JPS6063723A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPS6063723A
JPS6063723A JP17171183A JP17171183A JPS6063723A JP S6063723 A JPS6063723 A JP S6063723A JP 17171183 A JP17171183 A JP 17171183A JP 17171183 A JP17171183 A JP 17171183A JP S6063723 A JPS6063723 A JP S6063723A
Authority
JP
Japan
Prior art keywords
electrode
plasma
thin film
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17171183A
Other languages
Japanese (ja)
Inventor
Tsunemi Oiwa
大岩 恒美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP17171183A priority Critical patent/JPS6063723A/en
Publication of JPS6063723A publication Critical patent/JPS6063723A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To sufficiently improve the corrosion resistance of a magnetic recording medium, by loading a base body on which a ferromagnetic metallic thin layer is formed with the base body being faced to a plasma generating electrode and installing another electrode to the vicinity of the loaded base body, and then, performing plasma oxidizing or plasma nitriding while a voltage is applied to the second mentioned electrode. CONSTITUTION:When plasma processing is performed by introducing oxygen gas or nitrogen gas from a gas introducing pipe 6 after a DC electrode 10 is installed very closely to and just below a cylindrical can 4 and connected with a power source 11 so that a voltage can be applied to the electrode 10, plasma is produced by means of an AC electrode 9 for generating plasma and the voltage is simultaneously applied to the electrode 10. When plasma processing is made in such a way, the plasma processing can be performed quickly under an excellent condition and the surface of a ferromagnetic metallic thin film is efficiently oxidized or nitrided and, as a result, a magnetic recording medium having an excellent corrosion resistance is obtained.

Description

【発明の詳細な説明】 この発明は強磁性金属薄膜層を磁気記録層とする磁気記
録媒体の製造方法゛に関し、さらに詳しくは、耐食性に
優れた前記の磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a magnetic recording layer, and more particularly to a method for manufacturing the above-mentioned magnetic recording medium having excellent corrosion resistance.

強磁性金属薄膜層を磁気記録層とする磁気記録媒体は、
通常、金属もしくはそれらの合金などを真空蒸着等によ
って基体フィルム上に結着してつくられ、高密度記録に
適した特性を有するが、反面突気中の酸素によって酸化
され易く、この酸化によって最大磁束密度などの磁気特
性が劣化するなどの難点がある。
A magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film layer is
It is usually made by bonding metals or their alloys onto a base film by vacuum deposition, etc., and has characteristics suitable for high-density recording, but on the other hand, it is easily oxidized by oxygen in the air, and this oxidation can cause There are drawbacks such as deterioration of magnetic properties such as magnetic flux density.

このため、従来から強磁性金属薄膜層表面を酸化または
窒化したりして耐食性を改善することが行われており、
たとえば、第1図に示すようなプラズマ処理装置を使用
し、強磁性金属薄膜層を形成したポリエステルフィルム
1を、真空槽2の原反ロール3から円筒状キャン4の周
側面に沿って移動させて巻き取りロール5に巻き取るよ
うにセットし、真空槽2にをりつげたガス導入管6から
排気系7により所定の真空度に保持された真空槽2内に
酸素ガスまたは窒素ガスを導入し、交流電源8で交流電
極9に電圧を印加して、強磁性金属薄膜層表面をプラズ
マ酸化またはプラズマ窒化することが行われている。
For this reason, the surface of the ferromagnetic metal thin film layer has been oxidized or nitrided to improve its corrosion resistance.
For example, using a plasma processing apparatus as shown in FIG. 1, a polyester film 1 on which a ferromagnetic metal thin film layer is formed is moved from a raw roll 3 in a vacuum chamber 2 along the circumferential side of a cylindrical can 4. Oxygen gas or nitrogen gas is introduced into the vacuum chamber 2 maintained at a predetermined degree of vacuum by an exhaust system 7 through a gas introduction pipe 6 attached to the vacuum chamber 2. However, the surface of the ferromagnetic metal thin film layer is subjected to plasma oxidation or plasma nitridation by applying a voltage to the AC electrode 9 using the AC power source 8.

ところが、この方法ではプラズマ処理におけるプラズマ
電位か弱いため、プラズマ処理による酸化または窒化の
速度が遅く、処理時間を長くしなければならない上、未
だ充分に耐食性を改善することができない。
However, in this method, since the plasma potential in plasma treatment is weak, the rate of oxidation or nitridation by plasma treatment is slow, the treatment time must be lengthened, and corrosion resistance cannot be sufficiently improved.

この発明者らは、かかる現状に鑑み種々検討を行った結
果、基体上に金属もしくはそれらの合金からなる強磁性
金属薄膜層を形成し、しかる後、この強磁性金属薄膜層
を形成した基体を、プラズマ発生用電極を備えたプラズ
マ処理装置にプラズマ発生用電極と対向させて装填する
とともに、装填した基体の近傍にさらに電極を配設し、
この基体の近傍に配設した電極に電圧を印加しながらプ
ラズマ酸化またはプラズマ窒化を行うと、プラズマ電位
が強くなって、従来はアース電位であった強磁性金属薄
膜層表面に電圧を印加したのと同じ効果が発揮され、プ
ラズマ処理による酸化または窒化が迅速かつ良好に行わ
れて強磁性金属薄膜層の表面が良好に酸化または窒化さ
れ、耐食性が充分に向上された磁気記録媒体が得られる
ことを見いだし、この発明をなすに至った。
As a result of various studies in view of the current situation, the inventors formed a ferromagnetic metal thin film layer made of metal or an alloy thereof on a substrate, and then formed a substrate on which this ferromagnetic metal thin film layer was formed. , the substrate is loaded in a plasma processing apparatus equipped with a plasma generation electrode so as to face the plasma generation electrode, and an electrode is further disposed near the loaded substrate;
When plasma oxidation or plasma nitridation is performed while applying a voltage to an electrode placed near this substrate, the plasma potential becomes stronger, making it possible to apply a voltage to the surface of the ferromagnetic metal thin film layer, which was previously at ground potential. The same effect as shown in FIG. 1 is obtained, oxidation or nitridation by plasma treatment is performed quickly and well, the surface of the ferromagnetic metal thin film layer is well oxidized or nitrided, and a magnetic recording medium with sufficiently improved corrosion resistance can be obtained. They discovered this and came up with this invention.

以下、図面を参照しながらこの発明について説明する。The present invention will be described below with reference to the drawings.

第2図はこの発明で使用するプラズマ処理装置の1例を
示したもので、このプラズマ処理装置は、真空槽2内に
原反ロール3、円筒状キャン4、巻き取りロール5をお
よび交流電源8に接続したプラズマ発生用交流電極9を
配設し、ガス導入管6および排気系7を真空槽2に取り
つけた点では第1図に示す従来のプラズマ処理装置と同
じであるが、円筒状キャン4の挽く近傍直下に直流電極
10を配設し、電源11に接続して直流電極10に電圧
を印加できるようにしている。しかしてこのプラズマ処
理装置によれば、ガス導入管6から酸素ガスまたは窒素
ガスを導入してプラズマ処理を行う際、プラズマ発生用
交流電極9でプラズマが生成されると同時に直流電極1
0に電圧が印加され、強磁性金属薄膜層表面に電圧を印
加したのと同じ効果が発揮されて、プラズマ処理が迅速
かつ良好に行われ、強磁性金属薄膜層表面が効率よ(酸
化または窒化されて耐食性に優れた磁気記録媒体が得ら
れる。
FIG. 2 shows an example of a plasma processing apparatus used in the present invention. This plasma processing apparatus includes a raw fabric roll 3, a cylindrical can 4, a take-up roll 5, and an AC power source in a vacuum chamber 2. It is the same as the conventional plasma processing apparatus shown in FIG. 1 in that a plasma generation AC electrode 9 connected to A DC electrode 10 is disposed directly under the can 4 in the vicinity of grinding, and is connected to a power source 11 so that a voltage can be applied to the DC electrode 10. However, according to this plasma processing apparatus, when performing plasma processing by introducing oxygen gas or nitrogen gas from the gas introduction pipe 6, plasma is generated at the plasma generation AC electrode 9, and at the same time, the DC electrode 1
A voltage is applied to the surface of the ferromagnetic metal thin film layer, which has the same effect as applying a voltage to the surface of the ferromagnetic metal thin film layer. As a result, a magnetic recording medium with excellent corrosion resistance can be obtained.

このような、円筒状キャン4の極く近傍直下に配設する
直流電極10は、スパッタされにくいようにステンレス
製またはモリブデン製のものが好ましく使用され、円筒
状キャン4の周側面に沿って移動する基体1上の強磁性
金属薄膜層表面からの距離は、真空槽2内に導入される
酸素ガスおよび窒素ガス等のガス圧によって異なるが、
1cmより大きくなると効果が弱いかもしくは効果がな
いため、1cm以内であることが好ましい。また、この
直流電極10は円筒状キャン4の極く近傍直下に配設さ
れ、円筒状キャン4の周側面に沿って移動する基体1上
の強磁性金属薄膜層表面と1cm以内の距離に配置され
るため、直流電極10間を酸素ガスまたは窒素ガスが良
好に流通できるように網目状のものが好ましく使用され
る。
The DC electrode 10 disposed in the immediate vicinity of the cylindrical can 4 is preferably made of stainless steel or molybdenum to avoid sputtering, and is moved along the circumferential surface of the cylindrical can 4. The distance from the surface of the ferromagnetic metal thin film layer on the substrate 1 varies depending on the pressure of the gas such as oxygen gas and nitrogen gas introduced into the vacuum chamber 2.
If it is larger than 1 cm, the effect will be weak or there will be no effect, so it is preferably within 1 cm. Further, this DC electrode 10 is disposed very close to and directly under the cylindrical can 4, and is disposed within 1 cm from the surface of the ferromagnetic metal thin film layer on the base 1 that moves along the circumferential side of the cylindrical can 4. Therefore, a mesh type is preferably used so that oxygen gas or nitrogen gas can flow well between the DC electrodes 10.

また、プラズマ発生用電極は交流電極9に限らず、直流
電極もしくは高周波電極の何れを使用してもよく、何れ
の電極を使用するかで真空槽2内に導入される酸素ガス
および窒素ガスのガス圧は若干界なるものの、プラズマ
酸化およびプラズマ窒化を迅速かつ良好に行うためには
、真空槽2内に導入される酸素ガスおよび窒素ガスのガ
ス圧をlXl0−’〜3トールの範囲内にするのが好ま
しく 、0.03〜041トールの範囲内にするのがよ
り好ましい。このように真空l!2内に導入される酸素
ガスおよび窒素ガスのガス圧が0,03〜0.1トール
の範囲内であるときは、直流電極10と基体1上の強磁
性金属薄膜層表面との間の距離をl ’cm以内とする
のが好ましい。
In addition, the plasma generation electrode is not limited to the AC electrode 9, but may be a DC electrode or a high frequency electrode. Depending on which electrode is used, the oxygen gas and nitrogen gas introduced into the vacuum chamber 2 can be Although the gas pressure is slightly limited, in order to perform plasma oxidation and plasma nitridation quickly and well, the gas pressure of the oxygen gas and nitrogen gas introduced into the vacuum chamber 2 should be within the range of lXl0-' to 3 Torr. It is preferably within the range of 0.03 to 041 Torr, and more preferably within the range of 0.03 to 041 Torr. In this way, the vacuum l! When the gas pressure of oxygen gas and nitrogen gas introduced into 2 is within the range of 0.03 to 0.1 Torr, the distance between the DC electrode 10 and the surface of the ferromagnetic metal thin film layer on the substrate 1 is preferably within l'cm.

また、プラズマ発生用電極に印加される電圧は、このよ
うなガス圧の条件下でプラズマが良好に発生するように
、300〜IKVの範囲内で印加するのが好ましく、こ
のときの直流電極1oに印加する電圧は、50Vより低
いと所期の効果が得られず、400Vより高いとスパッ
タリングが起こるため、50〜400■の範囲内で印加
するのが好ましい。なお、直流電極1oに印加する電圧
は、酸化の場合は十でも−でもよいが、窒化の場合は−
の電圧を印加する必要がある。
In addition, the voltage applied to the plasma generation electrode is preferably within the range of 300 to IKV so that plasma can be generated satisfactorily under such gas pressure conditions. It is preferable to apply a voltage in the range of 50 to 400 V, because if the voltage is lower than 50 V, the desired effect will not be obtained, and if it is higher than 400 V, sputtering will occur. Note that the voltage applied to the DC electrode 1o may be 10 or - in the case of oxidation, but - in the case of nitridation.
It is necessary to apply a voltage of

以上のようにして、プラズマ発生用交流電極9で、酸素
ガスまたは窒素ガスのプラズマを発生させ、直流電極1
0に電圧を印加して、強磁性金属薄膜層をイオン化した
酸素ガスまたはイオン化した窒素ガスに接触させると、
プラズマ電位も強く、イオン化した酸素ガスおよび窒素
ガスが高エネルギーを有しているため強磁性金属薄膜層
の表面に良好に侵入して酸化または窒化が行われ、表面
から緻密な被膜が成長して強磁性金属の酸化物または窒
化物からなる酸化膜層または窒化膜層が界面を生じるこ
となく良好に形成される。特にこの方法では、円筒状キ
ャン4の周側面に沿って移動する基体1上の強磁性金属
薄膜層表面と、極く近傍の1cm以内の距離に直流電極
10を配没し、50〜400Vの電圧を印加してプラズ
マ処理を行うため、強磁性金属薄膜層表面の酸化または
窒化が迅速かつ良好に行われ、一段と耐食性に優れた磁
気記録媒体が得られる。
As described above, oxygen gas or nitrogen gas plasma is generated with the plasma generation AC electrode 9, and the DC electrode 1
When a voltage is applied to 0 and the ferromagnetic metal thin film layer is brought into contact with ionized oxygen gas or ionized nitrogen gas,
The plasma potential is also strong, and the ionized oxygen and nitrogen gases have high energy, so they easily penetrate the surface of the ferromagnetic metal thin film layer to perform oxidation or nitridation, and a dense film grows from the surface. An oxide film layer or a nitride film layer made of a ferromagnetic metal oxide or nitride can be formed satisfactorily without creating an interface. In particular, in this method, a DC electrode 10 is disposed within a distance of 1 cm from the surface of the ferromagnetic metal thin film layer on the base 1 that moves along the circumferential side of the cylindrical can 4, and Since the plasma treatment is performed by applying a voltage, the surface of the ferromagnetic metal thin film layer is quickly and efficiently oxidized or nitrided, resulting in a magnetic recording medium with even better corrosion resistance.

基体上への強磁性金属薄膜層の形成は、co、Fe、N
i、Co−Ni合金、Co−Cr合金、Co−P合金、
Co−N1−P合金などの強磁性材を、真空蒸着、イオ
ンブレーティング、スパッタリング、メッキ等の手段に
よって基体上に被着するなどの方法で行われる。
The formation of a ferromagnetic metal thin film layer on the substrate can be performed using co, Fe, N
i, Co-Ni alloy, Co-Cr alloy, Co-P alloy,
This is accomplished by depositing a ferromagnetic material such as a Co--N1--P alloy onto a substrate by means such as vacuum evaporation, ion blasting, sputtering, or plating.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例I 厚さ10μのポリエステルフィルムを真空蒸着装置に装
填し、酸素ガス圧5X10−5)−ルの残留ガス圧の下
でコバルトを加熱蒸発させてポリエステルフィルム上に
厚さ1000人のコバルトからなる強磁性金属薄膜層を
形成した。次いで、第2図に示す円筒状キャン4と直流
電極10との距離が5mmのプラズマ処理装置を使用し
、強磁性金属薄膜層を形成したポリエステルフィルム1
を、真空槽2内の原反ロール3から円筒状キャン4の周
側面に沿って移動させ、巻き取りロール5に巻き取るよ
うにセットし、ガス導入管6から酸素ガスを200se
cmの流量で導入し、酸素ガス圧0.1トールでプラズ
マ発生用交流電極9の電圧600V、直流電極10の電
圧100■で処理時間を種々に変えて酸化を行った。し
かる後、所定のrlJに裁断して多数の磁気テープをつ
くった。
Example I A polyester film with a thickness of 10 μm was loaded into a vacuum evaporation apparatus, and the cobalt was heated to evaporate under a residual gas pressure of 5×10 −5 μl of oxygen gas pressure to form a polyester film with a thickness of 1000 μm on the polyester film. A ferromagnetic metal thin film layer was formed. Next, using a plasma processing apparatus in which the distance between the cylindrical can 4 and the DC electrode 10 shown in FIG.
is moved along the circumferential side of the cylindrical can 4 from the raw fabric roll 3 in the vacuum chamber 2, set to be wound up on the take-up roll 5, and oxygen gas is introduced from the gas introduction pipe 6 for 200 seconds.
Oxidation was carried out at various treatment times, with an oxygen gas pressure of 0.1 torr, a voltage of 600 V for the AC electrode 9 for plasma generation, and a voltage of 100 V for the DC electrode 10. Thereafter, it was cut to a predetermined rlJ to make a large number of magnetic tapes.

第3図はこのようにして得られた磁気テープを60℃、
90%RHの条件下に放置し、時間の経過に伴う最大磁
束密度の劣化率を、放置前の磁気テープの最大磁束密度
を100%として測定し、その劣化率とプラズマ処理時
間との関係をグラフで表したものでグラフAはこの実施
例1で得られたものの結果である。
Figure 3 shows the magnetic tape obtained in this way at 60°C.
The magnetic tape was left under conditions of 90% RH, and the deterioration rate of the maximum magnetic flux density over time was measured, with the maximum magnetic flux density of the magnetic tape before being left as 100%, and the relationship between the deterioration rate and the plasma processing time was determined. Graph A shows the results obtained in Example 1.

実施例2 実施例1のプラズマ処理において、処理時間を10秒と
し、直流電極の電圧を種々変化させた以外は実施例1と
同様にして多数の磁気テープをつ(った。第4図はこの
ようにして得られた磁気テープの、実施例1と同様にし
て測定した最大磁束密度の劣化率と直流電極の印加電圧
との関係をグラフで表したものである。
Example 2 In the plasma treatment of Example 1, a large number of magnetic tapes were processed in the same manner as in Example 1, except that the treatment time was 10 seconds and the voltage of the DC electrode was variously varied. The graph shows the relationship between the deterioration rate of the maximum magnetic flux density of the thus obtained magnetic tape measured in the same manner as in Example 1 and the voltage applied to the DC electrode.

実施例3 実施例1のプラズマ処理において、酸素ガスのガス圧を
0.1トールから0.01 トールに変更し、プラズマ
発生用交流電極9の印加電圧を600Vから1ooov
に変更した以外は実施例1と同様にして多数の磁気テー
プをつくった。第3図のグラフBはこのようにして得ら
れた磁気テープの、実施例1と同様にして測定した最大
磁束密度の劣化率とプラズマ処理時間との関係をグラフ
で表したものである。
Example 3 In the plasma treatment of Example 1, the gas pressure of oxygen gas was changed from 0.1 Torr to 0.01 Torr, and the voltage applied to the plasma generation AC electrode 9 was changed from 600V to 1ooov.
A large number of magnetic tapes were made in the same manner as in Example 1 except that the following was changed. Graph B in FIG. 3 graphically represents the relationship between the deterioration rate of the maximum magnetic flux density of the magnetic tape thus obtained, measured in the same manner as in Example 1, and the plasma processing time.

実施例4 実施例1のプラズマ処理において、酸素ガスに代えて、
窒素ガスを200secmの流量で導入し、窒素ガス圧
0.1トールでプラズマ発生用交流電極9の電圧600
V、直流電極10の電圧1oovで処理時間を種々に変
えて窒化を行った以外は実施例1と同様にして多数の磁
気テープをつくった。第5図のグラフはこのようにして
得られた磁気テープの、実施例1と同様にして測定した
最大磁束密度の劣化率とプラズマ処理時間との関係をグ
ラフで表したものである。
Example 4 In the plasma treatment of Example 1, instead of oxygen gas,
Nitrogen gas was introduced at a flow rate of 200 sec, and the voltage of the plasma generation AC electrode 9 was set to 600 m at a nitrogen gas pressure of 0.1 torr.
A large number of magnetic tapes were produced in the same manner as in Example 1, except that the nitriding was carried out at a voltage of 10V and a DC electrode 10 voltage of 100V and various treatment times. The graph in FIG. 5 graphically represents the relationship between the deterioration rate of the maximum magnetic flux density of the magnetic tape thus obtained, measured in the same manner as in Example 1, and the plasma processing time.

比較例1 実施例1において、第2図に示すプラズマ処理装置に代
えて第1図に示すプラズマ処理装置を使用し、直流電極
10の電圧の印加を省いた以外は実施例1と同様にして
多数の磁気テープをつくった。第6図のグラフはこのよ
うにして得られた磁気テープの実施例1と同様にして測
定した最大磁束密度の劣化率とプラズマ処理時間との関
係をグラフで表したものである。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the plasma processing apparatus shown in FIG. 1 was used instead of the plasma processing apparatus shown in FIG. 2, and the voltage application to the DC electrode 10 was omitted. He made a large number of magnetic tapes. The graph in FIG. 6 is a graph showing the relationship between the deterioration rate of the maximum magnetic flux density and the plasma processing time, which was measured in the same manner as in Example 1 of the magnetic tape thus obtained.

比較例2 比較例Iのプラズマ処理において、酸素ガスに代えて、
窒素ガスを200sccn+の流量で導入し、窒素ガス
圧0,1トールでプラズマ発生用交流電極9の電圧60
0Vで処理時間を種々に変えて窒化を行った以外は比較
例1と同様にして多数の磁気テープをつくった。第7図
のグラフはこのようにして得られた磁気テープの実施例
1と同様にして測定した最大磁束密度の劣化率とプラズ
マ処理時間との関係をグラフで表したものである。
Comparative Example 2 In the plasma treatment of Comparative Example I, instead of oxygen gas,
Nitrogen gas was introduced at a flow rate of 200 scn+, and the voltage of the plasma generation AC electrode 9 was 60 at a nitrogen gas pressure of 0.1 Torr.
A large number of magnetic tapes were produced in the same manner as in Comparative Example 1, except that the nitriding was performed at 0 V and for various treatment times. The graph in FIG. 7 is a graph showing the relationship between the deterioration rate of the maximum magnetic flux density and the plasma processing time, which was measured in the same manner as in Example 1 of the magnetic tape thus obtained.

各実施例および各比較例で得られた磁気テープの最大磁
束密度の劣化率と処理時間との関係を表した第3図、第
5図ないし第7図のグラフから明らかなように、この発
明の製造方法で得られた磁気テープ(第3図のグラフA
、B、第5図)は、いずれも従来の製造方法で得られた
磁気テープ(第6図および第7図)に比し、非富に短し
)処理時間で最大磁束密度の劣化率が大きく低下してお
り、このことからこの発明の製造方法によれば、耐食性
に優れた磁気記録媒体が得られるのがわかる。また、実
施例2で得られた磁気テープの最大磁束密度の劣化率と
直流電極の印加電圧との関係を表した第4図のグラフか
ら明らかなように、直流電極の電圧が50V以上で最大
磁束密度の劣化率が大きく低下しており、このことから
この発明の製造方法で直流電極に印加する電圧は50V
以上であることが好ましいことがわかる。
As is clear from the graphs in FIGS. 3, 5 to 7 showing the relationship between the deterioration rate of the maximum magnetic flux density of the magnetic tape obtained in each Example and each Comparative Example and the processing time, the present invention Magnetic tape obtained by the manufacturing method (graph A in Figure 3)
, B, Fig. 5) are all significantly shorter than magnetic tapes obtained by conventional manufacturing methods (Figs. 6 and 7), and the deterioration rate of maximum magnetic flux density with processing time is This shows that according to the manufacturing method of the present invention, a magnetic recording medium with excellent corrosion resistance can be obtained. Furthermore, as is clear from the graph in FIG. 4 showing the relationship between the deterioration rate of the maximum magnetic flux density of the magnetic tape obtained in Example 2 and the voltage applied to the DC electrode, the maximum The rate of deterioration of magnetic flux density has decreased significantly, and from this reason, the voltage applied to the DC electrode in the manufacturing method of this invention is 50V.
It can be seen that the above is preferable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマ処理装置の概略断面図、第2図
はこの発明の製造方法で使用するプラズマ処理装置の1
例を示す概略断面図、第3図および第5図はこの発明に
よって得られた磁気テープの最大磁束密度の劣化率とプ
ラズマ処理時間との関係図、第4図はこの発明によって
得られた磁気テープの最大磁束密度の劣化率と直流電極
の印加電圧との関係図、第6図および第11glは従来
の製造方法で得られた磁気テープの最大磁束密度の劣化
率とプラズマ処理時間との関係図である。 1・・・基体、2・・・真空槽、4・・・円筒状キャン
、6・・・ガス導入管、9・・・プラズマ発生用交流電
+ア(プラズマ発生用電極)、10・・・直流電極特許
出願人 日立マクセル株式会社 第3図 Q5101520 プラズマ処理時間(秒) 第4図 0 100 200 300 400 直流電極の電圧(V) 第5図 プラズマ処理時間(秒) 第6図 0 12345 プラズマ処理時間(分)
FIG. 1 is a schematic sectional view of a conventional plasma processing apparatus, and FIG. 2 is a schematic sectional view of a plasma processing apparatus used in the manufacturing method of the present invention.
A schematic cross-sectional view showing an example, FIGS. 3 and 5 are graphs showing the relationship between the deterioration rate of the maximum magnetic flux density of the magnetic tape obtained by this invention and plasma processing time, and FIG. The relationship between the deterioration rate of the maximum magnetic flux density of the tape and the voltage applied to the DC electrode, Figures 6 and 11gl show the relationship between the deterioration rate of the maximum magnetic flux density of the magnetic tape obtained by the conventional manufacturing method and the plasma processing time. It is a diagram. DESCRIPTION OF SYMBOLS 1...Base body, 2...Vacuum chamber, 4...Cylindrical can, 6...Gas introduction tube, 9...AC voltage +a for plasma generation (electrode for plasma generation), 10... DC electrode patent applicant Hitachi Maxell Ltd. Figure 3 Q5101520 Plasma treatment time (seconds) Figure 4 0 100 200 300 400 DC electrode voltage (V) Figure 5 Plasma treatment time (seconds) Figure 6 0 12345 Plasma treatment Time (minutes)

Claims (1)

【特許請求の範囲】 1、基体」二に金属もしくはそれらの合金からなる強磁
性金属薄膜層を形成し、しかる後、この強磁性金属薄膜
層を形成した基体を、プラズマ発生用電極を備えたプラ
ズマ処理装置にプラズマ発生用電極と対向させて装填す
るとともに、装填した基体の近傍にさらに電極を配設し
、これらの電極に電圧を印加してプラズマ処理装置内に
導入された酸素ガスまたは窒素ガスをプラズマ処理する
ことにより、基体上に形成した強磁性金属薄1%lWの
表面を酸化または窒化することを特徴とする磁気記録媒
体の製造方法 2、基体の近傍に配設した電極が基体上に形成された強
磁性金属薄膜層からIcm以内に配設されてなる特許請
求の範囲第1項記載の磁気記録媒体の製造方法 3、強磁性金属薄膜層を形成した基体の近傍に配設した
電極に印加する電圧が50〜400Vの範囲内である特
許請求の範囲第1項および第2項記載の磁気記録媒体の
製造方法 4、強磁性金属薄膜層を形成した基体の近傍に配設した
電極がステンレスまたはモリブデンからなる特許請求の
範囲第1項ないし第3項記載の磁気記録媒体の製造方法 5、強磁性金属簿膜層を形成した基体の近傍に配設した
電極が網目状に構成されてなる特許請求の範囲第1IJ
ないし第4項記載の磁気記録媒体の製造方法
[Claims] 1. Substrate: 2. A ferromagnetic metal thin film layer made of metal or an alloy thereof is formed on the substrate, and then the substrate on which the ferromagnetic metal thin film layer is formed is equipped with a plasma generation electrode. The plasma processing device is loaded facing the plasma generation electrode, and further electrodes are arranged near the loaded substrate, and a voltage is applied to these electrodes to generate oxygen gas or nitrogen introduced into the plasma processing device. Method 2 for producing a magnetic recording medium characterized by oxidizing or nitriding the surface of a 1% lW ferromagnetic metal thin film formed on a substrate by plasma treating a gas, wherein the electrode disposed near the substrate is Method 3 of manufacturing a magnetic recording medium according to claim 1, wherein the magnetic recording medium is disposed within Icm from a ferromagnetic metal thin film layer formed thereon, and the ferromagnetic metal thin film layer is disposed near the substrate on which the ferromagnetic metal thin film layer is formed. A method for manufacturing a magnetic recording medium according to claims 1 and 2, wherein the voltage applied to the electrode is within the range of 50 to 400 V, and the method is disposed near a substrate on which a ferromagnetic metal thin film layer is formed. A method 5 for producing a magnetic recording medium according to claims 1 to 3, wherein the electrodes are made of stainless steel or molybdenum, and the electrodes are arranged in the vicinity of a substrate on which a ferromagnetic metal film layer is formed. Claim 1 IJ consisting of
to the method for manufacturing a magnetic recording medium according to item 4;
JP17171183A 1983-09-16 1983-09-16 Manufacture of magnetic recording medium Pending JPS6063723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17171183A JPS6063723A (en) 1983-09-16 1983-09-16 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17171183A JPS6063723A (en) 1983-09-16 1983-09-16 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6063723A true JPS6063723A (en) 1985-04-12

Family

ID=15928258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17171183A Pending JPS6063723A (en) 1983-09-16 1983-09-16 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6063723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233336A (en) * 1985-08-06 1987-02-13 Nec Corp Production of magnetic recording medium
JPS62273626A (en) * 1986-05-21 1987-11-27 Hitachi Maxell Ltd Production of magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233336A (en) * 1985-08-06 1987-02-13 Nec Corp Production of magnetic recording medium
JPS62273626A (en) * 1986-05-21 1987-11-27 Hitachi Maxell Ltd Production of magnetic recording medium

Similar Documents

Publication Publication Date Title
JP4191096B2 (en) Method for processing workpiece including magnetic material and method for manufacturing magnetic recording medium
JPH11175927A (en) Production of ferromagnetic tunnel junction element
JPS5812728B2 (en) Jikikirokubaitaino Seihou
JPS6063723A (en) Manufacture of magnetic recording medium
JP2563425B2 (en) Method of manufacturing magnetic recording medium
EP0079391A1 (en) Magnetic recording medium
JPH0532807B2 (en)
JPH0489627A (en) Production of magnetic recording medium
JPS59215025A (en) Manufacture of vertical magnetic recording body
JP2548233B2 (en) Method of manufacturing magnetic recording medium
JPS61115232A (en) Magnetic recording medium
US5914017A (en) Apparatus for, and method of, removing hydrocarbons from the surface of a substrate
JP2548231B2 (en) Method of manufacturing magnetic recording medium
JPS6087437A (en) Production of magnetic recording medium
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JP2953138B2 (en) Manufacturing method of magnetic recording medium
JPS61139918A (en) Magnetic recording medium and its production
JPH06251366A (en) Method and system for forming film
JPS6057535A (en) Magnetic recording medium
JPS62241137A (en) Method and apparatus for producing magnetic recording medium
JPH0740357B2 (en) Method of manufacturing magnetic recording medium
JPS6045943A (en) Production of magnetic recording medium
JPH01107319A (en) Production of magnetic recording medium
JPS63149831A (en) Production of magnetic recording medium
JPS62146435A (en) Production of magnetic recording medium