JPH01105326A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH01105326A
JPH01105326A JP26213487A JP26213487A JPH01105326A JP H01105326 A JPH01105326 A JP H01105326A JP 26213487 A JP26213487 A JP 26213487A JP 26213487 A JP26213487 A JP 26213487A JP H01105326 A JPH01105326 A JP H01105326A
Authority
JP
Japan
Prior art keywords
film
magnetic recording
substrate
glow discharge
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26213487A
Other languages
Japanese (ja)
Other versions
JP2548233B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62262134A priority Critical patent/JP2548233B2/en
Publication of JPH01105326A publication Critical patent/JPH01105326A/en
Application granted granted Critical
Publication of JP2548233B2 publication Critical patent/JP2548233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To assure durability and to decrease spacing loss by disposing a reaction tube having an aperture in proximity to a thin ferromagnetic metallic film on a moving substrate and forming a carbon film by glow discharge. CONSTITUTION:The substrate for treatment formed with the thin ferromagnetic metallic film directly or via a fine particle coated layer of Al2O3, etc., on a high-polymer film is mounted to an unwinding shaft 2 and a take-up shaft 3. After the inside of a vacuum vessel is evacuated, gaseous methane is introduced into the vessel and high frequencies are impressed to a high-frequency coil 12. On the other hand, a positive potential is impressed by a DC power supply 8 to an accelerating electrode 6 for a graphite electrode 5. A thin hard carbon film is formed on the thin ferromagnetic film on the substrate 1 under movement by the glow discharge between the electrodes 5 and 6.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録に適する強磁性金属薄膜を磁気
記録層とする磁気記録媒体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a magnetic recording medium having a magnetic recording layer made of a ferromagnetic metal thin film suitable for high-density magnetic recording.

従来の技術 高分子フィルム上に直接又は下地層を介し電子ビーム蒸
着法でGo−Niを斜め蒸着したいわゆ2ベーヅ る蒸着テープは、蒸着時に酸素ガスを導入することで電
磁変換特性、耐久性、耐食性の向上をはかっている〔例
えばアイイーイーイー トランザクションズ オン マ
グネティクス(I[]ETransactions o
n Ma(netics) vollIMAG −20
、No−5,P、P、824−826(1984)参照
]。更に一層の耐久性向上をはかるひとつの方法は、磁
気記録層の微細凹凸化である〔アイイーイーイー トラ
ンザクションズ オン マグネティクス vol:、M
AG−21,P、P、1524〜1526(1985)
)。加えて、保護膜、潤滑剤との数多くの組み合わせが
検討されるなかでダイアモンド状硬質炭素薄膜を含めア
モルファスカーボン薄膜の保護効果が注目されている〔
電子通信学会、磁気記録研究会資料、MRss−se(
1986)、特開昭61−142525号公報特開昭6
1−126627号公報等〕。
Conventional technology The so-called 2-base evaporation tape, in which Go-Ni is obliquely evaporated by electron beam evaporation directly or through an underlayer on a polymer film, improves electromagnetic conversion characteristics and durability by introducing oxygen gas during evaporation. , aiming to improve corrosion resistance [for example, IEE Transactions on Magnetics (I[]ETransactions o
n Ma (netics) volIMAG-20
, No-5, P, P, 824-826 (1984)]. One way to further improve durability is to make the magnetic recording layer finely uneven [IEE Transactions on Magnetics vol:, M
AG-21, P, P, 1524-1526 (1985)
). In addition, many combinations of protective films and lubricants are being considered, and the protective effects of amorphous carbon thin films, including diamond-like hard carbon thin films, are attracting attention [
Institute of Electronics and Communication Engineers, Magnetic Recording Study Group materials, MRss-se (
1986), JP-A-61-142525, JP-A-61-142525
1-126627, etc.].

発明が解決しようとする問題点 しかしながら、従来の方法で硬質カーボン膜を形成した
とき、強磁性金属薄膜が部分酸化膜の場3A−7 合を含め高密度記録性能が期待されているGo −Or
 、  Go −0r−Nl)等の垂直磁化膜の場合に
も、保護効果を高めようとすると、膜厚が厚くなるため
、短波長でのスペーシング損失が問題となり、改善が望
まれていた。
Problems to be Solved by the Invention However, when a hard carbon film is formed by the conventional method, Go-Or, which is expected to have high-density recording performance, including the case where the ferromagnetic metal thin film is a partially oxidized film.
, Go-0r-Nl), etc., when trying to increase the protective effect, the film thickness becomes thicker, so spacing loss at short wavelengths becomes a problem, and improvements have been desired.

本発明は上記した事情に鑑みなさ扛たもので耐久性を確
保した上でスペーシング損失の小さな磁気記録媒体を製
造する方法を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for manufacturing a magnetic recording medium with small spacing loss while ensuring durability.

問題点を解決するだめの手段 上記問題点を解決するため本発明の磁気記録媒体の製造
方法は、移動する高分子フィルム等の基板上の強磁性金
属薄膜に近接させて、開孔部をもつ反応管を配し、開孔
部近傍にグラファイト電極、炭火水素系ガス導入部に加
速電極を配し、グラファイト電極に対し加速電極が正電
位になるよう保持した状態でグロー放電を誘起せしめ炭
素皮膜を形成するようにしたものである。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a magnetic recording medium of the present invention provides a method for producing a magnetic recording medium that has an opening in close proximity to a ferromagnetic metal thin film on a moving substrate such as a polymer film. A reaction tube is placed, a graphite electrode is placed near the opening, and an accelerating electrode is placed near the hydrocarbon gas inlet, and glow discharge is induced while the accelerating electrode is held at a positive potential with respect to the graphite electrode to form a carbon film. It is designed to form a .

作用 上記製造方法により、炭化水素系の放電ガスがグロー放
電によりカーボンと水素に分解され、−部はカーボンイ
オンおよび水素イオンとしても存在する。これらのイオ
ンは、グラファイト電極に対し、スパッタリング作用を
もち、そのスパッタ作用で得られる炭素は、強磁性金属
薄膜に近い位置で生成されるので、エネルギーを失わず
に薄膜上に堆積していく。その結果良質の欠陥の少ない
炭素皮膜となることから、膜厚が薄くなっても十分な保
護効果のある炭素皮膜を与えることが出来るようになる
Effect: According to the above production method, hydrocarbon-based discharge gas is decomposed into carbon and hydrogen by glow discharge, and the - portion also exists as carbon ions and hydrogen ions. These ions have a sputtering action on the graphite electrode, and the carbon obtained by the sputtering action is generated close to the ferromagnetic metal thin film, so it is deposited on the thin film without losing energy. As a result, a carbon film with good quality and few defects is obtained, so that even if the film thickness becomes thinner, a carbon film with sufficient protective effect can be provided.

実施例 以下、図面を参照しながら、本発明の実施例について説
明する。図は本発明の製造方法を実施するのに用いた薄
膜形成装置の要部構成図である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. The figure is a configuration diagram of main parts of a thin film forming apparatus used to carry out the manufacturing method of the present invention.

図において、1は処理基板で、高分子フィルム上に直接
あるいは、微粒子塗布層を介して、Go −Ni、 C
o −Ni−0,Go−Cr等の強磁性金属薄膜を電子
ビーム蒸着法、高周波スパッタリング法等で形成したも
のである。2は巻出し軸、3は巻取り軸、4は反応管で
、その開孔部は、強磁性金属6A−ノ 薄膜に近接して対向して設けられ、開孔部内の開口端部
に内周に沿ってリング状のグラファイト電極5が配設さ
れ、メツシュ状加速電!6が、ガス導入部7側に配設さ
nている。メツシュ状加速電極6とグラファイト電極5
間には直流電源8を接続しグラファイト電極5に対し、
メツシュ状加速電極6を正電位に保つようにする。9は
真空槽、1oは真空排気系、11は炭化水素系ガス導入
調節弁、12は高周波コイルである。
In the figure, 1 is a treated substrate, and Go-Ni, C
A ferromagnetic metal thin film such as o-Ni-0 or Go-Cr is formed by electron beam evaporation, high frequency sputtering, or the like. 2 is an unwinding shaft, 3 is a winding shaft, and 4 is a reaction tube, the opening of which is provided in close proximity to and opposite to the thin film of ferromagnetic metal 6A, and the open end of the opening is provided inside the opening. A ring-shaped graphite electrode 5 is arranged along the circumference, creating a mesh-like accelerating electric current! 6 is arranged on the gas introduction part 7 side. Mesh-like accelerating electrode 6 and graphite electrode 5
A DC power supply 8 is connected between the graphite electrodes 5 and
The mesh-like acceleration electrode 6 is kept at a positive potential. 9 is a vacuum chamber, 1o is a vacuum exhaust system, 11 is a hydrocarbon gas introduction control valve, and 12 is a high frequency coil.

図に示した装置を用いて本発明の製造方法によシ製造し
た磁気記録媒体について以下に比較例との対比しながら
説明する。
A magnetic recording medium manufactured by the manufacturing method of the present invention using the apparatus shown in the figure will be described below in comparison with a comparative example.

あらかじめ厚み10μmのポリエチレンテレフタレート
上に直径100人のム1203を1 q/p m配し、
その後、このフィルムを直径1mの円筒キャンに沿わせ
て、最小入射角44度、5×1o−5Torrの酸素分
圧下でGo −Ni (Co : 80wt%)を電子
ビーム蒸着し、0.1μmのCo −Ni−0膜を配し
た処理基板を準備し、真空槽をあらかじめ10 ’To
rrに排気したのち、メタン6ヘージ ガスを導入し、高周波コイルに13.56MHzの高周
波を印加し、0.05 TOrrで高周波グロー放電を
誘起し、グラファイト電極5と加速電極60間に850
Vを印加した状態で、硬質炭素薄膜を100A形成した
。その上に真空蒸着法によりパーフルオロオクタン酸を
5OA形成し8ミリ幅の磁気テープとした。一方、比較
例として、グラファイト電極を取シ除いた状態で、加速
電極に正電圧850Vを印加し、同じグロー放電条件で
、硬質炭素薄膜を20OA形成し、その上に真空蒸着法
によJ) パーフルオロオクタン酸を5OA形成し、8
ミリ幅の磁気テープとした。
1 q/p m of 1203 particles with a diameter of 100 were placed on polyethylene terephthalate with a thickness of 10 μm in advance.
Thereafter, this film was placed along a cylindrical can with a diameter of 1 m, and Go-Ni (Co: 80 wt%) was electron beam evaporated at a minimum incident angle of 44 degrees and an oxygen partial pressure of 5 x 1o-5 Torr to form a film with a thickness of 0.1 μm. Prepare a processing substrate with a Co-Ni-0 film placed on it, and set the vacuum chamber to 10'To
After exhausting to rr, methane 6 hedge gas was introduced, and a high frequency of 13.56 MHz was applied to the high frequency coil to induce a high frequency glow discharge at 0.05 TOrr, and 850 m
A hard carbon thin film with a thickness of 100 A was formed while V was applied. 5OA of perfluorooctanoic acid was formed thereon by vacuum evaporation to form a magnetic tape with a width of 8 mm. On the other hand, as a comparative example, with the graphite electrode removed, a positive voltage of 850 V was applied to the accelerating electrode, a hard carbon thin film of 20 OA was formed under the same glow discharge conditions, and a hard carbon thin film of 20 OA was formed on it by vacuum evaporation method. perfluorooctanoic acid to form 5OA, 8
It was made into a millimeter-wide magnetic tape.

両者のテープを8ミリビデオデツキを改造し、キャリア
周波数を5μm2から7MHzにあげ、C/Nを比較し
た。
An 8 mm video deck was modified for both tapes, the carrier frequency was increased from 5 μm2 to 7 MHz, and the C/N was compared.

初期のC/Nは比較例に対し、実施例が2.1dB良好
で、40’05%RHでの繰シ返し走行で300回目の
再生C/Nは、実施例が1 dB以内の低下であったが
比較例は1.5dBc/Nが低下した。
The initial C/N of the example was 2.1 dB better than that of the comparative example, and the C/N of the 300th playback after repeated running at 40'05% RH was within 1 dB of the example. However, the comparative example had a decrease of 1.5 dBc/N.

上記した特性低下の傾向は、G o −Or垂直磁化7
へ−7 膜では更に広がり、実施例の方法によ扛ば、150ムで
保護効果が実用水準といえるが、比較例は350Aと必
要厚みが大きくなる。これはスペーシング損失が大きく
なることに起因したものである。なお本実施例ではグラ
ファイト電極はリング状としたが、反応管内周に複数個
の電極を配設する構成としてもよい。
The above-mentioned tendency of characteristic deterioration is due to the G o -Or perpendicular magnetization 7
In the case of a H-7 film, the thickness is further increased, and if the method of the example is used, the protective effect can be said to be at a practical level at 150 µm, but the required thickness is 350 µm in the comparative example, which is a large thickness. This is due to the increased spacing loss. In this example, the graphite electrode is ring-shaped, but a plurality of electrodes may be arranged around the inner periphery of the reaction tube.

発明の効果 以上のように本発明によれば、スペーシング損失の少い
、短波長記録に適した耐久性の良好な磁気記録媒体を製
造できるといったすぐれた効果がある。
Effects of the Invention As described above, the present invention has excellent effects in that a magnetic recording medium with low spacing loss and good durability suitable for short wavelength recording can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施するのに用いた薄膜形成装置の要部構
成図である。 1・・・・・・処理基板、4・・・・・・反応管、5・
・・・・・グラファイト電極、6・・・・・・加速電極
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名(−
−一処を基沃 4−及胞菅 6−一一一デラファイト捕r3呪 6゛−−−η0鷲にン瞠t′J過七
The figure is a configuration diagram of main parts of a thin film forming apparatus used to carry out the present invention. 1... Processing substrate, 4... Reaction tube, 5.
...graphite electrode, 6...acceleration electrode. Name of agent: Patent attorney Toshio Nakao and one other person (-
-Founding a place 4-and-shokan 6-111 Delaphite capture r3 curse 6゛---η0 eagle t'J over 7

Claims (1)

【特許請求の範囲】[Claims] 移動する基板上の強磁性金属薄膜に出力側開口部を近接
対向させた反応管を備え、前記反応管は開口部の内側端
部に配設されたグラファイト電極と、炭化水素系ガス導
入部に配設された加速電極とを有し、前記グラファイト
電極に対して前記加速電極を正電位に保持した状態でグ
ロー放電を誘起させ、前記強磁性金属薄膜上に炭素被膜
を形成することを特徴とする磁気記録媒体の製造方法。
A reaction tube is provided with an output side opening closely facing a ferromagnetic metal thin film on a moving substrate, and the reaction tube has a graphite electrode disposed at the inner end of the opening and a hydrocarbon gas inlet and an accelerating electrode arranged therein, and a glow discharge is induced while the accelerating electrode is held at a positive potential with respect to the graphite electrode, and a carbon film is formed on the ferromagnetic metal thin film. A method for manufacturing a magnetic recording medium.
JP62262134A 1987-10-16 1987-10-16 Method of manufacturing magnetic recording medium Expired - Lifetime JP2548233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262134A JP2548233B2 (en) 1987-10-16 1987-10-16 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262134A JP2548233B2 (en) 1987-10-16 1987-10-16 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH01105326A true JPH01105326A (en) 1989-04-21
JP2548233B2 JP2548233B2 (en) 1996-10-30

Family

ID=17371527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262134A Expired - Lifetime JP2548233B2 (en) 1987-10-16 1987-10-16 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2548233B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331998A (en) * 1997-12-02 1999-06-09 Teer Coatings Ltd Articles bearing carbon coatings
JP2002133650A (en) * 2000-10-24 2002-05-10 Anelva Corp Film forming device for magnetic recording disk
JP2008007822A (en) * 2006-06-29 2008-01-17 Jfe Steel Kk Cvd (chemical vapor deposition) apparatus
JP2008017544A (en) * 2006-07-03 2008-01-24 Hatsumei Techno Kk Telescopical joint box

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331998A (en) * 1997-12-02 1999-06-09 Teer Coatings Ltd Articles bearing carbon coatings
GB2331998B (en) * 1997-12-02 2003-01-15 Teer Coatings Ltd Carbon coatings, method and apparatus for applying them, and articles bearing such coatings
US6726993B2 (en) 1997-12-02 2004-04-27 Teer Coatings Limited Carbon coatings, method and apparatus for applying them, and articles bearing such coatings
JP2002133650A (en) * 2000-10-24 2002-05-10 Anelva Corp Film forming device for magnetic recording disk
JP2008007822A (en) * 2006-06-29 2008-01-17 Jfe Steel Kk Cvd (chemical vapor deposition) apparatus
JP2008017544A (en) * 2006-07-03 2008-01-24 Hatsumei Techno Kk Telescopical joint box

Also Published As

Publication number Publication date
JP2548233B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US4511594A (en) System of manufacturing magnetic recording media
JP2563425B2 (en) Method of manufacturing magnetic recording medium
JPH01105326A (en) Production of magnetic recording medium
US4990361A (en) Method for producing magnetic recording medium
JPH0489627A (en) Production of magnetic recording medium
JPH10251851A (en) Film deposition method and film deposition device
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JP2548231B2 (en) Method of manufacturing magnetic recording medium
JPH09320031A (en) Magnetic recording medium
JPH03116523A (en) Production of magnetic recording medium
JPS5817544A (en) Manufacture of magnetic recording medium
JP2563457B2 (en) Method of manufacturing magnetic recording medium
JPH0528487A (en) Production of magnetic recording medium
JPS58222439A (en) Magnetic recording medium and its manufacture
JPS61133030A (en) Production of magnetic recording medium
JPS62246140A (en) Production of magnetic recording medium
JPS6063723A (en) Manufacture of magnetic recording medium
JPS63149831A (en) Production of magnetic recording medium
JPH02108240A (en) Production of magnetic recording medium
JPH11161947A (en) Production of magnetic recording medium
JPS63275040A (en) Production of magnetic recording medium
JPH06124439A (en) Manufacture of magnetic recording medium
JPH06251366A (en) Method and system for forming film
JPS63275037A (en) Production of magnetic recording medium
JPS6334728A (en) Production of magnetic recording medium