JPS5832234A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPS5832234A JPS5832234A JP13117681A JP13117681A JPS5832234A JP S5832234 A JPS5832234 A JP S5832234A JP 13117681 A JP13117681 A JP 13117681A JP 13117681 A JP13117681 A JP 13117681A JP S5832234 A JPS5832234 A JP S5832234A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- incident angle
- room
- mask
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
- G11B5/85—Coating a support with a magnetic layer by vapour deposition
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、強磁性金属薄膜を記録層とする磁気゛ 記録
媒体の製造方法に関し、斜方蒸着の工業化に際して起る
問題点の解決を目的としている。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film as a recording layer, and is aimed at solving problems that occur when industrializing oblique evaporation.
磁気記録は高密度化の要求に対して、磁気記録媒体の抗
磁力を大きくすることで対応してきたがより短波長化が
進むに従って、磁化されるのは、媒体の表面近くだけに
なるため、抗磁力の増大のみでは出力を大きくできず、
飽和磁束密度の大きい材料へと移行がはじまっている。Magnetic recording has responded to demands for higher densities by increasing the coercive force of magnetic recording media, but as wavelengths become shorter, only those near the surface of the media become magnetized. The output cannot be increased only by increasing the coercive force;
The transition to materials with high saturation magnetic flux density has begun.
そのひとつは従来の塗布形の延長上で、バインダ等の非
磁性材料で稀釈されるものの、本質的に飽和磁束密度の
大きい、鉄等の強磁性金属又は合金の微粒子を、i化鉄
の代りに用いるもので、もう一方は、・くインダを用い
ない、強磁性金属薄膜を磁気記録層とする媒体で、前記
薄膜の形成に真空蒸着を用いることか、ら蒸着テープの
名で一部実用に供されるに至っている。One is an extension of the conventional coating method, in which fine particles of ferromagnetic metals such as iron or alloys, which are diluted with a non-magnetic material such as a binder but have essentially a high saturation magnetic flux density, are used instead of iron. The other type is a medium that does not use a binder and has a ferromagnetic metal thin film as its magnetic recording layer.Since vacuum deposition is used to form the thin film, it is sometimes called a vapor deposition tape. It has come to be offered to
この蒸着テープは、歴史も浅く、工業規模での検討改良
を金石に待つ課題も多くある。This vapor-deposited tape has a short history, and there are many issues that await investigation and improvement on an industrial scale.
そのひとつは、抗磁力の制御で、特に大きい抗磁力を安
定に制御する技術開発は重要なテーマである。One of these is the control of coercive force, and the development of technology to stably control a particularly large coercive force is an important theme.
蒸着で安定に抗磁力を制御できる可能性のあるのは特公
昭41−19389号公報に開示されているいわゆる斜
方蒸着である。The so-called oblique vapor deposition disclosed in Japanese Patent Publication No. 19389/1989 has the possibility of stably controlling the coercive force by vapor deposition.
しかしこの方法での難点は、蒸着効率が低い′ことと、
入射角が変化すると抗磁力が変化する現象が大きい抗磁
力になる程、顕著になることである。However, the disadvantages of this method are that the deposition efficiency is low;
The phenomenon in which the coercive force changes as the angle of incidence changes becomes more pronounced as the coercive force increases.
本発明は、入射角変化によシ生ずる抗磁力変化を実用レ
ベルに抑えるようにしようとするもので、以下に図面を
用い本発明の説明を行う。The present invention aims to suppress changes in coercive force caused by changes in incident angle to a practical level, and the present invention will be explained below using the drawings.
第1図は本発明の実施例において用いる蒸着装置を示す
ものである。この図では蒸着装置が二基構成になってい
る例を示しであるがこれにこだわることなく、以下に述
べる要件を満たす、種々の変形は当然本発明に含まれる
ものである。FIG. 1 shows a vapor deposition apparatus used in an embodiment of the present invention. Although this figure shows an example in which the vapor deposition apparatus has a two-unit configuration, the invention is not limited to this, and various modifications that satisfy the requirements described below are naturally included in the present invention.
図に示すように基板1は、送り出し軸11より回転キャ
ン4に治って移動し、捲き取り軸12にて捲きあげられ
るよう構成される。この図では、捲き取り系の他の要素
であるフリーローラ、エキスパンダローラ等は省略され
ているが、必要に応じて当然構成要素となるのはいうま
でもない。As shown in the figure, the substrate 1 is configured to be moved from a feed shaft 11 to a rotary can 4 and to be rolled up by a winding shaft 12. In this figure, other elements of the winding system, such as a free roller and an expander roller, are omitted, but it goes without saying that they may be included as necessary.
又回転キャンは機能として、冷却支持を兼ねるもの゛で
、例えば、冷却さnた、5US304の薄板を電子ビー
ム溶接して作成したエンドレスベルトを代替に用いるこ
ともできるし、くり返し蒸着を行うために複数個のキャ
ンを用いることも本発明の範囲である。The rotary can also functions as a cooling support.For example, an endless belt made by electron beam welding of thin plates of 5US304 can be used instead, or it can be used for repeated vapor deposition. It is also within the scope of the present invention to use multiple cans.
回転キャン4と対向して配設される蒸発源は、衆知のい
ずれであってもよいが、電子ビーム加熱が好ましい。第
1図では、蒸5発源容器3と蒸着材料2を模式的に示し
てあり、電子源は、図示していない。The evaporation source disposed opposite the rotary can 4 may be any known evaporation source, but electron beam heating is preferable. In FIG. 1, the evaporation source container 3 and the evaporation material 2 are schematically shown, and the electron source is not shown.
真空層6は、上室6と下室7に分けられている。The vacuum layer 6 is divided into an upper chamber 6 and a lower chamber 7.
13は仕切り板である。上室6.下室7は通常独立した
排気系10,9によシそれぞれ排気される。13 is a partition plate. Upper chamber 6. The lower chamber 7 is normally exhausted by independent exhaust systems 10 and 9, respectively.
8は入射角を限定するマスクであるが、蒸発源の中心を
Sとし、マスクの先端をPoとした時SP8の延長が、
基板(キャンの周側面に沿っている)と交わる点りにた
てた法線とのなす角、θ1が蒸気の入射角を表わすもの
である。8 is a mask that limits the angle of incidence, and when the center of the evaporation source is S and the tip of the mask is Po, the extension of SP8 is
The angle θ1 between the normal line and the point intersecting the substrate (along the circumferential side of the can) represents the incident angle of the vapor.
Poの近傍よりガス噴射されるようマスク8は構成され
る。こnにより、磁性体蒸気はPo近傍−にたい積しな
いため、長尺対応時に常にSPoで決するθ、を一定化
することができる訳である。The mask 8 is configured so that the gas is injected from the vicinity of Po. This prevents the magnetic vapor from accumulating in the vicinity of Po, so that θ determined by SPo can always be kept constant when dealing with long lengths.
これを満足すtば、マ、スクの形状は円弧の一部であっ
てもよいし、直線の組み合わせであってもよいし、制限
を受けるものではない。又ガス導入は公知の安定導入の
永めの流量、圧力制御技術により行うのが好ましいが、
ガスの種類は目的により活性、不活性、混合ガスのいず
れであっても良い。As long as this is satisfied, the shape of the mask or mask may be a part of a circular arc or a combination of straight lines, and is not subject to any limitations. In addition, it is preferable that gas introduction be carried out using known stable introduction, long-term flow rate and pressure control techniques.
The type of gas may be active, inert, or a mixed gas depending on the purpose.
次に具体的に本発明の実施例について説明する。Next, embodiments of the present invention will be specifically described.
〔実施例1〕
基板トシてポリエチレンテレフタレート10.5μm(
600幅)を用い、入射角θ1=70°で、0080%
Ni2O%の合金層を0.1μmの厚さに形成した。下
室の真空度は2×10 Toyyであった。[Example 1] The substrate was made of polyethylene terephthalate 10.5 μm (
600 width), incident angle θ1 = 70°, 0080%
A Ni2O% alloy layer was formed to a thickness of 0.1 μm. The degree of vacuum in the lower chamber was 2×10 Toyy.
得られた磁性層の抗磁力は1060〔6e〕で角形化は
0.96であった。The coercive force of the obtained magnetic layer was 1060 [6e] and the squareness was 0.96.
比較例としてArガスを0 、117m i n (I
Kp/crl )導入しながら実施した本発明とガス
導入なしで実施した従来例を第2図に示した。長手方向
にサンプリングを行うと共に幅方向の分布をエラーノζ
−の形で示した。As a comparative example, Ar gas was used at 0 and 117 min (I
FIG. 2 shows the present invention carried out while introducing gas (Kp/crl) and the conventional example carried out without introducing gas. Sampling is performed in the longitudinal direction and the distribution in the width direction is
Indicated in the form of -.
これよシ明らかなように、本発明によらない場合、抗磁
力が大きくなるとともに、幅方向の均一性も劣化するこ
とが理解される。As is clear from this, it is understood that in the case not according to the present invention, the coercive force increases and the uniformity in the width direction also deteriorates.
以下の実施例についても同様の比較をしたが2.000
m蒸着時点とスタート直後の比較のみを〔実施例2〕
ポリエチレンテレフタレート16μm(500幅)上に
、入射角θ1=73°でCo100チからなる磁性層を
0.2μmの厚さに形成した。Ar0.IQ 7m i
n (1’Fy/Cdl )導入下で蒸着した全長は2
050mで、真空度は下室で1 、7X10 Tor
rであった。得られた抗磁力は、本発明では、初期、1
000m 、2000m時点で1200[OeJ角形比
は0−97でv辿p均一性も変化しなかったのに比べ。Similar comparisons were made for the following examples, but 2.000
Comparison only at the time of vapor deposition and immediately after the start [Example 2] A magnetic layer made of 100 Co was formed to a thickness of 0.2 μm at an incident angle θ1 = 73° on polyethylene terephthalate 16 μm (width 500). Ar0. IQ 7m i
The total length deposited under the introduction of n (1'Fy/Cdl) is 2
050m, the vacuum level is 1,7X10 Tor in the lower chamber.
It was r. In the present invention, the obtained coercive force is initially 1
At 000 m and 2000 m, the squareness ratio was 1200 [OeJ, 0-97, and the v trace p uniformity did not change.
導入Arなしで形成した場合1000m時点では抗磁力
は1220〜1410boe]にばらついた。When formed without introduced Ar, the coercive force varied from 1220 to 1410 boe at 1000 m.
この時マスク先端にたい積したCo厚みは19111と
なり、入射角が実質的に変化していた。At this time, the thickness of Co accumulated at the tip of the mask was 19111 mm, and the incident angle was substantially changed.
〔実施例3〕
ボIJ xy し7f L/7 j’ レ−) 1 ’
、 、 5pm (500−幅圧に入射角θ1工60°
でCoas%Cr15%からなる磁性層を形成した。真
空度ハ1×V1゜TorrSAro、2R/m1n(1
%m/cn)、Aro、osQ 7m i nの2点に
ついて比較した。Iooom時点7 ・
と初期値は抗磁力980 〔Os ]、角形比o、98
で幅方向もいずれも均一であった。[Example 3] Bo IJ xy 7f L/7 j'1'
, , 5pm (500-width pressure and incident angle θ1 work 60°
A magnetic layer consisting of 15% Coas% Cr was formed. Degree of vacuum: 1×V1゜TorrSAro, 2R/m1n (1
%m/cn), Aro, and osQ 7min. Iooom time point 7 ・The initial value is coercive force 980 [Os], squareness ratio o, 98
It was also uniform in the width direction.
この例を詳細に検討したところ、2000m。After examining this example in detail, it is 2000m.
3000 mと長尺化するにつれてAr 0.2 Q
7m inに比べてAr O,05fi/minでは若
干抗磁力変化の兆しがあり、若干の流量依存が傾向とし
てみられるが、噴射孔の径や、間隔等によシ、必要流量
性最適化するのが好ましい。As the length increases to 3000 m, Ar 0.2 Q
Compared to 7 m in, there are signs of a slight change in coercive force at Ar O, 05 fi/min, and a slight dependence on flow rate can be seen, but the required flow rate should be optimized depending on the injection hole diameter, spacing, etc. is preferable.
〔実施例4〕
ポリアミド基板8.6μm 上に、Co80チl’Ji
20チから成る磁性層を0.15μmの厚さに形成した
。下室にはマスクより酸素を導入し、真空度4.5X1
0−6Toyyで蒸着した。θ1=460で導入02量
は0.22L/min (If&/crl)とした。[Example 4] On a polyamide substrate of 8.6 μm, Co80
A magnetic layer consisting of 20 layers was formed to a thickness of 0.15 μm. Oxygen is introduced into the lower chamber through a mask, and the vacuum level is 4.5X1.
Vapor deposition was performed using 0-6 Toyy. At θ1=460, the amount of introduced 02 was 0.22 L/min (If&/crl).
抗磁力は920〔Oe〕、角形比0.88で4000m
長にわたって幅方向、長手方向とも均一であった。Coercive force is 920 [Oe], squareness ratio 0.88, 4000m
It was uniform throughout the length in both the width and length directions.
θy1 = 20 ’の場合1000mで抗磁力が約1
5%増加し、 −2000mで同じく34%増加し、3
ooOmでは蒸着膜厚を制御するのに、フィルム移動速
度を40量落すか、投入する電子ビームの電力を30%
増加させる必要が生じ、本発明は設定条件を維持できる
もので膜厚制a性に於ても欠点を克、服するものである
といえる。When θy1 = 20', the coercive force is approximately 1 at 1000m
5% increase, same 34% increase at -2000m, 3
In ooOm, to control the deposited film thickness, the film movement speed must be reduced by 40%, or the power of the electron beam input must be reduced by 30%.
It can be said that the present invention can maintain the set conditions and overcome the drawbacks in terms of film thickness control.
他に、RFイオンブレーティングとして、フィルムと蒸
発源の間に高周波電極を配設し、13.56MHz
の高周波でイオンブレーテインクを行って本発明の効果
を確認するとともに、Fe5Co −V、Co−WSC
o −Mn、 Co−T i、 Co−5t、 Co−
Ni −Cr。In addition, for RF ion brating, a high frequency electrode is placed between the film and the evaporation source, and 13.56MHz
In addition to confirming the effect of the present invention by performing ion brate ink at high frequency,
o -Mn, Co-Ti, Co-5t, Co-
Ni-Cr.
Co−Pt等についても確認した。Co--Pt and the like were also confirmed.
又、導入ガスについては、N2.Co2.Co、等につ
いても検討を加え本発明お効果−を確かめた。Regarding the introduced gas, N2. Co2. We also investigated Co, etc. and confirmed the effectiveness of the present invention.
これらの結果を綜合しても、抗磁力発生のメカニズム(
例えば、結晶磁気異方性、形状異方性、歪等)によらず
本発明が有効であることが確認できたことになり、その
工業的有価値性は極めて大きいものである。Even if these results are combined, the mechanism of coercive force generation (
For example, it has been confirmed that the present invention is effective regardless of magnetocrystalline anisotropy, shape anisotropy, strain, etc.), and its industrial value is extremely large.
第1図は本発明の実施例において用いる蒸着装置を示す
図、第2図は本発明の詳細な説明するための図である。
1・・・・・・基板、3・・・・・・蒸発源容器、4・
・・可回転キャン、6・・・・・・真空槽、8・・・・
・・マスク、11・・・・・・送り出し軸、12・・・
川mき取り軸、9.1o・・・・・・排気系。
代理人の氏名 弁理士 中 尾 敏 男 はが1名鶴
1 図FIG. 1 is a diagram showing a vapor deposition apparatus used in an embodiment of the present invention, and FIG. 2 is a diagram for explaining the present invention in detail. 1...Substrate, 3...Evaporation source container, 4.
... Rotatable can, 6... Vacuum chamber, 8...
...Mask, 11...Feeding axis, 12...
River m cut shaft, 9.1o...exhaust system. Name of agent: Patent attorney Toshio Nakao
1 figure
Claims (1)
記基板上への蒸着気流の入射角規制用のマスクを用いて
、強磁性材料を蒸着するに際し、前記マスクの入射角規
制部近傍からガスを噴射しながら蒸着を行うことを特徴
とする磁気記録媒体の製造方法。When evaporating a ferromagnetic material onto a polymer molded substrate moving along a cooling support using a mask for regulating the angle of incidence of the vapor deposition air flow onto the substrate, a portion near the angle of incidence regulating portion of the mask is deposited. A method for manufacturing a magnetic recording medium, characterized in that vapor deposition is carried out while injecting gas from a magnetic recording medium.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13117681A JPS5832234A (en) | 1981-08-20 | 1981-08-20 | Production of magnetic recording medium |
US06/409,608 US4450186A (en) | 1981-08-20 | 1982-08-19 | Method and device for manufacturing magnetic recording medium |
DE8282107650T DE3278257D1 (en) | 1981-08-20 | 1982-08-20 | Method and device for manufacturing magnetic recording medium |
DE198282107650T DE73041T1 (en) | 1981-08-20 | 1982-08-20 | METHOD AND DEVICE FOR PRODUCING MAGNETIC RECORDING CARRIERS. |
EP82107650A EP0073041B1 (en) | 1981-08-20 | 1982-08-20 | Method and device for manufacturing magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13117681A JPS5832234A (en) | 1981-08-20 | 1981-08-20 | Production of magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5832234A true JPS5832234A (en) | 1983-02-25 |
JPH0330213B2 JPH0330213B2 (en) | 1991-04-26 |
Family
ID=15051776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13117681A Granted JPS5832234A (en) | 1981-08-20 | 1981-08-20 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5832234A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5841443A (en) * | 1981-09-04 | 1983-03-10 | Fuji Photo Film Co Ltd | Manufacture of magnetic recording medium |
JPS59124035A (en) * | 1982-12-30 | 1984-07-18 | Hitachi Maxell Ltd | Manufacture of magnetic recording medium |
JPS60157728A (en) * | 1984-01-26 | 1985-08-19 | Hitachi Maxell Ltd | Production of magnetic recording medium |
JPS61250836A (en) * | 1985-04-29 | 1986-11-07 | Sony Corp | Production of magnetic recording medium |
CN113151787A (en) * | 2016-07-05 | 2021-07-23 | 佳能特机株式会社 | Evaporation device and evaporation source |
-
1981
- 1981-08-20 JP JP13117681A patent/JPS5832234A/en active Granted
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5841443A (en) * | 1981-09-04 | 1983-03-10 | Fuji Photo Film Co Ltd | Manufacture of magnetic recording medium |
JPS59124035A (en) * | 1982-12-30 | 1984-07-18 | Hitachi Maxell Ltd | Manufacture of magnetic recording medium |
JPH053052B2 (en) * | 1982-12-30 | 1993-01-13 | Hitachi Maxell | |
JPS60157728A (en) * | 1984-01-26 | 1985-08-19 | Hitachi Maxell Ltd | Production of magnetic recording medium |
JPS61250836A (en) * | 1985-04-29 | 1986-11-07 | Sony Corp | Production of magnetic recording medium |
CN113151787A (en) * | 2016-07-05 | 2021-07-23 | 佳能特机株式会社 | Evaporation device and evaporation source |
CN113151787B (en) * | 2016-07-05 | 2023-05-23 | 佳能特机株式会社 | Evaporation device and evaporation source |
Also Published As
Publication number | Publication date |
---|---|
JPH0330213B2 (en) | 1991-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5832234A (en) | Production of magnetic recording medium | |
JPH01223632A (en) | Method and device for manufacturing magnetic recording medium | |
US5122392A (en) | Method and apparatus for manufacturing magnetic recording medium | |
US4948626A (en) | Method for producing thin-film magnetic recording medium | |
JP2001143235A (en) | Magnetic recording medium, its manufacturing method and manufacturing device | |
JPS59165244A (en) | Manufacturing device for magnetic recording medium | |
JPS62185246A (en) | Production of magnetic recording medium | |
JPH0334130B2 (en) | ||
JP2629847B2 (en) | Manufacturing method of magnetic recording medium | |
JPS6297133A (en) | Production of magnetic recording medium | |
JPS6174143A (en) | Production of magnetic recording medium | |
JPH0227732B2 (en) | ||
JPH0798868A (en) | Production of magnetic recording medium | |
JPS5814329A (en) | Production of magnetic recording medium | |
JP3687557B2 (en) | Thin film magnetic tape manufacturing equipment | |
JPH06116729A (en) | Production of magnetic recording medium | |
JPH07320264A (en) | Device for producing magnetic recording medium and method therefor | |
JPS61284829A (en) | Magnetic recording medium | |
JPH09212858A (en) | Production of magnetic recording medium and producing device therefor | |
JPH06231457A (en) | Production of magnetic recording medium | |
JPS6226638A (en) | Production of magnetic recording medium | |
JPS60209927A (en) | Magnetic recording medium and its production | |
JPH05225564A (en) | Production of magnetic recording medium | |
JPH01125723A (en) | Production of perpendicular magnetic recording medium | |
JPH103659A (en) | Apparatus for production of magnetic recording medium and processing therefor |