JPH06124439A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPH06124439A
JPH06124439A JP27134392A JP27134392A JPH06124439A JP H06124439 A JPH06124439 A JP H06124439A JP 27134392 A JP27134392 A JP 27134392A JP 27134392 A JP27134392 A JP 27134392A JP H06124439 A JPH06124439 A JP H06124439A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
oxide layer
ferromagnetic metal
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27134392A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27134392A priority Critical patent/JPH06124439A/en
Publication of JPH06124439A publication Critical patent/JPH06124439A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dense and hard oxide film having higher durability by repeating alternate processings of sputter etching and grow oxidation on the surface a partial oxide film obtained by vacuum deposition of ferromagnetic metal under the oxygen atmosphere. CONSTITUTION:A processing untreated material 1 is formed on a polymer film by forming Co, Co-Ni or the like with the electron beam vacuum deposition method using a ferromagnetic metal thin film under the oxygen atmosphere and has a surface oxide layer in the thickness of about 100 to 200Angstrom formed at the time of vacuum deposition on the surface of thickness direction. The untreated material 1 is fed to a takeup shaft 5 from a supply shaft 4. While the untreated material 1 is running, it passes a discharge electrodes 6a, 6b and 7a, 7b provided between these shafts. The electrodes 6a, 6b are provided to remove an oxide layer, while the electrodes 7a, 7b to form an another oxide layer. The laternate processings of the sputter etching and glow oxidation on the surface oxide layer can provide dense oxide layer and thereby improve both reliability and electrical characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度磁気記録に適する
強磁性金属薄膜を磁性層とする耐久性と記録特性に優れ
た磁気記録媒体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic recording medium having a magnetic layer of a ferromagnetic metal thin film suitable for high density magnetic recording and having excellent durability and recording characteristics.

【0002】[0002]

【従来の技術】情報化社会の進展に伴い、記録すべき情
報量の増大は著しく、磁気記録についても可能な限り記
録密度を高める対応が要請され、短波長化、狭トラック
化に耐える高性能磁気記録媒体の開発が盛んになってき
ている。多くの提案がなされているが、現在実用に供さ
れているものは特開昭53−58206号公報に開示さ
れているような強磁性金属自身の酸化物で柱状微粒子の
表面が被覆された構造をもち記録特性と耐久性をバラン
ス良く改善したもので、構成元素はCo,Ni,Oから
なり(特開昭56−15014号公報)、これらの磁気
記録層を形成するのは、酸素ガスを介在させながらC
o,Co−Niを電子ビーム蒸着する方法が代表的で酸
素の導入については幾つかの提案があるが基材近傍で、
入射角規制を行う部分に近い位置が良く用いられている
(特開昭54−19199号公報、特開昭58−322
34号公報)。更に実用性能の改善を図る為に保護膜の
検討が進められている中でも、硬度を高めた炭素膜(特
開昭53−143026号公報)や他の薄層介在による
一層の改善が行われてきている(例えば特開昭61−2
42323号公報、特開昭62−167616号公
報)。これらの膜はプラズマを応用した、スパッタリン
グ法、イオンビームデポジション法、プラズマCVD法
等で蒸着によって強磁性金属薄膜形成後に付与される。
更に必要な処理の後、テープ状、ディスク状に加工され
て使用されている。
2. Description of the Related Art With the progress of information society, the amount of information to be recorded is remarkably increasing, and it is required to increase the recording density of magnetic recording as much as possible. Development of magnetic recording media has been brisk. Although many proposals have been made, the one currently put to practical use is a structure in which the surface of columnar fine particles is coated with an oxide of a ferromagnetic metal itself as disclosed in JP-A-53-58206. It has a well-balanced improvement in recording characteristics and durability, and its constituent elements consist of Co, Ni, and O (JP-A-56-15014), and these magnetic recording layers are formed by oxygen gas. C while intervening
A typical method is electron beam evaporation of o, Co-Ni, and there are some proposals for introducing oxygen, but in the vicinity of the substrate,
A position close to the part for controlling the incident angle is often used (Japanese Patent Laid-Open No. 54-19199, Japanese Patent Laid-Open No. 58-322).
34 publication). Further, while a protective film is being studied in order to improve the practical performance, further improvement has been made by increasing the hardness of the carbon film (Japanese Patent Laid-Open No. 53-143026) or by interposing other thin layers. (For example, JP-A-61-2
42323, JP-A-62-167616). These films are applied after the ferromagnetic metal thin film is formed by vapor deposition by a plasma application, a sputtering method, an ion beam deposition method, a plasma CVD method, or the like.
After further necessary processing, it is processed into a tape shape or a disk shape and used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では酸素導入量を増加すると保磁力は増加する
ものの、飽和磁束密度が減少し最適導入量で得られるS
/N比の最大値がより高密度記録で必要な値に対して低
く、耐久性とS/N比のバランス点が不十分である媒体
しか製造出来ないといった問題点を有していた。
However, although the coercive force increases with an increase in the amount of oxygen introduced in the above-mentioned conventional structure, the saturation magnetic flux density decreases and S obtained with an optimum amount of introduction.
There is a problem that the maximum value of the / N ratio is lower than the value required for higher density recording, and only a medium having an insufficient balance between durability and S / N ratio can be manufactured.

【0004】本発明は上記従来の問題点を解決するもの
で、狭トラック高密度記録を可能にする、耐久性と高出
力特性を兼ね備えた薄型の磁気記録媒体の製造方法を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a method of manufacturing a thin magnetic recording medium having both durability and high output characteristics, which enables narrow track high density recording. And

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の磁気記録媒体の製造方法は酸素雰囲気で強磁
性金属を蒸着して得られた部分酸化膜の表面をスパッタ
エッチとグロー酸化による交互処理をくり返し行うよう
にしたものである。
In order to achieve this object, a method of manufacturing a magnetic recording medium according to the present invention uses a surface of a partial oxide film obtained by vapor deposition of a ferromagnetic metal in an oxygen atmosphere by sputter etching and glow oxidation. The alternate processing by is repeated.

【0006】[0006]

【作用】この構成によって酸素雰囲気で強磁性金属を蒸
着して得られる部分酸化膜の厚み方向の表面酸化膜が蒸
着時に得られた状態よりも、より緻密で硬い酸化膜にな
ることで表面酸化層厚みを増やさずにバランスがとれる
ので耐久性と高S/Nを兼ね備えた薄型の磁気記録媒体
を再現よく製造できるようになる。
With this structure, the surface oxide film in the thickness direction of the partial oxide film obtained by vapor-depositing a ferromagnetic metal in an oxygen atmosphere becomes a denser and harder oxide film than the state obtained at the time of vapor deposition. Since it is possible to achieve balance without increasing the layer thickness, it becomes possible to reproducibly manufacture a thin magnetic recording medium having both durability and high S / N.

【0007】[0007]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings.

【0008】図1において、1は処理用原反で高分子フ
ィルム上の強磁性金属博膜が少なくとも酸素雰囲気でC
o,Co−Ni等を電子ビーム蒸着して形成されてい
て、厚み方向の表面に、蒸着時に形成された100〜2
00Å程度の表面酸化層をもった構造をしていることが
前提となる。2,3は温度制御された回転支持体で、接
地電位とするか、電位を付与できるように絶縁構成とす
るかは適宜選択出来る。4は送り出し軸、5は巻き取り
軸である。6a,6bは放電電極Aで7a,7bは放電
電極Bで電極の形状、寸法、材質等は特に狭い条件に限
定する必要はなく、例えばアルミニウムで曲面で、ほぼ
回転支持体と同心状に配設してやれば充分である。尚6
a,6bは酸化層の除去を目的に作動させ、7a,7b
は新たに酸化層を形成するために作動させるために動作
圧力、ガス種などを独立に制御できる、隔壁、排気系な
どは公知技術を最適化する(図示していない)必要があ
る。8は回転ローラーである。
In FIG. 1, reference numeral 1 is a raw material for processing, and the ferromagnetic metal film on the polymer film is C at least in an oxygen atmosphere.
o, Co-Ni or the like is formed by electron beam vapor deposition, and 100 to 2 formed on the surface in the thickness direction during vapor deposition.
It is assumed that the structure has a surface oxide layer of about 00Å. Numerals 2 and 3 are temperature-controlled rotary supports, which can be appropriately selected to be ground potential or have an insulating structure so that a potential can be applied. Reference numeral 4 is a feeding shaft, and 5 is a winding shaft. 6a and 6b are discharge electrodes A, and 7a and 7b are discharge electrodes B. It is not necessary to limit the shape, size, material, etc. of the electrodes to narrow conditions. For example, aluminum is a curved surface and is arranged substantially concentrically with the rotary support. It is enough to set it up. 6
a and 6b are operated for the purpose of removing the oxide layer, and 7a and 7b
Is capable of independently controlling the operating pressure, gas species, etc. in order to operate to newly form an oxide layer. The partition walls, exhaust system, etc. need to optimize known techniques (not shown). Reference numeral 8 is a rotating roller.

【0009】以下更に本実施例の効果について明確にす
るために具体的に上記した構成の装置を用い磁気記録媒
体を試作し、従来法で得られたものと特性比較を行った
結果について詳しく述べる。
In order to further clarify the effect of this embodiment, a magnetic recording medium will be made by using the apparatus having the above-mentioned constitution, and the result of the characteristic comparison with that obtained by the conventional method will be described in detail. .

【0010】厚み7.1μmで、長手方向、幅方向夫々
540、590[Kg/mm2]のヤング率で、平均粗さ3
0Åのポリエチレンテレフタレートフィルム(直径15
0ÅのSiO2の超微粒子を平均密度20個/μm2を樹
脂固定した塗布層をあらかじめ配したものを用いた)を
直径1mの20℃に冷却した回転キャンに沿わせて巻き
取りながら酸素を導入してCoを電子ビーム蒸着して磁
性層を0.18μ形成した。酸素ガス導入ノズルは最小
入射角40度とし、その入射角を決定するマスクの先端
部に直径8mmのステンレスパイプに0.2mmの直径の孔
を15mmピッチで配した酸素ガス導入ノズルから0.8
1/minに制御して導入した。表面の酸化層は110
〜115Åであった。この状態を原反Aとし、原反Aを
図1に示した装置で、回転支持体(直径50cm,接地電
位、2個)、放電電極A(Al,曲率28cm,周長30
cm)、放電電極B(Al,曲率29cm,周長40cm)、
スパッタエッチング条件:DC;800V,1KW,A
r0.02Torr、グロー酸化条件;RF100KH
z,800W,酸素0.08Torrの条件に統一し
て、原反Aの送り速度と処理回数(エッチングとグロー
酸化で1回として数える)を変えてテープを準備した。
3回以上の処理回数は反転機構を利用して真空内で巻き
戻して繰り返し処理したものである。
The thickness is 7.1 μm, the Young's modulus is 540 and 590 [Kg / mm 2 ] in the longitudinal direction and the width direction, respectively, and the average roughness is 3
0Å polyethylene terephthalate film (diameter 15
Using 0 Å ultrafine particles of SiO 2 with an average density of 20 particles / μm 2 resin-fixed coating layer was placed in advance), the oxygen was wound up along a rotary can cooled to 20 ° C. with a diameter of 1 m. Then, Co was electron beam evaporated to form a magnetic layer of 0.18 μm. The oxygen gas introduction nozzle has a minimum incident angle of 40 degrees, and a 0.8 mm diameter stainless steel pipe with 0.2 mm diameter holes at a 15 mm pitch is arranged at the tip of the mask that determines the incident angle.
It was introduced by controlling to 1 / min. Surface oxide layer is 110
It was ~ 115Å. This state is referred to as an original fabric A, and the original fabric A is the device shown in FIG. 1 and is equipped with a rotary support (diameter 50 cm, ground potential, 2 pieces), discharge electrode A (Al, curvature 28 cm, circumference 30).
cm), discharge electrode B (Al, curvature 29 cm, circumference 40 cm),
Sputter etching conditions: DC; 800V, 1KW, A
r0.02 Torr, glow oxidation condition; RF100KH
Under the same conditions of z, 800 W and oxygen of 0.08 Torr, tapes were prepared by changing the feed rate of the raw fabric A and the number of times of treatment (counted as one by etching and glow oxidation).
The number of treatments of 3 or more is that of rewinding in a vacuum using a reversing mechanism and repeating treatment.

【0011】送り速度10m/min,処理2回(テー
プ1a)、10m/min,3回(テープ1b)、送り
速度20m/min,2回(テープ1c)、20m/m
in,4回(テープ1d)、20m/min,6回(テ
ープ1e)と従来例は処理しないものを準備した。
Feeding speed 10 m / min, processing 2 times (tape 1a), 10 m / min, 3 times (tape 1b), feeding speed 20 m / min, 2 times (tape 1c), 20 m / m
In, 4 times (tape 1d), 20 m / min, 6 times (tape 1e), the conventional example was not processed.

【0012】1a〜1eについてはそれぞれ磁性層の上
に、ダイヤモンド状硬質炭素膜を60Å形成した。従来
例のみ厚みを60Åと150Å2種類用意した。その形
成はメタンガスを高周波放電でイオン化して炭素膜を形
成するプラズマCVD法で行った。炭素膜の上に更に潤
滑剤としてパーフルオロポリエーテルを40Å溶液塗布
法で配し、バックコート層を0.45μm形成し8mm幅
の磁気テープを試作して特性比較した。夫々の磁気テー
プの特性比較は、ハイバンド8ミリビデオデッキを改造
して記録波長0.47μm、トラックピッチ9μmでS
/N比の相対比較で行った。磁気テープの長さは100
mとし、ランダムに5巻選び出して5巻の平均値で表示
した。スチル特性はテンションを25gに増加させて4
0℃、5%RHで比較した。本実施例による磁気記録媒
体の特性と比較例の磁気記録媒体の特性を(表1)に比
較して示している。
For each of 1a to 1e, a diamond-like hard carbon film was formed on the magnetic layer by 60 liters. Only the conventional example has two thicknesses of 60Å and 150Å. The formation was performed by a plasma CVD method in which methane gas was ionized by high frequency discharge to form a carbon film. Perfluoropolyether as a lubricant was further placed on the carbon film by a 40 Å solution coating method, a back coat layer was formed to 0.45 μm, and a magnetic tape having a width of 8 mm was experimentally manufactured and the characteristics were compared. The characteristics of the magnetic tapes are compared with each other by modifying the high-band 8 mm video deck and recording at a recording wavelength of 0.47 μm and a track pitch of 9 μm.
The relative comparison of the / N ratio was performed. The length of the magnetic tape is 100
m, randomly selected 5 rolls and displayed as the average value of 5 rolls. Still characteristics are 4 by increasing the tension to 25g.
Comparison was performed at 0 ° C. and 5% RH. The characteristics of the magnetic recording medium according to this example and the characteristics of the magnetic recording medium of the comparative example are shown in comparison with each other (Table 1).

【0013】[0013]

【表1】 [Table 1]

【0014】この(表1)から明らかなように、本実施
例によって製造された磁気記録媒体は、狭トラック記録
での高密度記録で耐久性と高いS/N比を実現出来ると
いった優れた効果が得られることがわかり優れた製造方
法であることが理解される。
As is clear from (Table 1), the magnetic recording medium manufactured according to the present example has an excellent effect of achieving durability and high S / N ratio in high density recording in narrow track recording. It is understood that is an excellent manufacturing method.

【0015】以上の様に本実施例の製造方法によれば、
酸素雰囲気で強磁性金属を蒸着して得られた部分酸化膜
の表面をスパッタエッチとグロー酸化による交互処理を
くり返し行うことで、狭トラック化した高密度記録で優
れたS/N比を繰り返し使用においても安定に保持しう
る磁気記録媒体を再現良く大量に得ることが出来る。
As described above, according to the manufacturing method of this embodiment,
By repeatedly performing alternate processing by sputter etching and glow oxidation on the surface of the partial oxide film obtained by depositing a ferromagnetic metal in an oxygen atmosphere, an excellent S / N ratio is repeatedly used in high density recording with a narrow track. In the above, it is possible to obtain a large number of magnetic recording media that can be stably held with good reproducibility.

【0016】(実施例2)以下本発明の第2の実施例に
ついて説明する。本発明の第2の実施例の磁気記録媒体
の製造方法を実施するための磁気記録媒体の製造装置の
要部構成は実施例1と同様のものを用いた。放電ガスは
酸素ガス100%と酸素と水素の比率を10:1に混合
したガスの2種類とした。
(Second Embodiment) A second embodiment of the present invention will be described below. The structure of the main part of the magnetic recording medium manufacturing apparatus for carrying out the method of manufacturing the magnetic recording medium of the second embodiment of the present invention is the same as that of the first embodiment. Two types of discharge gas were used: oxygen gas 100% and gas in which the ratio of oxygen and hydrogen was 10: 1.

【0017】以下更に本実施例の効果について明確にす
るために具体的に上記した構成の装置を用い磁気記録媒
体を試作し、従来法で得られたものと特性比較を行った
結果について詳しく述べる。
Further, in order to clarify the effect of this embodiment, a magnetic recording medium is prototyped using the apparatus having the above-mentioned constitution, and the result of the characteristic comparison with that obtained by the conventional method will be described in detail. .

【0018】厚み6.1μmで、長手方向、幅方向夫々
940、1050[Kg/mm2]のヤング率で、平均粗さ
30Åのポリイミドフィルム(直径150ÅのSiO2
の超微粒子を平均密度20個/μm2を樹脂固定した塗
布層をあらかじめ配したものを用いた)を直径1mの2
0℃に冷却した回転キャンに沿わせて巻き取りながら酸
素を導入してCoを電子ビーム蒸着して磁性層を0.1
8μ形成した。酸素ガス導入ノズルは最小入射角20度
とし、その入射角を決定するマスクの先端部に直径8mm
のステンレスパイプに0.2mmの直径の孔を15mmピッ
チで配した酸素ガス導入ノズルから0.81/minに
制御して導入した。最大入射角は42度で、垂直方向に
酸化容易軸を持つCo−O膜で表面の酸化層は120〜
125Åであった。この状態を原反Bとし、原反Bを図
1に示した装置で、回転支持体(直径50cm,接地電
位、2個)、放電電極A(Al,曲率28cm,周長30
cm)、放電電極B(Al,曲率29cm,周長40cm)、
スパッタエッチング条件:DC;900V,1KW,
0.02Torr、グロー酸化条件;RF100KHz,
700W,0.09Torrの条件に統一して、原反B
の送り速度と処理回数(エッチングとグロー酸化で1回
として数える)を変えてテープを準備した。3回以上の
処理回数は反転機構を利用して真空内で巻き戻して繰り
返し処理したものである。
A polyimide film having a thickness of 6.1 μm, a Young's modulus of 940 and 1050 [Kg / mm 2 ] in the longitudinal and width directions and an average roughness of 30 Å (SiO 2 having a diameter of 150 Å)
Of the ultrafine particles of which the average density was 20 / μm 2 was fixed on the resin, and the coating layer was previously arranged).
While winding along a rotary can cooled to 0 ° C., oxygen was introduced and Co was electron beam evaporated to form a magnetic layer of 0.1%.
8μ was formed. The oxygen gas inlet nozzle has a minimum incident angle of 20 degrees, and the diameter of the tip of the mask that determines the incident angle is 8 mm.
Oxygen gas introduction nozzles having a diameter of 0.2 mm arranged at a pitch of 15 mm were introduced into the stainless steel pipe of No. 1 at 0.81 / min. The maximum incident angle is 42 degrees, and the Co-O film with the easy axis of oxidation in the vertical direction is 120-
It was 125Å. This state is referred to as an original fabric B, and the original fabric B is the device shown in FIG. 1 and is equipped with a rotary support (diameter 50 cm, ground potential, 2 pieces), discharge electrode A (Al, curvature 28 cm, circumference 30).
cm), discharge electrode B (Al, curvature 29 cm, circumference 40 cm),
Sputter etching conditions: DC; 900V, 1KW,
0.02 Torr, glow oxidation condition; RF100KHz,
Unify the conditions of 700W and 0.09 Torr, and fabric B
The tape was prepared by changing the feed rate and the number of times of treatment (counted once for etching and glow oxidation). The number of treatments of 3 or more is that of rewinding in a vacuum using a reversing mechanism and repeating treatment.

【0019】送り速度10m/min,処理2回(テー
プ2a)、10m/min,3回(テープ2b)、送り
速度20m/min,2回(テープ2c)、20m/m
in,4回(テープ2d)、20m/min,6回(テ
ープ2e)と従来例は処理しないものを準備した。
Feed speed 10 m / min, treatment 2 times (tape 2a), 10 m / min, 3 times (tape 2b), feed speed 20 m / min, 2 times (tape 2c), 20 m / m
In, 4 times (tape 2d), 20 m / min, 6 times (tape 2e) were prepared, which were not processed in the conventional example.

【0020】2a〜2eについてはそれぞれ磁性層の上
に、ダイヤモンド状硬質炭素膜を60Å形成した。従来
例のみ厚みを60Åと150Å2種類用意した。その形
成はメタンガスを高周波放電でイオン化して炭素膜を形
成するプラズマCVD法で行った。炭素膜の上に更に潤
滑剤としてパーフルオロポリエーテルを40Å溶液塗布
法で配し、バックコート層を0.45μm形成し8mm幅
の磁気テープに加工した。これらのテープを改造した8
ミリビデオによって5μトラック、ビット長0.2μの
ディジタル記録を行いエラーレートを相対比較した。耐
久性についても5℃,85%RHで100パス履歴を加
えた後のエラーレートで評価した。
For each of 2a to 2e, a diamond-like hard carbon film having a thickness of 60Å was formed on the magnetic layer. Only the conventional example has two thicknesses of 60Å and 150Å. The formation was performed by a plasma CVD method in which methane gas was ionized by high frequency discharge to form a carbon film. Perfluoropolyether as a lubricant was further placed on the carbon film by a 40Å solution coating method to form a back coat layer of 0.45 μm and processed into a magnetic tape of 8 mm width. Modified these tapes 8
Milli-video was used to perform digital recording with a 5μ track and a bit length of 0.2μ, and the relative error rates were compared. The durability was also evaluated by the error rate after adding 100 pass histories at 5 ° C. and 85% RH.

【0021】本実施例による磁気記録媒体の特性と従来
磁気記録媒体の特性を(表2)に比較して示している。
The characteristics of the magnetic recording medium according to this embodiment and the characteristics of the conventional magnetic recording medium are shown in comparison with each other (Table 2).

【0022】[0022]

【表2】 [Table 2]

【0023】この(表2)から明らかなように、本実施
例により製造された磁気記録媒体は、狭トラック条件で
の高密度ディジタル記録を良好なエラー率で行うことが
出来るといった優れた効果がある。
As is clear from (Table 2), the magnetic recording medium manufactured according to this example has an excellent effect that high-density digital recording can be performed under a narrow track condition with a good error rate. is there.

【0024】以上のように本実施例によれば酸素雰囲気
で強磁性金属を蒸着して得られた部分酸化膜の表面を酸
素を含む放電ガスを用いたスパッタエッチとグロー酸化
による交互処理をくり返し行うことで、酸素を含む雰囲
気で強磁性金属を蒸着して得られる部分酸化膜の厚み方
向の表面酸化膜が蒸着時に得られた状態よりも、より緻
密で硬い酸化膜になることで表面酸化層厚みを増やさず
にバランスがとれるので耐久性と高S/N比を兼ね備え
た薄型の磁気記録媒体を再現よく製造できるようにな
る。
As described above, according to this embodiment, the surface of the partial oxide film obtained by vapor-depositing the ferromagnetic metal in the oxygen atmosphere is repeatedly subjected to the alternating treatment by the sputter etching using the discharge gas containing oxygen and the glow oxidation. By doing so, the surface oxide film in the thickness direction of the partial oxide film obtained by vapor deposition of a ferromagnetic metal in an atmosphere containing oxygen becomes a denser and harder oxide film than the state obtained at the time of vapor deposition. Since it is possible to achieve balance without increasing the layer thickness, it becomes possible to reproducibly manufacture a thin magnetic recording medium having both durability and a high S / N ratio.

【0025】(実施例3)以下本発明の第3の実施例に
ついて図面を参照しながら説明する。図2は本発明の第
3の実施例の磁気記録媒体の製造方法を実施するための
磁気記録媒体の製造装置の要部構成図である。図2にお
いて図1と同じ構成要素で良い部分は図1と同一の番号
を付与してある。9は回転支持体で加熱制御できるよう
循環媒体と例えば誘導加熱式の発熱体を内蔵したものが
用いられる。10は水素ビーム照射ノズルで、11は酸
素原子ビーム照射ノズル、12は仕切り板である。原子
ビームの発生は例えば水素、或いは酸素のプラズマから
イオンを引き出し、電子シャワーで中性化してから磁界
を通過させて分離させて得ることが出来る。
(Embodiment 3) A third embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a configuration diagram of essential parts of a magnetic recording medium manufacturing apparatus for carrying out the method of manufacturing a magnetic recording medium according to the third embodiment of the present invention. In FIG. 2, the same components as in FIG. 1 are given the same numbers as in FIG. Reference numeral 9 is a rotary support, which has a circulating medium and an induction heating type heating element built-in so that heating can be controlled. Reference numeral 10 is a hydrogen beam irradiation nozzle, 11 is an oxygen atom beam irradiation nozzle, and 12 is a partition plate. Atomic beams can be generated, for example, by extracting ions from plasma of hydrogen or oxygen, neutralizing them with an electron shower, and then passing them through a magnetic field to separate them.

【0026】実際に製造された磁気記録媒体の特性を従
来例、比較例と対比することで本発明の製造方法につい
て具体的に詳しく説明する。
The production method of the present invention will be specifically described in detail by comparing the characteristics of an actually produced magnetic recording medium with those of a conventional example and a comparative example.

【0027】厚み6μmのアラミドフィルム(平均粗さ
20Å、ヤング率長手900、幅1050Kg/mm2)上
に平均微粒子径170ÅのSiO2を平均密度40個/
μ2で塗布固定し、以下の条件で0.2μmのCo−O
垂直磁化膜を形成した。Coはマグネシア容器内で加速
電子ビームによって加熱蒸発させて、入射角が90度か
ら30度の範囲の直径1mの回転支持体の面に沿って蒸
着した。その際酸素ガスを0.91/minのレートで
導入し、蒸着は2回に分けて0.1μmずつ行った。表
面の酸化層は140Åであった。水素原子は0.4KV
で酸素原子は0.6KVで引き出し中性化した状態で夫
々、4×1016,6×1016[原子/cm2sec]で照
射、送り速度10m/min,処理2回(テープ3
a)、10m/min,3回(テープ3b)、送り速度
20m/min,2回(テープ3c)、20m/mi
n,4回(テープ3d)、20m/min,6回(テー
プ3e)と従来例は処理しないものを準備した。
On an aramid film having a thickness of 6 μm (average roughness 20 Å, Young's modulus length 900, width 1050 kg / mm 2 ), SiO 2 having an average particle size of 170 Å has an average density of 40 pieces /
Apply and fix with μ 2 and 0.2 μm Co-O under the following conditions.
A perpendicular magnetic film was formed. Co was heated and evaporated by an accelerated electron beam in a magnesia container, and Co was deposited along the surface of a rotary support having a diameter of 1 m and an incident angle in the range of 90 to 30 degrees. At that time, oxygen gas was introduced at a rate of 0.91 / min, and vapor deposition was performed twice in 0.1 μm increments. The oxide layer on the surface was 140Å. Hydrogen atom is 0.4 KV
Then, the oxygen atoms were extracted at 0.6 KV, neutralized, and irradiated at 4 × 10 16 and 6 × 10 16 [atoms / cm 2 sec], the feed rate was 10 m / min, and the treatment was performed twice (tape 3
a) 10 m / min, 3 times (tape 3b), feeding speed 20 m / min, 2 times (tape 3c), 20 m / mi
n, 4 times (tape 3d), 20 m / min, 6 times (tape 3e) were prepared without treatment in the conventional example.

【0028】それぞれ磁性層の上にプラズマCVD法で
ダイヤモンド状硬質炭素膜を60Å形成し(従来例は他
に180Åのも試作した)た後パーフルオロステアリン
酸を30Å配し、0.5μmのバックコート層を配して
夫々8mm幅の磁気テープに加工した。これらのテープを
改造した8ミリビデオによって5μトラック、ビット長
0.2μのディジタル記録を行いエラーレートを相対比
較した。耐久性についても3℃,10%RHで150パ
ス履歴を加えた後のエラーレートで評価した。本実施例
による磁気記録媒体の特性と従来磁気記録媒体の特性を
(表3)に比較して示している。
A 60-liter diamond-like hard carbon film was formed on each magnetic layer by the plasma CVD method (a conventional example was also trial-produced of 180 liter), and then 30 liter of perfluorostearic acid was placed on the magnetic layer, and a 0.5 μm back film was formed. Coat layers were arranged and processed into magnetic tapes each having a width of 8 mm. By using an 8 mm video modified from these tapes, digital recording with a 5 μ track and a bit length of 0.2 μ was performed and relative error rates were compared. The durability was also evaluated by the error rate after adding a 150-pass history at 3 ° C. and 10% RH. The characteristics of the magnetic recording medium according to this example and the characteristics of the conventional magnetic recording medium are shown in comparison with each other (Table 3).

【0029】[0029]

【表3】 [Table 3]

【0030】この(表3)から明らかなように、本実施
例により製造された磁気記録媒体は、狭トラック条件で
の高密度ディジタル記録を良好なエラー率で行うことが
出来るといった優れた効果がある。
As is clear from (Table 3), the magnetic recording medium manufactured according to this example has an excellent effect that high-density digital recording under a narrow track condition can be performed with a good error rate. is there.

【0031】以上のように本実施例の製造方法によれば
酸素雰囲気で強磁性金属を蒸着して得られた部分酸化膜
の表面を水素原子処理と酸素原子処理することで、原子
が極めて活性のため、金属を蒸着して得られる部分酸化
膜の厚み方向の表面酸化膜が蒸着時に得られた状態より
も、より緻密で硬く、微視的、化学的に均一な酸化膜に
なることで表面酸化層厚みを増やさずにバランスがとれ
るので耐久性と高S/Nを兼ね備えた薄型の磁気記録媒
体を再現よく製造できるようになる。
As described above, according to the manufacturing method of this embodiment, the surface of the partial oxide film obtained by vapor-depositing a ferromagnetic metal in an oxygen atmosphere is treated with hydrogen atoms and oxygen atoms, so that the atoms are extremely active. Therefore, the surface oxide film in the thickness direction of the partial oxide film obtained by vapor deposition of metal becomes a denser, harder, microscopically and chemically uniform oxide film than the state obtained at the time of vapor deposition. Since the balance can be achieved without increasing the thickness of the surface oxide layer, it becomes possible to reproducibly manufacture a thin magnetic recording medium having both durability and high S / N.

【0032】[0032]

【発明の効果】以上の様に本発明によれば、酸素雰囲気
で強磁性金属を蒸着して得られる部分酸化膜の厚み方向
の表面酸化膜が蒸着時に得られた状態よりも、より緻密
で硬い酸化膜になることで表面酸化層厚みを増やさずに
バランスがとれるので耐久性と高S/N比を兼ね備えた
薄型の磁気記録媒体を再現よく製造できるようになる。
As described above, according to the present invention, the surface oxide film in the thickness direction of the partial oxide film obtained by vapor deposition of a ferromagnetic metal in an oxygen atmosphere is more dense than that obtained at the time of vapor deposition. The hard oxide film can be balanced without increasing the thickness of the surface oxide layer, so that it is possible to reproducibly manufacture a thin magnetic recording medium having both durability and a high S / N ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における磁気記録媒体の
製造に用いた処理装置の要部拡大断面図
FIG. 1 is an enlarged cross-sectional view of a main part of a processing apparatus used for manufacturing a magnetic recording medium according to a first embodiment of the present invention.

【図2】本発明の第3の実施例における磁気記録媒体の
製造に用いた処理装置の要部拡大断面図
FIG. 2 is an enlarged cross-sectional view of a main part of a processing apparatus used for manufacturing a magnetic recording medium according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 処理用原反 6a,6b 放電電極A 7a,7b 放電電極B 10 水素原子ビーム照射ノズル 11 酸素原子ビーム照射ノズル 1 Processing original fabric 6a, 6b Discharge electrode A 7a, 7b Discharge electrode B 10 Hydrogen atom beam irradiation nozzle 11 Oxygen atom beam irradiation nozzle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸素雰囲気で強磁性金属を蒸着して得られ
た部分酸化膜の表面をスパッタエッチとグロー酸化によ
る交互処理をくり返し行うことを特徴とする磁気記録媒
体の製造方法。
1. A method for manufacturing a magnetic recording medium, characterized in that the surface of a partial oxide film obtained by vapor-depositing a ferromagnetic metal in an oxygen atmosphere is repeatedly subjected to alternate treatments by sputter etching and glow oxidation.
【請求項2】酸素雰囲気で強磁性金属を蒸着して得られ
た部分酸化膜の表面を酸素を含む放電ガスを用いたスパ
ッタエッチとグロー酸化による交互処理をくり返し行う
ことを特徴とする請求項1記載の磁気記録媒体の製造方
法。
2. The alternate treatment by sputter etching using a discharge gas containing oxygen and glow oxidation is repeated on the surface of a partial oxide film obtained by depositing a ferromagnetic metal in an oxygen atmosphere. 1. The method for manufacturing a magnetic recording medium according to 1.
【請求項3】酸素雰囲気で強磁性金属を蒸着して得られ
た部分酸化膜の表面を水素原子処理と酸素原子処理する
ことを特徴とする磁気記録媒体の製造方法。
3. A method for manufacturing a magnetic recording medium, characterized in that the surface of a partial oxide film obtained by vapor deposition of a ferromagnetic metal in an oxygen atmosphere is subjected to hydrogen atom treatment and oxygen atom treatment.
JP27134392A 1992-10-09 1992-10-09 Manufacture of magnetic recording medium Pending JPH06124439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27134392A JPH06124439A (en) 1992-10-09 1992-10-09 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27134392A JPH06124439A (en) 1992-10-09 1992-10-09 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06124439A true JPH06124439A (en) 1994-05-06

Family

ID=17498744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27134392A Pending JPH06124439A (en) 1992-10-09 1992-10-09 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06124439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383231B2 (en) 2006-11-30 2013-02-26 Jamco Corporation Sandwich panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8383231B2 (en) 2006-11-30 2013-02-26 Jamco Corporation Sandwich panel

Similar Documents

Publication Publication Date Title
JP2563425B2 (en) Method of manufacturing magnetic recording medium
JPH06124439A (en) Manufacture of magnetic recording medium
KR960013372B1 (en) Method for making a magnetic recording medium
JPH0770058B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH04182916A (en) Magnetic head and magnetic disk device having this magnetic head
JP2987406B2 (en) Film forming method and film forming apparatus
JPH01105326A (en) Production of magnetic recording medium
JP3786980B2 (en) Method for manufacturing magnetic recording medium
JPH06251363A (en) Production of magnetic recording medium
JPH06116729A (en) Production of magnetic recording medium
JPS62185246A (en) Production of magnetic recording medium
JP2594380B2 (en) Magnetic recording media
JPS6297133A (en) Production of magnetic recording medium
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JPH06231457A (en) Production of magnetic recording medium
JPH02240829A (en) Production of magnetic recording medium
JP3831424B2 (en) Method for manufacturing magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH06111299A (en) Manufacture of magnetic recording medium
JPH07114731A (en) Production of magnetic recording medium
JPH01211235A (en) Manufacture of magnetic recording medium
JPH11161947A (en) Production of magnetic recording medium
JPH10310869A (en) Production of magnetic recording medium and device for producing magnetic recording medium
JPH08167141A (en) Device for forming film
JPH103640A (en) Magnetic recording medium