JPH06251363A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH06251363A
JPH06251363A JP3510893A JP3510893A JPH06251363A JP H06251363 A JPH06251363 A JP H06251363A JP 3510893 A JP3510893 A JP 3510893A JP 3510893 A JP3510893 A JP 3510893A JP H06251363 A JPH06251363 A JP H06251363A
Authority
JP
Japan
Prior art keywords
magnetic recording
film
recording medium
diamond
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3510893A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3510893A priority Critical patent/JPH06251363A/en
Publication of JPH06251363A publication Critical patent/JPH06251363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a high density magnetic recording medium having durability and high output characteristics by subjecting the surface of a diamond like hard carbon film formed on a ferromagnetic metal thin film to hydrogen atom treatment and vacuum depositing a lubricant. CONSTITUTION:A partially oxidized ferromagnetic metal thin film is formed on a polymer film of a tape 1 to be treated thus forming a diamond-like hard carbon film and the surface thereof is subjected to hydrogen atom treatment on a rotary support 2 by means of a hydrogen atom generator 5. A lubricant 7 is then vacuum deposited in an evaporation source vessel 6 and then the film is wound around a winding shaft 4. This constitution enhances bonding strength on the surface of the diamond-like hard carbon film formed on the surface of the partially oxidized ferromagnetic metal thin film by means of quite active hydrogen atoms thus allowing strong bonding through hydrogen when the lubricant is deposited. Since durability can be provided even if the nonmagnetic part, causing space loss, is reduced a thin magnetic recording medium having durability and high S/N ratio can be produced with high reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度磁気記録に適する
強磁性金属薄膜を磁性層とする耐久性と記録特性に優れ
た磁気記録媒体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic recording medium having a magnetic layer of a ferromagnetic metal thin film suitable for high density magnetic recording and having excellent durability and recording characteristics.

【0002】[0002]

【従来の技術】情報化社会の進展に伴い、記録すべき情
報量の増大は著しく、磁気記録についても可能な限り記
録密度を高める対応が要請され、短波長化、狭トラック
化に耐える高性能磁気記録媒体の開発が盛んになってき
ている。多くの提案がなされているが、現在実用に供さ
れているものは特開昭53−58206号公報に開示さ
れているような強磁性金属自身の酸化物で柱状微粒子の
表面が被覆された構造をもち記録特性と耐久性をバラン
ス良く改善したもので、構成元素はCo,Ni,Oから
なり(特開昭56−15014号公報)、これらの磁気
記録層を形成するのは、酸素ガスを介在させながらC
o,Co−Niを電子ビーム蒸着する方法が代表的で酸
素の導入については幾つかの提案があるが基材近傍で、
入射角規制を行う部分に近い位置が良く用いられている
(特開昭54−19199号公報、特開昭58−322
34号公報)。更に実用性能の改善を図る為に保護膜の
検討が進められている中でも、硬度を高めた炭素膜(特
開昭53−143026号公報)や他の薄層介在による
一層の改善が行われてきている(例えば特開昭61−2
42323号公報、特開昭62−167616号公報
等)。これらの膜はプラズマを応用した、スパッタリン
グ法、イオンビームデポジション法、プラズマCVD法
等で蒸着によって強磁性金属薄膜形成後に所定の膜厚分
付与される。更に潤滑剤を溶液塗布法ないしは真空蒸着
法で配し、必要な処理の後、テープ状、ディスク状に加
工されて使用されている。
2. Description of the Related Art With the progress of information society, the amount of information to be recorded is remarkably increasing, and it is required to increase the recording density of magnetic recording as much as possible. Development of magnetic recording media has been brisk. Although many proposals have been made, the one currently put to practical use is a structure in which the surface of columnar fine particles is coated with an oxide of a ferromagnetic metal itself as disclosed in JP-A-53-58206. It has a well-balanced improvement in recording characteristics and durability, and its constituent elements consist of Co, Ni, and O (JP-A-56-15014), and these magnetic recording layers are formed by oxygen gas. C while intervening
A typical method is electron beam evaporation of o, Co-Ni, and there are some proposals for introducing oxygen, but in the vicinity of the substrate,
A position close to the part for controlling the incident angle is often used (Japanese Patent Laid-Open No. 54-19199, Japanese Patent Laid-Open No. 58-322).
34 publication). Further, while a protective film is being studied in order to improve the practical performance, further improvement has been made by increasing the hardness of the carbon film (Japanese Patent Laid-Open No. 53-143026) or by interposing other thin layers. (For example, JP-A-61-2
No. 42323, JP-A No. 62-167616, etc.). These films are applied by a predetermined film thickness after the ferromagnetic metal thin film is formed by vapor deposition by a plasma-applied sputtering method, an ion beam deposition method, a plasma CVD method or the like. Further, a lubricant is arranged by a solution coating method or a vacuum deposition method, and after necessary treatment, it is processed into a tape shape or a disk shape and used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では酸素導入量を増加させて表面酸化膜の厚み
を厚くして、且つ炭素膜の硬さを高めた上でその厚みも
厚くする必要があり、スペーシング損失が大きくなり、
高密度記録を改善するに足るS/N特性を得にくいとい
った問題点があった。
However, in the above-mentioned conventional structure, it is necessary to increase the amount of oxygen introduced to increase the thickness of the surface oxide film, and to increase the hardness of the carbon film and also increase the thickness thereof. There is a large spacing loss,
There is a problem that it is difficult to obtain S / N characteristics sufficient to improve high density recording.

【0004】本発明は上記従来の問題点を解決するもの
で、狭トラック高密度記録を可能にする、耐久性と高出
力特性を兼ね備えた薄型の磁気記録媒体の製造方法を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a method of manufacturing a thin magnetic recording medium having both durability and high output characteristics, which enables narrow track high density recording. And

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の磁気記録媒体の製造方法は部分酸化強磁性金
属薄膜上にダイヤモンド状硬質炭素膜を形成し、素面を
水素原子処理してから潤滑剤を真空蒸着するようにした
ものである。
In order to achieve this object, a method of manufacturing a magnetic recording medium according to the present invention comprises forming a diamond-like hard carbon film on a partially oxidized ferromagnetic metal thin film and treating the bare surface with hydrogen atoms. In this case, the lubricant is vacuum-deposited.

【0006】[0006]

【作用】この構成によって部分酸化強磁性金属薄膜表面
の上のダイヤモンド状硬質炭素膜表面が極めて活性な水
素原子によって結合力を高められ、その上に潤滑剤を蒸
着した際に水素を介して強く結合させることが出来、ス
ペース損失となる非磁性部分を少なくしても、耐久性を
持たすことが出来るので耐久性と高S/N比を兼ね備え
た薄型の磁気記録媒体を再現よく製造できるようにな
る。
With this structure, the bonding strength of the diamond-like hard carbon film surface on the partially oxidized ferromagnetic metal thin film surface is increased by the extremely active hydrogen atoms, and when the lubricant is vapor-deposited on the diamond-like hard carbon film surface, the bonding force is strengthened strongly by hydrogen. Since it is possible to combine and reduce the non-magnetic portion that causes space loss, it can have durability, so that it is possible to reproducibly manufacture a thin magnetic recording medium having both durability and a high S / N ratio. Become.

【0007】[0007]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1において、1は処理用原反で高分子フ
ィルム上に部分酸化強磁性金属薄膜を配し、その上にダ
イヤモンド状硬質炭素を形成したもので、2は回転支持
体で温度制御条件、絶縁保持等は適宜選ぶことが可能で
ある。3は送り出し軸、4は巻き取り軸である。5は水
素原子発生器で、6は蒸発源容器、7は蒸着用の潤滑
剤、8はフリーローラーである。蒸発の為の加熱エネル
ギーは、加速電子線、ジュール熱、等特に限定はない。
水素原子発生器は水素イオンを電子シャワーで中和し磁
界偏向により電荷をもった粒子を除去して得た水素原子
ビームを発生させる機能をもつものである。潤滑剤につ
いては、天然に存在するものは勿論、化学合成して得た
ものでも良い。
In FIG. 1, reference numeral 1 is a raw material for processing, in which a partially oxidized ferromagnetic metal thin film is arranged on a polymer film, and diamond-like hard carbon is formed thereon, and 2 is a rotary support for temperature control. The conditions, insulation retention, etc. can be appropriately selected. Reference numeral 3 is a delivery shaft, and 4 is a winding shaft. Reference numeral 5 is a hydrogen atom generator, 6 is an evaporation source container, 7 is a lubricant for vapor deposition, and 8 is a free roller. The heating energy for evaporation is not particularly limited, such as accelerated electron beam and Joule heat.
The hydrogen atom generator has a function of neutralizing hydrogen ions with an electron shower and removing charged particles by magnetic field deflection to generate a hydrogen atom beam obtained. As for the lubricant, naturally occurring lubricants as well as those obtained by chemical synthesis may be used.

【0009】以下更に本実施例の効果について明確にす
るために具体的に上記した構成の装置を用い磁気記録媒
体を試作し、従来法で得られたものと特性比較を行った
結果について詳しく述べる。
In order to further clarify the effect of this embodiment, a magnetic recording medium will be made by using the apparatus having the above-mentioned constitution, and the result of the characteristic comparison with that obtained by the conventional method will be described in detail. .

【0010】厚み7μmで、長手方向、幅方向夫々54
0,590[Kg/mm2]のヤング率で、平均粗さ3
0Åのポリエチレンテレフタレートフィルム(直径15
0ÅのSiO2の超微粒子を平均密度20個/μm2を樹
脂固定した塗布層をあらかじめ配したものを用いた)を
直径1mの20℃に冷却した回転キャンに沿わせて巻き
取りながら酸素を導入してCoを電子ビーム蒸着して磁
性層を0.18μ形成した。酸素ガス導入ノズルは最小
入射角40度とし、その入射角を決定するマスクの先端
部に直径8mmのステンレスパイプに0.2mmの直径
の孔を15mmピッチで配した酸素ガス導入ノズルから
0.81/minに制御して導入した。表面の酸化層は
110〜115Åであった。その上にプラズマCVD法
でメタンガスを放電分解し、ダイヤモンド状の硬質酸素
膜を70Å形成した。この状態のフィルムを原反Aと
し、原反Aを長手方向に分割して、実施例は水素原子処
理、比較例は水素グロー放電処理、従来例は処理なしで
ある。真空蒸着法によりパーフルオロステアリン酸を均
一厚み換算で40Å配して、バックコート層を0.45
μm形成し8mm幅の磁気テープを試作して特性比較し
た。夫々の磁気テープの特性比較は、ハイバンド8ミリ
ビデオデッキを改造して記録波長0.47μm、トラッ
クピッチ9μmでS/N比を初期と40℃、80%RH
で130回記録再生を繰り返した後について、相対比較
で行った。磁気テープの長さは100mとし、ランダム
に5巻選び出して5巻の平均値で表示した。スチル特性
はテンションを25gに増加させて40℃、5%RHで
比較した。本実施例による磁気記録媒体の特性と比較例
の磁気記録媒体の特性を(表1)に比較して示してい
る。
A thickness of 7 μm, 54 in the longitudinal direction and 54 in the width direction, respectively.
Young's modulus of 0,590 [Kg / mm 2 ] and average roughness of 3
0Å polyethylene terephthalate film (diameter 15
Using 0 Å ultrafine particles of SiO 2 with an average density of 20 particles / μm 2 resin-fixed coating layer was placed in advance), the oxygen was wound up along a rotary can cooled to 20 ° C. with a diameter of 1 m. Then, Co was electron beam evaporated to form a magnetic layer of 0.18 μm. The oxygen gas introduction nozzle has a minimum incident angle of 40 degrees, and the mask for determining the incident angle has a 0.8 mm diameter stainless pipe at the tip of which a 0.2 mm diameter hole is arranged at a pitch of 15 mm. / Min It controlled and introduced. The oxide layer on the surface was 110 to 115Å. Then, methane gas was discharged and decomposed by plasma CVD to form a diamond-shaped hard oxygen film of 70Å. The film in this state is referred to as a raw fabric A, and the raw fabric A is divided in the longitudinal direction, and hydrogen atom treatment is carried out in the examples, hydrogen glow discharge treatment is carried out in the comparative examples, and no treatment is carried out in the conventional examples. Disperse perfluorostearic acid in a uniform thickness of 40Å by vacuum deposition to form a backcoat layer of 0.45
A magnetic tape having a thickness of 8 μm and having a width of 8 mm was manufactured as a prototype and its characteristics were compared. The characteristics of the magnetic tapes are compared with each other by modifying the high-band 8 mm video deck and recording wavelength 0.47 μm, track pitch 9 μm and S / N ratio at the initial stage, 40 ° C., 80% RH.
After the recording and reproduction were repeated 130 times, the relative comparison was performed. The length of the magnetic tape was 100 m, 5 rolls were randomly selected, and the average value of 5 rolls was displayed. The still characteristics were compared at 40 ° C. and 5% RH by increasing the tension to 25 g. The characteristics of the magnetic recording medium according to this example and the characteristics of the magnetic recording medium of the comparative example are shown in comparison with each other (Table 1).

【0011】[0011]

【表1】 [Table 1]

【0012】この(表1)から明らかなように、本実施
例によって製造された磁気記録媒体は、狭トラック記録
での高密度記録で耐久性と高いS/N比を実現出来ると
いった優れた効果が得られることがわかり優れた製造方
法であることが理解される。
As is clear from (Table 1), the magnetic recording medium manufactured according to the present example has an excellent effect of achieving durability and high S / N ratio in high density recording in narrow track recording. It is understood that is an excellent manufacturing method.

【0013】以上の様に本実施例の製造方法によれば、
部分酸化強磁性金属薄膜上にダイヤモンド状硬質炭素膜
を形成し、表面を水素原子処理してから潤滑剤を真空蒸
着することで、狭トラック化した高密度記録で優れたS
/N比を繰り返し使用においても安定に保持しうる磁気
記録媒体を再現良く大量に得ることが出来る。
As described above, according to the manufacturing method of this embodiment,
A diamond-like hard carbon film is formed on a partially-oxidized ferromagnetic metal thin film, the surface is treated with hydrogen atoms, and a lubricant is vacuum-deposited.
It is possible to obtain a large number of magnetic recording media with good reproducibility that can stably maintain the / N ratio even after repeated use.

【0014】(実施例2)以下本発明の第2の実施例に
ついて説明する。
(Second Embodiment) A second embodiment of the present invention will be described below.

【0015】図2は本発明の第2の実施例の磁気記録媒
体の製造方法を実施するために用いた磁気記録媒体の製
造装置の要部構成図である。図2で9は高分子フィルム
上にCo−O,Co−Ta−O,Co−Cr−O,Co
−Ni−O等の単層、または複数層の部分酸化強磁性金
属薄膜を配した処理用原反で、10,11は温度制御さ
れた回転支持体で、12は送り出し軸、13は巻き取り
軸、14は炭素膜をダイヤモンドに近い硬さで部分酸化
強磁性金属膜上に形成するためのグラファイトターゲッ
トである。なお強磁性金属膜上に直接ダイヤモンド状硬
質炭素膜を形成する場合に限らずプラズマ重合処理等の
後にダイヤモンド状硬質炭素膜を形成しても良い。いず
れにしても所定の膜厚より厚く、20〜50%厚く形成
するようにすることが必要である。勿論ダイヤモンド状
硬質炭素膜の形成法はスパッタリング法以外のイオンプ
レーティング法、プラズマCVD法等特に限定されるも
のではない。15はスパッタエッチング用の放電電極
で、予め厚めにつけたダイヤモンド状硬質炭素膜を所定
の厚みに調整するために水素ガス、水素ガスとアルゴン
ガスの混合基体等を放電ガスに用いイオン主体でエッチ
ングを行う。16は蒸発源容器、17は潤滑剤で蒸発量
の制御は熱媒循環等による伝熱、ジュール熱の利用、誘
導発熱等特に限定されるものではない。18は真空槽
で、19,20は真空排気系、21,22はガス導入
系、23は絶縁導入端子、24は真空隔壁である。
FIG. 2 is a schematic view of the essential parts of a magnetic recording medium manufacturing apparatus used to carry out the method of manufacturing a magnetic recording medium according to the second embodiment of the present invention. In FIG. 2, 9 is Co-O, Co-Ta-O, Co-Cr-O, Co on the polymer film.
-Ni-O single-layer or multi-layer partially-oxidized ferromagnetic metal thin film is disposed on the processing stock, and 10 and 11 are temperature-controlled rotary supports, 12 is a delivery shaft, and 13 is a take-up reel. The axis 14 is a graphite target for forming a carbon film on the partially oxidized ferromagnetic metal film with a hardness close to that of diamond. The diamond-like hard carbon film is not limited to the case where the diamond-like hard carbon film is directly formed on the ferromagnetic metal film, but the diamond-like hard carbon film may be formed after the plasma polymerization treatment or the like. In any case, it is necessary to form the film thicker than a predetermined film thickness and 20 to 50% thicker. Of course, the method for forming the diamond-like hard carbon film is not particularly limited to the ion plating method other than the sputtering method, the plasma CVD method and the like. Reference numeral 15 is a discharge electrode for sputter etching, in which hydrogen gas, a mixed substrate of hydrogen gas and argon gas, or the like is used as a discharge gas in order to adjust the thickness of a diamond-like hard carbon film, which is previously thickened, to a predetermined thickness, and etching is performed mainly by ions To do. Reference numeral 16 is an evaporation source container, 17 is a lubricant, and the amount of evaporation is controlled by heat transfer such as heat medium circulation, use of Joule heat, induction heat generation and the like, and is not particularly limited. 18 is a vacuum tank, 19 and 20 are vacuum exhaust systems, 21 and 22 are gas introduction systems, 23 is an insulation introduction terminal, and 24 is a vacuum partition.

【0016】以下更に本実施例の効果について明確にす
るために具体的に上記した構成の装置を用い磁気記録媒
体を試作し、従来法で得られたものと特性比較を行った
結果について詳しく述べる。
In order to further clarify the effect of this embodiment, a magnetic recording medium is prototyped using the apparatus having the above-mentioned constitution, and the results of the characteristic comparison with those obtained by the conventional method will be described in detail. .

【0017】厚み6.1μmで、長手方向、幅方向夫々
940、1050[Kg/mm2]のヤング率で、平均
粗さ25Åのポリイミドフィルム(直径150ÅのSi
2の超微粒子を平均密度20個/μm2を樹脂固定した
塗布層をあらかじめ配したものを用いた)を直径1mの
200℃に加熱した回転キャンに沿わせて巻き取りなが
ら酸素を導入してCoを電子ビーム蒸着して磁性層を
0.18μ形成した。酸素ガス導入ノズルは最小入射角
20度とし、その入射角を決定するマスクの先端部に直
径8mmのステンレスパイプに0.2mmの直径の孔を
15mmピッチで配した酸素ガス導入ノズルから0.8
1/minに制御して導入した。最大入射角は42度
で、垂直方向に磁化容易軸を持つCo−O膜で表面の酸
化層は120〜125Åであった。
A polyimide film (Si having a diameter of 150 Å) having a thickness of 6.1 μm and a Young's modulus of 940 and 1050 [Kg / mm 2 ] in the longitudinal and width directions and an average roughness of 25 Å
O 2 ultrafine particles were used by pre-arranging a coating layer having an average density of 20 particles / μm 2 fixed on a resin) and oxygen was introduced while winding along a rotary can heated to 200 ° C. having a diameter of 1 m. Co was electron beam evaporated to form a magnetic layer of 0.18 μm. The oxygen gas introduction nozzle has a minimum incident angle of 20 degrees, and a 0.8 mm diameter stainless steel pipe having 0.2 mm diameter holes at a 15 mm pitch is arranged at the tip of the mask for determining the incident angle.
It was introduced by controlling to 1 / min. The maximum incident angle was 42 degrees, and the surface oxide layer was a Co—O film having an easy axis of magnetization in the perpendicular direction and the surface oxide layer was 120 to 125 Å.

【0018】この状態を原反Bとし、原反Bを図2の装
置によりグラファイトをターゲットにして高周波スパッ
タリング法によりダイヤモンド状硬質炭素膜を80Å
(2a)、100Å(2b)、130Å(2c)、20
0Å(2d)形成し、引続きカーボン電極を用い、放電
ガスは水素とアルゴンを等量とし、スパッタエッチング
法により厚みを夫々60Å(2a),80Å(2b)8
0Å(2c),110Å(2d)とし、その上に抵抗加
熱法でミリスチン酸を30Å真空蒸着した。従来例は6
0Å(2e)、80Å(2f)、110Å(2g)の厚
みのダイヤモンド状硬質炭素膜を形成した上で同様にミ
リスチン酸を30Å真空蒸着したものを準備した。いず
れもバックコート層を0.45μm形成し8mm幅の磁
気テープに加工した。これらのテープを改造した8ミリ
ビデオによって5μトラック、ビット長0.2μのデイ
ジタル記録を行いエラーレートを相対比較した。耐久性
についても5℃,85%RHで100パス履歴を加えた
後のエラーレートで評価した。本実施例による磁気記録
媒体の特性と従来磁気記録媒体の特性を(表2)に比較
して示している。
This state is referred to as a raw fabric B, and the raw fabric B is subjected to a high frequency sputtering method using a device of FIG.
(2a), 100Å (2b), 130Å (2c), 20
0 Å (2d) was formed, carbon electrodes were continuously used, the discharge gas was made equal to hydrogen and argon, and the thickness was 60 Å (2a) and 80 Å (2b) 8 by the sputter etching method.
0Å (2c) and 110Å (2d) were set, and myristic acid was vacuum-deposited on it by 30Å by resistance heating method. Conventional example is 6
A diamond-like hard carbon film having a thickness of 0 Å (2e), 80 Å (2f) and 110 Å (2 g) was formed, and then myristic acid was similarly vacuum-deposited in a volume of 30 Å. In each case, a back coat layer having a thickness of 0.45 μm was formed into a magnetic tape having a width of 8 mm. Digital recording with a 5 μ track and a bit length of 0.2 μ was performed by an 8 mm video obtained by modifying these tapes, and the error rates were compared with each other. The durability was also evaluated by the error rate after adding 100 pass histories at 5 ° C. and 85% RH. The characteristics of the magnetic recording medium according to this example and the characteristics of the conventional magnetic recording medium are shown in comparison with each other (Table 2).

【0019】[0019]

【表2】 [Table 2]

【0020】この(表2)から明らかなように、本実施
例により製造された磁気記録媒体は、狭トラック条件で
の高密度デイジタル記録を良好なエラー率で行うことが
出来るといった優れた効果がある。
As is clear from (Table 2), the magnetic recording medium manufactured according to this example has an excellent effect that high density digital recording under a narrow track condition can be performed with a good error rate. is there.

【0021】以上のように本実施例によれば部分酸化強
磁性金属薄膜上にダイヤモンド状硬質炭素膜を所定厚み
を越えて形成した後、表面をスパッタエッチ処理して所
定の厚みとした後、潤滑剤を真空蒸着することにより、
硬質炭素膜の表面が極めて活性となり、潤滑剤と強固に
被着することになり、潤滑性能の持続性が飛躍的に改良
されるのと、硬質炭素膜の硬さも表面近くの欠陥が除去
されることから大きくなるため、薄く出来、耐久性と高
S/N比を兼ね備えた薄型の磁気記録媒体を再現よく製
造できるようになる。
As described above, according to this embodiment, after the diamond-like hard carbon film is formed on the partially oxidized ferromagnetic metal thin film so as to have a predetermined thickness, the surface is sputter-etched to a predetermined thickness, By vacuum-depositing the lubricant,
The surface of the hard carbon film becomes extremely active, and it adheres strongly to the lubricant, dramatically improving the sustainability of lubrication performance and removing the defects near the surface of the hardness of the hard carbon film. Therefore, the magnetic recording medium can be made thin, and it is possible to reproducibly manufacture a thin magnetic recording medium which has both durability and a high S / N ratio.

【0022】[0022]

【発明の効果】以上の様に本発明によれば、部分酸化強
磁性金属薄膜上にダイヤモンド状硬質炭素膜を形成し、
表面を水素原子処理してから潤滑剤を真空蒸着すること
で、狭トラック化した高密度記録で優れたS/N比を繰
り返し使用においても安定に保持しうる磁気記録媒体を
再現良く大量に得ることが出来る。
As described above, according to the present invention, a diamond-like hard carbon film is formed on a partially oxidized ferromagnetic metal thin film,
By subjecting the surface to hydrogen atom treatment and then vacuum-depositing the lubricant, a large amount of magnetic recording media can be obtained with good track record and high density recording, which can stably maintain excellent S / N ratio even after repeated use. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における磁気記録媒体の
製造に用いた処理装置の要部拡大断面図
FIG. 1 is an enlarged cross-sectional view of a main part of a processing apparatus used for manufacturing a magnetic recording medium according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における磁気記録媒体の
製造に用いた処理装置の要部拡大断面図
FIG. 2 is an enlarged cross-sectional view of a main part of a processing apparatus used for manufacturing a magnetic recording medium according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 処理用原反 5 水素原子発生器 7 潤滑剤 9 処理用原反 14 グラファイトターゲット 15 放電電極 17 潤滑剤 1 Processing Fabric 5 Hydrogen Atom Generator 7 Lubricant 9 Processing Fabric 14 Graphite Target 15 Discharge Electrode 17 Lubricant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 部分酸化強磁性金属薄膜上にダイヤモン
ド状硬質炭素膜を形成し、表面を水素原子処理してから
潤滑剤を真空蒸着することを特徴とする磁気記録媒体の
製造方法。
1. A method of manufacturing a magnetic recording medium, comprising forming a diamond-like hard carbon film on a partially oxidized ferromagnetic metal thin film, treating the surface with hydrogen atoms, and then vacuum-depositing a lubricant.
【請求項2】 部分酸化強磁性金属薄膜上にダイヤモン
ド状硬質炭素膜を所定厚みを越えて形成した後、表面を
スパッタエッチ処理して所定の厚みとした後、潤滑剤を
真空蒸着することを特徴とする磁気記録媒体の製造方
法。
2. A method for forming a diamond-like hard carbon film on a partially oxidized ferromagnetic metal thin film so as to have a predetermined thickness, subjecting the surface to sputter etching to a predetermined thickness, and then vacuum-depositing a lubricant. A method for manufacturing a characteristic magnetic recording medium.
JP3510893A 1993-02-24 1993-02-24 Production of magnetic recording medium Pending JPH06251363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3510893A JPH06251363A (en) 1993-02-24 1993-02-24 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3510893A JPH06251363A (en) 1993-02-24 1993-02-24 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06251363A true JPH06251363A (en) 1994-09-09

Family

ID=12432741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3510893A Pending JPH06251363A (en) 1993-02-24 1993-02-24 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06251363A (en)

Similar Documents

Publication Publication Date Title
JP2563425B2 (en) Method of manufacturing magnetic recording medium
JPH1186275A (en) Magnetic recording medium
KR960013372B1 (en) Method for making a magnetic recording medium
JPH06251363A (en) Production of magnetic recording medium
JP3323660B2 (en) Magnetic recording medium and thin film manufacturing method and thin film manufacturing apparatus
JPH103638A (en) Magnetic recording medium
JP2951892B2 (en) Magnetic recording media
JPS62185246A (en) Production of magnetic recording medium
JP3358352B2 (en) Film forming equipment
JPH06124439A (en) Manufacture of magnetic recording medium
JPH06231457A (en) Production of magnetic recording medium
JPH09320031A (en) Magnetic recording medium
JP2563428B2 (en) Method of manufacturing magnetic recording medium
JP2594380B2 (en) Magnetic recording media
JPH0757254A (en) Production of magnetic recording medium
JPH06116729A (en) Production of magnetic recording medium
JP3076543B2 (en) Magnetic recording media
JPH06111299A (en) Manufacture of magnetic recording medium
JP4371881B2 (en) Magnetic recording medium manufacturing apparatus and manufacturing method
JPH01211235A (en) Manufacture of magnetic recording medium
JPS63206912A (en) Production of magnetic recording medium
JPH07114731A (en) Production of magnetic recording medium
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JP2002327272A (en) Film forming apparatus
JPH0740357B2 (en) Method of manufacturing magnetic recording medium