JPH06231457A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH06231457A
JPH06231457A JP1518093A JP1518093A JPH06231457A JP H06231457 A JPH06231457 A JP H06231457A JP 1518093 A JP1518093 A JP 1518093A JP 1518093 A JP1518093 A JP 1518093A JP H06231457 A JPH06231457 A JP H06231457A
Authority
JP
Japan
Prior art keywords
film
magnetic recording
temp
recording medium
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1518093A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1518093A priority Critical patent/JPH06231457A/en
Publication of JPH06231457A publication Critical patent/JPH06231457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a magnetic recording medium capable of stably maintaining S/N with good reproducibility by setting the temp. of a rotating base higher as an incident angle is smaller at the time of depositing a ferromagnetic metal by evaporation with an electron beam onto a moving film. CONSTITUTION:The endless belt-shaped rotating base is formed of a stainless steel, titanium, etc., at 0.1 to 0.4mm thickness to <=0.2mum max. roughness. The high-polymer film 1 is unwound from a roller 3 and is taken up on a roller 4. Temp. control rollers 12, 13 which are set and controlled to the temp. lower at the roller 12 are provided. A tension roller 14 is provided as well. The side where the incident angle is smaller is so controlled as to be higher in the film forming temp. in the vapor deposition operation at the incident angle decreasing from the side where the angle is larger by the vapor deposition device constituted in such a manner. The temp. of the rotary supporting roller 13 is made higher than the temp. of the roller 12 as the incident angle is smaller at the time of vapor depositing the ferrromagnetic metal by vapor flow 8 on the film 1, by which the magnetic recording medium is obtd. with the good reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度磁気記録に適する
強磁性金属薄膜を磁性層とする耐久性と記録特性に優れ
た磁気記録媒体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic recording medium having a magnetic layer of a ferromagnetic metal thin film suitable for high density magnetic recording and having excellent durability and recording characteristics.

【0002】[0002]

【従来の技術】情報化社会の進展に伴い、記録すべき情
報量の増大は著しく、磁気記録についても可能な限り記
録密度を高める対応が要請され、短波長化、狭トラック
化に耐える高性能磁気記録媒体の開発が盛んになってき
ている。多くの提案がなされているが、現在実用に供さ
れているものは特開昭53−58206号公報に開示さ
れているような強磁性金属自身の酸化物で柱状微粒子の
表面が被覆された構造をもち記録特性と耐久性をバラン
ス良く改善したもので、構成元素はCo,Ni,Oから
なり(特開昭56−15014号公報)、これらの磁気
記録層を形成するのは、酸素ガスを介在させながらC
o,Co−Niを電子ビーム蒸着する方法が代表的で酸
素の導入については幾つかの提案があるが基材近傍で、
入射角規制を行う部分に近い位置が良く用いられている
(特開昭54−19199号公報、特開昭58−322
34号公報)。
2. Description of the Related Art With the progress of information society, the amount of information to be recorded is remarkably increasing, and it is required to increase the recording density of magnetic recording as much as possible. Development of magnetic recording media has been brisk. Although many proposals have been made, the one currently put to practical use is a structure in which the surface of columnar fine particles is coated with an oxide of a ferromagnetic metal itself as disclosed in JP-A-53-58206. It has a well-balanced improvement in recording characteristics and durability, and its constituent elements consist of Co, Ni, and O (JP-A-56-15014), and these magnetic recording layers are formed by oxygen gas. C while intervening
A typical method is electron beam evaporation of o, Co-Ni, and there are some proposals for introducing oxygen, but in the vicinity of the substrate,
A position close to the part for controlling the incident angle is often used (Japanese Patent Laid-Open No. 54-19199, Japanese Patent Laid-Open No. 58-322).
34 publication).

【0003】以下に従来の磁気記録媒体の製造方法につ
いて説明する。図3は従来の磁気記録媒体の製造に用い
られている蒸着装置の要部構成図である。
A conventional method of manufacturing a magnetic recording medium will be described below. FIG. 3 is a configuration diagram of a main part of a vapor deposition apparatus used for manufacturing a conventional magnetic recording medium.

【0004】図3で1はポリエステル等の高分子フィル
ムで、2は一定の温度に制御された回転支持体で、3は
フィルム送り出し軸、4はフィルム巻き取り軸、5は蒸
発源容器、6は蒸着材料、7は加速電子ビーム、8は蒸
気流、9はマスク、10は酸素導入ノズルである。図3
の装着を用いて、磁気記録媒体を製造する方法は以下の
如くである。
In FIG. 3, 1 is a polymer film such as polyester, 2 is a rotary support controlled to a constant temperature, 3 is a film feeding shaft, 4 is a film winding shaft, 5 is an evaporation source container, and 6 Is a vapor deposition material, 7 is an accelerated electron beam, 8 is a vapor flow, 9 is a mask, and 10 is an oxygen introduction nozzle. Figure 3
The method of manufacturing the magnetic recording medium by using the mounting described below is as follows.

【0005】例えば粒状性の表面をもったポリエチレン
テレフタレート、ポリエチレンナフタレート等を巻き取
り系にセットし、真空排気し、CoやCo−Ni等の蒸
着材料を加速電子線により加熱蒸発させて、接線方向か
ら蒸着を進めマスクで遮断する入射角(最小入射角と呼
んでいる)で蒸着を完了し、その際に最小入射角近くで
酸素ガスを導入し、部分酸化膜からなる磁気記録層の形
成を回転支持体に沿った状態で移動するフィルム上に行
うことで製造される。
For example, polyethylene terephthalate, polyethylene naphthalate or the like having a granular surface is set in a winding system, evacuated, and a vapor deposition material such as Co or Co-Ni is heated and evaporated by an accelerating electron beam to form a tangent line. Deposition is completed at an incident angle (referred to as the minimum incident angle) that advances the vapor deposition from the direction and is blocked by a mask, at which time oxygen gas is introduced near the minimum incident angle to form a magnetic recording layer consisting of a partial oxide film. Is carried out on a film moving along a rotary support.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では酸素導入量を増加すると保磁力は増加する
ものの、飽和磁束密度が減少し最適導入量で得られるS
/N比の最大値がより高密度記録で必要な値に対して低
く、耐久性とS/N比のバランス点が不十分である媒体
しか製造できないといった問題点を有していた。
However, although the coercive force increases with an increase in the amount of oxygen introduced in the above-mentioned conventional structure, the saturation magnetic flux density decreases and S obtained with an optimum amount of introduction.
There is a problem that the maximum value of the / N ratio is lower than the value required for higher density recording, and only a medium having an insufficient balance between durability and S / N ratio can be manufactured.

【0007】本発明は上記従来の問題点を解決するもの
で、狭トラック高密度記録を可能にする、耐久性と高出
力特性を兼ね備えた薄型の磁気記録媒体の製造方法を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a method for manufacturing a thin magnetic recording medium having both durability and high output characteristics, which enables narrow track high density recording. And

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の磁気記録媒体の製造方法は、移動するフィル
ムに強磁性金属を電子ビーム蒸着する際、入射角が小さ
くなるにつれて、回転支持体の温度が高くなるようにす
ることである。
In order to achieve this object, a method of manufacturing a magnetic recording medium according to the present invention includes a method of rotating a support as an incident angle becomes smaller, when a ferromagnetic metal is electron beam evaporated on a moving film. It is to make the body temperature higher.

【0009】[0009]

【作用】この構成によって入射角が小さくなるにつれ
て、蒸着速度が大きくなり欠陥が増える傾向が、温度上
昇によって抑制され、結晶性が改善され、緻密で耐久性
に優れ、磁気特性のみならず、微細構造の均一性改善が
ノイズ改良に繋がることから、耐久性と高密度記録特性
を共に改善することができる。
With this structure, the tendency of the deposition rate to increase and the defects to increase as the incident angle becomes smaller is suppressed by the temperature rise, the crystallinity is improved, the density is excellent and the durability is excellent. Since the improvement of the uniformity of the structure leads to the improvement of noise, both the durability and the high density recording characteristic can be improved.

【0010】[0010]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1において、図3と同じ構成要素につい
ては同じ番号を付して示した。11はエンドレスベルト
状の回転支持体で、ステンレス、チタン、モリブデン、
銅−チタン合金等の金属箔で厚み0.1〜0.4mmで表
面性は最大粗さで0.2μm以下が好ましい。12,1
3は温度調整ローラーで、その数は2個に限定されるも
のではない。12と13は温度制御され、12の方が1
3より低い温度に設定制御されるように構成する。14
はテンションローラーである。この構成の蒸着装置によ
って、入射角が大きい側から小さくなる変化をする蒸着
において入射角が小さくなる方が製膜温度が高くなるよ
うにできる。高分子フィルムはフィルムに電子を注入す
るなどによって、静電気引力でベルト表面に密着するよ
うにするのが好ましい。
In FIG. 1, the same components as those in FIG. 3 are designated by the same reference numerals. Reference numeral 11 denotes an endless belt-shaped rotary support, which includes stainless steel, titanium, molybdenum,
It is preferable that the metal foil of copper-titanium alloy or the like has a thickness of 0.1 to 0.4 mm and the surface roughness is 0.2 μm or less in terms of maximum roughness. 12, 1
3 is a temperature adjusting roller, and the number thereof is not limited to two. 12 and 13 are temperature controlled, 12 is 1
It is configured so that the temperature is controlled to be lower than 3. 14
Is a tension roller. With the vapor deposition device having this configuration, the film forming temperature can be increased as the incident angle becomes smaller in vapor deposition in which the incident angle changes from the larger side to the smaller side. The polymer film is preferably brought into close contact with the belt surface by electrostatic attraction by injecting electrons into the film.

【0012】以下更に本実施例の効果について明確にす
るために具体的に磁気記録媒体を試作し、従来法で得ら
れたものと特性比較を行った結果について詳しく述べ
る。
In order to further clarify the effect of this embodiment, a magnetic recording medium will be concretely manufactured as a prototype and the results of characteristics comparison with those obtained by the conventional method will be described in detail.

【0013】厚み6.3μmで、長手方向、幅方向夫々
540,590〔Kg/mm2〕のヤング率で、平均粗さ3
0Åのポリエチレンナフタレートフィルム(直径150
ÅのSiO2の超微粒子を平均密度20個/μm2を樹脂
固定した塗布層をあらかじめ配したものを用いた)を周
長2.3mの厚み0.2mmのステンレス製エンドレスベ
ルト(最大粗さ:0.07μm)を直径40cmの温度調
整ローラー12、直径20cmの温度調整ローラー13の
温度を調整して、従来例は20℃と60℃に温調した直
径1mの回転キャンに沿わせて巻き取りながらCoを電
子ビーム蒸着して磁性層を0.18μ形成した。入射角
は90度から最小入射角46度で、最小入射角を規制す
るマスクの内側から酸素ガスを導入して、磁気特性をほ
ぼ同じになる条件で製膜した。夫々の磁性層の上にメタ
ンをイオン化して炭素膜を形成するプラズマCVD法で
硬質炭素膜を100Å配した。炭素膜の上に更に潤滑剤
としてパーフルオロポリエーテルを40Å溶液塗布法で
配し、バックコート層を0.45μm形成し8mm幅の磁
気テープを試作して特性比較した。夫々の磁気テープの
特性比較は、ハイバンド8ミリビデオデッキを改造して
記録波長0.47μm、トラックピッチ9μmでS/N
比の相対比較で行った。磁気テープの長さは100mと
し、ランダムに5巻選び出して5巻の平均値で表示し
た。スチル特性はテンションを25gに増加させて40
℃、5%RHで比較した。本実施例による磁気記録媒体
の特性と比較例の磁気記録媒体の特性を(表1)に比較
して示している。
The thickness is 6.3 μm, the Young's modulus is 540,590 [Kg / mm 2 ] in the longitudinal direction and the width direction, and the average roughness is 3
0Å polyethylene naphthalate film (diameter 150
Å SiO 2 ultrafine particles with an average density of 20 particles / μm 2 resin-fixed coating layer was used in advance) was used to make a stainless steel endless belt with a circumference of 2.3 m and a thickness of 0.2 mm (maximum roughness). : 0.07 μm) by adjusting the temperature of the temperature adjusting roller 12 having a diameter of 40 cm and the temperature adjusting roller 13 having a diameter of 20 cm, and the conventional example is wound along a rotary can having a diameter of 1 m which is adjusted to 20 ° C. and 60 ° C. While taking it, Co was electron-beam evaporated to form a magnetic layer of 0.18 μm. The incident angle was 90 degrees to the minimum incident angle of 46 degrees, and oxygen gas was introduced from the inside of the mask that regulates the minimum incident angle, and the film was formed under the condition that the magnetic characteristics were almost the same. A hard carbon film was deposited on each magnetic layer by a plasma CVD method in which methane was ionized to form a carbon film. Perfluoropolyether as a lubricant was further placed on the carbon film by a 40 Å solution coating method, a back coat layer was formed to 0.45 μm, and a magnetic tape having a width of 8 mm was experimentally manufactured and the characteristics were compared. The characteristics of the magnetic tapes are compared with each other by modifying the high-band 8 mm video deck and recording S / N at a recording wavelength of 0.47 μm and a track pitch of 9 μm.
A relative comparison of the ratios was made. The length of the magnetic tape was 100 m, 5 rolls were randomly selected, and the average value of 5 rolls was displayed. Still characteristics are 40 after increasing the tension to 25g.
The comparison was made at 5 ° C and 5% RH. The characteristics of the magnetic recording medium according to this example and the characteristics of the magnetic recording medium of the comparative example are shown in comparison with each other (Table 1).

【0014】[0014]

【表1】 [Table 1]

【0015】この(表1)から明らかなように、本実施
例によって製造された磁気記録媒体は、狭トラック記録
での高密度記録で耐久性と高いS/N比を実現できると
いった優れた効果が得られる。
As is clear from (Table 1), the magnetic recording medium manufactured according to the present example has an excellent effect that it is possible to realize durability and high S / N ratio in high density recording in narrow track recording. Is obtained.

【0016】以上のように本実施例の製造方法によれ
ば、移動するフィルムに強磁性金属を電子ビーム蒸着す
る際、入射角が小さくなるにつれて、回転支持体の温度
が高くすることにより狭トラック化した高密度記録で優
れたS/N比を繰り返し使用においても安定に保持しう
る磁気記録媒体を再現良く大量に得ることができる。
As described above, according to the manufacturing method of this embodiment, when the ferromagnetic metal is electron beam evaporated on the moving film, the temperature of the rotating support becomes higher as the incident angle becomes smaller, so that the narrow track is narrowed. It is possible to obtain a large number of magnetic recording media with excellent reproducibility and capable of stably maintaining an excellent S / N ratio even after repeated use.

【0017】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。図2は本発明の第
2の実施例の磁気記録媒体の製造方法を実施するための
磁気記録媒体の製造装置の要部構成図である。図2にお
いて図1と同一の構成要素で良い部分は同一の番号を付
与している。15,16,17は夫々温度調整ローラー
で、18は第2マスク、19は第二酸素ガス導入ノズ
ル、20は蒸気流A、21は蒸気流Bである。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a configuration diagram of essential parts of a magnetic recording medium manufacturing apparatus for carrying out the method of manufacturing a magnetic recording medium according to the second embodiment of the present invention. In FIG. 2, the same components as those in FIG. 1 are given the same numbers. Reference numerals 15, 16 and 17 are temperature adjusting rollers, 18 is a second mask, 19 is a second oxygen gas introduction nozzle, 20 is a vapor flow A, and 21 is a vapor flow B.

【0018】上記した構成の装置により本発明を実施し
た。実際に製造された磁気記録媒体の磁性を従来例、比
較例と対比することで本発明について具体的に詳しく説
明する。
The present invention was implemented by the apparatus having the above-mentioned configuration. The present invention will be specifically described in detail by comparing the magnetism of an actually manufactured magnetic recording medium with a conventional example and a comparative example.

【0019】厚み6μmのポリイミドフィルム(平均粗
さ20Å、ヤング率長手600、幅650Kg/mm2)上
に平均粒子径200ÅのSiO2を平均密度50個/μ2
で塗布固定し、以下の条件でCo−O斜め蒸着膜とCo
−O垂直磁化膜の積層膜を形成した。Coはマグネシア
容器内で加速電子ビームによって加熱蒸発させて、入射
角が90度から65度の範囲の蒸着と、40度から20
度の蒸着を続けて行った。酸素導入はノズル10とノズ
ル19から同時に行った。温度調整ローラー15,1
6,17の位置関係を変えてベルトの傾斜角を調整し、
90〜65度、40〜20度部分での製膜厚みを夫々酸
素導入量と連動して調整してみかけの磁気特性を従来例
とほぼ同じにした磁性層を構成した。一方従来例は直径
1mの回転キャン(温度−10℃)に沿わせてフィルム
を移動させながら90〜65度、40〜20度で蒸着
し、酸素ガスも65度規制部分と20度規制部分から導
入した。15,16,17の調整温度は夫々、−25
℃,0℃,20℃とした場合(2a)と、160℃,1
00℃,20℃(2b)とした場合の2水準実施した。
いずれの積層された磁性膜の上にプラズマCVD法でダ
イヤモンド状硬質炭素膜を70Å形成した後パーフルオ
ロアラキン酸を30Å配し、0.5μmのバックコート
層を配して夫々8mm幅の磁気テープに加工した。これら
のテープを改造した8ミリビデオによって5μトラッ
ク、ビット長0.2μのディジタル記録を行いエラーレ
ートを相対比較した。耐久性についても5℃,85%R
Hで100パス履歴を加えた後のエラーレートで評価し
た。
SiO 2 having an average particle diameter of 200 Å has an average density of 50 particles / μ 2 on a polyimide film having a thickness of 6 μm (average roughness 20 Å, Young's modulus length 600, width 650 kg / mm 2 ).
After coating and fixing with, the Co-O oblique deposition film and Co under the following conditions.
A laminated film of -O perpendicular magnetization films was formed. Co is evaporated and heated by an accelerating electron beam in a magnesia container, vapor deposition with an incident angle in the range of 90 to 65 degrees, and 40 to 20 degrees.
Deposition was continued. Oxygen was introduced simultaneously from the nozzle 10 and the nozzle 19. Temperature control rollers 15,1
Adjust the inclination angle of the belt by changing the positional relationship of 6, 17
The film thicknesses at 90 to 65 degrees and 40 to 20 degrees were adjusted in association with the amount of oxygen introduced to form a magnetic layer having apparent magnetic characteristics almost the same as those of the conventional example. On the other hand, in the conventional example, a film is moved along a rotary can (temperature -10 ° C.) having a diameter of 1 m at 90 to 65 ° and 40 to 20 °, and oxygen gas is also deposited from a 65 ° regulated portion and a 20 ° regulated portion. Introduced. The adjusted temperatures of 15, 16 and 17 are -25, respectively.
℃, 0 ℃, 20 ℃ (2a), 160 ℃, 1
Two levels were performed at 00 ° C and 20 ° C (2b).
On each of the laminated magnetic films, a diamond-like hard carbon film is formed by plasma CVD to 70 Å, perfluoroarachidic acid is arranged on 30 Å, a back coat layer of 0.5 μm is arranged and a magnetic tape of 8 mm width each Processed into. By using an 8 mm video modified from these tapes, digital recording with a 5 μ track and a bit length of 0.2 μ was performed and relative error rates were compared. As for durability, 5 ° C, 85% R
The error rate after adding 100 pass history with H was evaluated.

【0020】本実施例による磁気記録媒体の特性と従来
磁気記録媒体の特性を(表2)に比較して示している。
The characteristics of the magnetic recording medium according to this example and the characteristics of the conventional magnetic recording medium are shown in comparison with each other (Table 2).

【0021】[0021]

【表2】 [Table 2]

【0022】この(表2)から明らかなように、本実施
例により製造された磁気記録媒体は、狭トラック条件で
の高密度ディジタル記録を良好なエラー率で行うことが
できるといった優れた効果がある。
As is clear from (Table 2), the magnetic recording medium manufactured according to this example has an excellent effect that high-density digital recording can be performed under a narrow track condition with a good error rate. is there.

【0023】以上のように本実施例によれば移動するフ
ィルムに強磁性金属を電子ビーム蒸着する際、ベルト状
回転支持体に沿わせて面内磁化膜と磁化容易軸が立ち上
がった磁化膜を連続して形成することで、面内磁化膜と
磁化容易軸が立ち上がった膜の厚み配分の最適化が図ら
れ、面内磁化膜が磁束の通路になる効果での出力増大
と、低雑音化と高い飽和磁束密度を両立させることがで
きると共に、飽和磁束密度の高い領域で適切な表面酸化
膜が形成されて、高記録密度特性と耐久信頼性のバラン
スを著しく改善できることになる。
As described above, according to this embodiment, when the ferromagnetic metal is electron beam evaporated on the moving film, the in-plane magnetized film and the magnetized film with the easy axis of magnetization rising along the belt-shaped rotary support. By forming them continuously, the thickness distribution of the in-plane magnetized film and the film with the easy axis of magnetization raised is optimized, the output increases due to the effect of the in-plane magnetized film becoming a magnetic flux path, and noise reduction. And a high saturation magnetic flux density can both be achieved, and an appropriate surface oxide film is formed in a region where the saturation magnetic flux density is high, so that the balance between high recording density characteristics and durability reliability can be significantly improved.

【0024】[0024]

【発明の効果】以上のように本発明によれば、移動する
フィルムに強磁性金属を電子ビーム蒸着する際、入射角
が小さくなるにつれて、回転支持体の温度が高くするこ
とにより、狭トラック化した高密度記録で優れたS/N
比を繰り返し使用においても安定に保持しうる磁気記録
媒体を再現良く大量に得ることができる。
As described above, according to the present invention, when a ferromagnetic metal is electron beam evaporated on a moving film, the temperature of the rotary support becomes higher as the incident angle becomes smaller, thereby narrowing the track. Excellent S / N with high density recording
It is possible to reproducibly obtain a large amount of magnetic recording media that can stably maintain the ratio even after repeated use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における磁気記録媒体の
製造に用いた蒸着装置の要部拡大断面図
FIG. 1 is an enlarged cross-sectional view of a main part of a vapor deposition apparatus used for manufacturing a magnetic recording medium according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における磁気記録媒体の
製造に用いた蒸着装置の要部拡大断面図
FIG. 2 is an enlarged cross-sectional view of an essential part of a vapor deposition device used for manufacturing a magnetic recording medium according to a second embodiment of the present invention.

【図3】従来の磁気記録媒体の製造に用いた蒸着装置の
要部拡大断面図
FIG. 3 is an enlarged cross-sectional view of a main part of a vapor deposition apparatus used for manufacturing a conventional magnetic recording medium.

【符号の説明】[Explanation of symbols]

1 高分子フィルム 6 蒸着材料 11 回転支持体(エンドレスベルト) 12 温度調整ローラー 13 温度調整ローラー 15 温度調整ローラー 16 温度調整ローラー 17 温度調整ローラー 18 第2マスク 1 Polymer Film 6 Deposition Material 11 Rotating Support (Endless Belt) 12 Temperature Adjusting Roller 13 Temperature Adjusting Roller 15 Temperature Adjusting Roller 16 Temperature Adjusting Roller 17 Temperature Adjusting Roller 18 Second Mask

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 移動するフィルムに強磁性金属を電子ビ
ーム蒸着する際、入射角が小さくなるにつれて、回転支
持体の温度が高くなることを特徴とする磁気記録媒体の
製造方法。
1. A method of manufacturing a magnetic recording medium, characterized in that, when a ferromagnetic metal is electron-beam evaporated on a moving film, the temperature of a rotary support becomes higher as the incident angle becomes smaller.
【請求項2】 移動するフィルムに強磁性金属を電子ビ
ーム蒸着する際、ベルト状回転支持体に沿わせて面内磁
化膜と磁化容易軸が立ち上がった磁化膜を連続して形成
することを特徴とする磁気記録媒体の製造方法。
2. An in-plane magnetized film and a magnetized film with an axis of easy magnetization rising are continuously formed along a belt-shaped rotary support when a ferromagnetic metal is electron beam evaporated on a moving film. And a method for manufacturing a magnetic recording medium.
JP1518093A 1993-02-02 1993-02-02 Production of magnetic recording medium Pending JPH06231457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1518093A JPH06231457A (en) 1993-02-02 1993-02-02 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1518093A JPH06231457A (en) 1993-02-02 1993-02-02 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06231457A true JPH06231457A (en) 1994-08-19

Family

ID=11881630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1518093A Pending JPH06231457A (en) 1993-02-02 1993-02-02 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06231457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111306A1 (en) * 2007-03-09 2008-09-18 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111306A1 (en) * 2007-03-09 2008-09-18 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
KR101478844B1 (en) * 2007-03-09 2015-01-02 파나소닉 주식회사 Deposition apparatus and method for manufacturing film by using deposition apparatus

Similar Documents

Publication Publication Date Title
JPH1186275A (en) Magnetic recording medium
JPH06231457A (en) Production of magnetic recording medium
EP0580095A1 (en) Production of magnetic recording medium
EP0650159B1 (en) Manufacturing method of magnetic recording medium
JP2001143235A (en) Magnetic recording medium, its manufacturing method and manufacturing device
US6251496B1 (en) Magnetic recording medium method and apparatus for producing the same
JP2514216B2 (en) Magnetic recording media
JP2833444B2 (en) Manufacturing method of magnetic recording medium
JP3139181B2 (en) Manufacturing method of magnetic recording medium
JP2629847B2 (en) Manufacturing method of magnetic recording medium
JPH06116729A (en) Production of magnetic recording medium
EP0529673B1 (en) Method for manufacturing a thin film
JP2951892B2 (en) Magnetic recording media
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH06111299A (en) Manufacture of magnetic recording medium
JPH01211235A (en) Manufacture of magnetic recording medium
JPH06251363A (en) Production of magnetic recording medium
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
JP2756241B2 (en) Magnetic recording media
JPH06333225A (en) Thin film magnetic recording medium
JP2004039078A (en) Magnetic recording medium
JPH11140644A (en) Thin film deposition device and production of thin film
JP2006048840A (en) Magnetic recording medium, its manufacturing method and recording and reproducing method of magnetic recording medium
JPH0714160A (en) Production of magnetic recording medium
JP2001344736A (en) Magnetic recording medium and magnetic recording method