporation source 9.
Next, the inside of the vacuum chamber 1 is evacuated to approximately 5×10 -6 Torr using the exhaust system 2, and the cobalt-nickel alloy 10
At the same time, oxygen gas is blown onto the polyester base film 4 by heating and evaporating it and starting oblique incidence deposition at an incident angle of 50°.At the same time, oxygen gas is sprayed at various gas pressures onto the gas introduction pipe 12 or the part where the minimum incidence angle is found. A large number of magnetic recording media were created by forming a magnetic layer made of a cobalt-nickel alloy. The gas introduction pipe 12 was used so that the distance from its nozzle tip to the axis of the cylindrical can 3 was 20 cm. Figure 2 is a graph showing the relationship between the coercive force of the magnetic recording medium obtained in this way and the ratio of the oxygen gas partial pressure during vapor deposition to the vapor deposition rate (oxygen gas partial pressure/evaporation rate). As is clear from this graph, a relatively high coercive force can be obtained when the value of this ratio is within the range of 5×10 −5 to 2×10 −8 . Example 2 A large number of magnetic recording media were manufactured in the same manner as in Example 1, except that the deposition rate was kept constant at 600 Å/sec and the pressure of oxygen gas blown from the gas introduction tube was varied. . Example 3 A large number of magnetic recording media were manufactured in the same manner as in Example 2, except that the distance from the nozzle tip of the gas introduction tube to the axis of the cylindrical can was changed to 15 cm. Example 4 A large number of magnetic recording media were manufactured in the same manner as in Example 2, except that the distance from the nozzle tip of the gas introduction tube to the axis of the cylindrical can was changed to 25 cm. 3 and 4 are examples 2 to 4, respectively.
Graph A shows the relationship between coercive force and oxygen gas pressure and the relationship between squareness ratio and oxygen gas pressure of the magnetic recording medium obtained in Example 2. Graph A is for the magnetic recording medium obtained in Example 2. , graph B is a graph showing the relationship between the magnetic recording medium obtained in Example 3, and graph C is a graph showing the relationship between the magnetic recording medium obtained in Example 4. As is clear from these graphs, although the optimal oxygen gas pressure varies slightly by changing the distance from the nozzle tip of the gas introduction tube to the axis of the cylindrical can, both coercive force and square shape are high, and this This shows that according to the present invention, a magnetic recording medium with excellent magnetic properties can be obtained. Comparative Example 1 Instead of the vacuum evaporation apparatus shown in FIG. 1, three parallel gas introduction branch pipes 12a, 12b, and 12c were installed near the cylindrical can 3 as shown in FIG. 5 for vacuum evaporation. Example except that oxygen gas was uniformly directed to the deposition surface of the substrate 4 on the circumferential side of the cylindrical can from these gas introduction branch pipes 12a, 12b, and 12c using a device while varying the gas pressure. A large number of magnetic recording media were made in the same manner as in 2. FIGS. 6 and 7 are graphical representations of the relationship between coercive force and oxygen gas pressure and the relationship between squareness ratio and oxygen gas pressure of the magnetic recording medium thus obtained. As is clear from these graphs, although the coercive force increases as the oxygen gas pressure increases, the squareness ratio decreases, and the coercive force can be increased to 500 oersted or more without significantly decreasing the squareness ratio. This shows that even if oblique incidence evaporation is used, the coercive force and squareness ratio cannot be sufficiently improved by uniformly directing oxygen gas to the surface of the substrate to be evaporated. Comparative Example 2 In place of the vacuum evaporation apparatus shown in FIG. 1 used in Example 1, a deposition prevention plate 11a, as shown in FIG. 8, was used.
11b are arranged on both sides near the cylindrical can 3, a ferromagnetic material evaporation source 9 is arranged directly below the cylindrical can 3, and a gas introduction pipe 12d is arranged near the cylindrical can 3. Using the device, oxygen gas is uniformly directed to the deposition surface of the substrate 4 from the gas introduction pipe 12d, and the ratio of oxygen gas partial pressure to deposition rate (oxygen gas partial pressure/deposition rate) is set to 2×10 -7 Torr.・
A magnetic recording medium was produced in the same manner as in Example 1 except that the ratio was sec/Å. Comparative Example 3 Instead of the vacuum evaporation device shown in FIG. 1 used in Example 1, as shown in FIG. 9, a deposition prevention plate 11c was used.
is disposed below the cylindrical can 3, a ferromagnetic material evaporation source 9 is disposed directly below the cylindrical can 3, and a gas introduction pipe 12e is disposed above the deposition prevention plate 11c on the side of the cylindrical can 3. Using the provided vacuum evaporation equipment, oxygen gas is blown in the tangential direction of the cylindrical can 3 from the gas introduction pipe 12e, and the ratio of oxygen gas partial pressure to evaporation rate (oxygen gas partial pressure/evaporation rate) is 2×10. -7
A magnetic recording medium was produced in the same manner as in Example 1, except that Tor·sec/Å was used. Comparative Example 4 Instead of the vacuum evaporation apparatus shown in FIG. 1 used in Example 1, a deposition prevention plate 11 was used as shown in FIG. 10.
d is disposed below the cylindrical can 3, and
A vacuum evaporation device is used in which a ferromagnetic material evaporation source 9 is arranged directly below the cylindrical can 3 and a gas introduction pipe 12f is arranged along the circumferential surface of the cylindrical can 3. Multiple gas outlets 12g
Then, adjust the amount of oxygen gas to the part with the minimum incident angle so that it is the most abundant, and then adjust the ratio of oxygen gas partial pressure to evaporation rate (oxygen gas partial pressure/evaporation rate) to 2.
Example 1 except that ×10 -7 Tor·sec/Å
He created a magnetic recording medium in the same way. Comparative Example 5 Instead of the vacuum evaporation apparatus shown in FIG. 1 used in Example 1, a deposition prevention plate 11 was used as shown in FIG.
e is disposed below the cylindrical can 3, and
A vacuum evaporation apparatus is used in which a ferromagnetic material evaporation source 9 is disposed directly below the cylindrical can 3 and a gas introduction pipe 12h is arranged along the lower surface of the deposition prevention plate 11e. Except for injecting oxygen gas and setting the ratio of oxygen gas partial pressure to evaporation rate (oxygen gas partial pressure/deposition rate) to 2×10 -7 Torr·sec/Å.
A magnetic recording medium was produced in the same manner as in Example 1. In Example 1, the ratio between oxygen gas partial pressure and evaporation rate (oxygen gas partial pressure/evaporation rate) was set to 2×10 -7 Torr・sec/
The coercive force and squareness ratio of the magnetic recording medium obtained as Å (Sample 1) and the magnetic recording media obtained in Comparative Examples 2 to 5 were measured. The table below shows the results.

【表】 上表から明らかなように、この発明で得られた
磁気記録媒体(試料1)は従来の磁気記録媒体
(比較例2ないし5)に比し保磁力および角型比
がいずれも高く、このことからこの発明方法によ
れば一段と磁気特性に優れた磁気記録媒体が得ら
れるのがわかる。
[Table] As is clear from the above table, the magnetic recording medium obtained by the present invention (Sample 1) has higher coercive force and squareness ratio than the conventional magnetic recording media (Comparative Examples 2 to 5). From this, it can be seen that according to the method of the present invention, a magnetic recording medium with even better magnetic properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法を実施するために
使用する真空蒸着装置の概略断面図、第2図は実
施例1の製造方法によつて得られた磁気記録媒体
の保磁力と、製造時の酸素ガス分圧/蒸着速度と
の関係図、第3図は実施例2で得られた磁気記録
媒体の保磁力と酸素ガス圧との関係図、第4図は
同磁気記録媒体の角型比と酸素ガス圧との関係
図、第5図は比較例1の製造方法を実施するため
に使用する真空蒸着装置の概略断面図、第6図は
比較例1で得られた磁気記録媒体の保磁力と酸素
ガス圧との関係図、第7図は同磁気記録媒体の角
型比と酸素ガス圧との関係図、第8図は比較例2
の製造方法を実施するために使用する真空蒸着装
置の概略断面図、第9図は比較例3の製造方法を
実施するために使用する真空蒸着装置の概略断面
図、第10図は比較例4の製造方法を実施するた
めに使用する真空蒸着装置の概略断面図、第11
図は比較例5の製造方法を実施するために使用す
る真空蒸着装置の概略断面図である。 1……真空槽、3……円筒状キヤン、4……基
板、9……蒸発源、10……強磁性材、11……
防着板、12……ガス導入管。
FIG. 1 is a schematic cross-sectional view of a vacuum evaporation apparatus used to carry out the manufacturing method of the present invention, and FIG. 2 shows the coercive force of the magnetic recording medium obtained by the manufacturing method of Example 1 and the manufacturing time. FIG. 3 is a diagram showing the relationship between the coercive force and oxygen gas pressure of the magnetic recording medium obtained in Example 2, and FIG. 4 is a diagram showing the relationship between the coercive force and oxygen gas pressure of the magnetic recording medium obtained in Example 2. 5 is a schematic cross-sectional view of the vacuum evaporation apparatus used to carry out the manufacturing method of Comparative Example 1, and FIG. 6 is a diagram of the relationship between the ratio and oxygen gas pressure. Figure 7 is a diagram showing the relationship between coercive force and oxygen gas pressure. Figure 7 is a diagram showing the relationship between squareness ratio and oxygen gas pressure of the same magnetic recording medium. Figure 8 is Comparative Example 2.
9 is a schematic sectional view of a vacuum evaporation apparatus used to carry out the manufacturing method of Comparative Example 3, and FIG. 10 is a schematic sectional view of a vacuum evaporation apparatus used to carry out the manufacturing method of Comparative Example 3. Schematic sectional view of a vacuum evaporation apparatus used to carry out the manufacturing method, No. 11
The figure is a schematic cross-sectional view of a vacuum evaporation apparatus used to carry out the manufacturing method of Comparative Example 5. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 3... Cylindrical can, 4... Substrate, 9... Evaporation source, 10... Ferromagnetic material, 11...
Anti-adhesion plate, 12...Gas introduction pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 真空雰囲気内で、円筒状キヤンの周側面に沿
つて移動する基板に、強磁性材を加熱蒸発させて
得た蒸気流をその入射角が20°以上となるように
差し向けるとともに、最小入射角となる部分に集
中的に反応性ガスを吹きつけ、反応性ガスの分圧
と強磁性材の蒸着速度の比(反応性ガス分圧/蒸
着速度)を1×10-5〜1×10-8トール・sec/Å
の範囲内にして、基板上に強磁性金属薄膜層を形
成することを特徴とする磁気記録媒体の製造方
法。
1 In a vacuum atmosphere, a vapor flow obtained by heating and evaporating a ferromagnetic material is directed onto a substrate moving along the circumferential side of a cylindrical can so that the incident angle is 20° or more, and the minimum incident angle is Reactive gas is sprayed intensively on the corners, and the ratio of the partial pressure of the reactive gas to the deposition rate of the ferromagnetic material (reactive gas partial pressure/deposition rate) is set to 1×10 -5 to 1×10 -8 Thor・sec/Å
1. A method of manufacturing a magnetic recording medium, comprising forming a ferromagnetic metal thin film layer on a substrate within the range of .
JP23034082A 1982-12-30 1982-12-30 Manufacture of magnetic recording medium Granted JPS59124035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23034082A JPS59124035A (en) 1982-12-30 1982-12-30 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23034082A JPS59124035A (en) 1982-12-30 1982-12-30 Manufacture of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS59124035A JPS59124035A (en) 1984-07-18
JPH053052B2 true JPH053052B2 (en) 1993-01-13

Family

ID=16906305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23034082A Granted JPS59124035A (en) 1982-12-30 1982-12-30 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59124035A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685216B2 (en) * 1985-04-11 1994-10-26 富士写真フイルム株式会社 Method of manufacturing magnetic recording medium
JP2650300B2 (en) * 1988-02-19 1997-09-03 ソニー株式会社 Method for manufacturing perpendicular magnetic recording medium
JP2988188B2 (en) * 1992-09-09 1999-12-06 松下電器産業株式会社 Magnetic recording medium and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832234A (en) * 1981-08-20 1983-02-25 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPS5837843A (en) * 1981-08-31 1983-03-05 Sony Corp Production of magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832234A (en) * 1981-08-20 1983-02-25 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPS5837843A (en) * 1981-08-31 1983-03-05 Sony Corp Production of magnetic recording medium

Also Published As

Publication number Publication date
JPS59124035A (en) 1984-07-18

Similar Documents

Publication Publication Date Title
US4387136A (en) Magnetic recording medium and apparatus for preparing the same
US4855175A (en) Magnetic recording medium and production thereof
US4511594A (en) System of manufacturing magnetic recording media
JPH053052B2 (en)
JPS61236025A (en) Production of magnetic recording medium
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JPH0798831A (en) Magnetic recording medium, its production and producing device
JPS60157728A (en) Production of magnetic recording medium
JPS59167834A (en) Magnetic recording medium
JPH0121534B2 (en)
JPH01189030A (en) Production of magnetic recording medium
JPS6079532A (en) Manufacture of magnetic recording medium
JPH07192259A (en) Production of magnetic recording medium
JPH01107319A (en) Production of magnetic recording medium
JPH05255840A (en) Vacuum deposition device
JPH0798832A (en) Magnetic recording medium, its production and producing device
JPH01125723A (en) Production of perpendicular magnetic recording medium
JPH0991659A (en) Magnetic recording medium and its production
JPS6246435A (en) Method and apparatus for producing magnetic recording medium
JPH0341896B2 (en)
JPH04216320A (en) Vacuum vapor deposition device
JPS62102414A (en) Magnetic recording medium
JPH11161953A (en) Production of magnetic recording medium
JPS62298026A (en) Production of magnetic recording medium
JPH0817050A (en) Magnetic recording medium