JPH0532807B2 - - Google Patents

Info

Publication number
JPH0532807B2
JPH0532807B2 JP59269348A JP26934884A JPH0532807B2 JP H0532807 B2 JPH0532807 B2 JP H0532807B2 JP 59269348 A JP59269348 A JP 59269348A JP 26934884 A JP26934884 A JP 26934884A JP H0532807 B2 JPH0532807 B2 JP H0532807B2
Authority
JP
Japan
Prior art keywords
thin film
metal thin
ferromagnetic metal
film layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59269348A
Other languages
Japanese (ja)
Other versions
JPS61145722A (en
Inventor
Takeshi Totsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP26934884A priority Critical patent/JPS61145722A/en
Publication of JPS61145722A publication Critical patent/JPS61145722A/en
Publication of JPH0532807B2 publication Critical patent/JPH0532807B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔技術分野〕 この発明は強磁性金属薄膜層を記録層とする磁
気記録媒体に関し、さらに詳しくは2層以上の強
磁性金属薄膜層を積層し、隣接する各強磁性金属
薄膜層の界面および最上層の強磁性金属薄膜層表
面に、強磁性金属薄膜層中に含まれる平均酸素原
子濃度より高い酸素原子濃度を有するプラズマ酸
化境界層を設けた前記の磁気記録媒体に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer, and more specifically, it relates to a magnetic recording medium in which two or more ferromagnetic metal thin film layers are laminated, and each adjacent ferromagnetic The above-mentioned magnetic recording medium includes a plasma oxidation boundary layer having an oxygen atom concentration higher than the average oxygen atom concentration contained in the ferromagnetic metal thin film layer at the interface of the metal thin film layer and the surface of the uppermost ferromagnetic metal thin film layer. .

〔背景技術〕[Background technology]

強磁性金属薄膜層を記録層とする磁気記録媒体
は、通常、金属もしくはそれらの合金などを真空
蒸着等によつてポリエステルフイルム等の基体上
に被着してつくられ、高密度記録に適した特性を
有するが、反面空気中の酸素によつて酸化され易
く、この酸化によつて飽和磁化などの磁気特性が
劣化するなどの難点がある。
Magnetic recording media with a ferromagnetic metal thin film layer as a recording layer are usually made by depositing metals or their alloys on a substrate such as a polyester film by vacuum deposition, etc., and are suitable for high-density recording. However, it has the disadvantage that it is easily oxidized by oxygen in the air, and this oxidation deteriorates magnetic properties such as saturation magnetization.

このため、従来から酸素ガス雰囲気下で真空蒸
着を行い強磁性金属薄膜層の表面を酸化する(特
開昭58−41439号)などして耐食性を改善するこ
とが行われている。ところが、この種の従来の方
法で得られる強磁性金属薄膜層は、表面層におい
てのみ酸化膜保護層が形成されるものであるた
め、腐食等によつて強磁性金属薄膜層表面の酸化
膜保護層が損傷された場合、強磁性金属薄膜層の
内部まで腐食が容易に進行していくという難点が
あり、耐食性の改善は未だ充分に満足できるもの
ではない。
For this reason, corrosion resistance has conventionally been improved by oxidizing the surface of the ferromagnetic metal thin film layer by performing vacuum deposition in an oxygen gas atmosphere (Japanese Patent Application Laid-Open No. 41439/1983). However, in the ferromagnetic metal thin film layer obtained by this type of conventional method, a protective oxide film is formed only on the surface layer, so the protective oxide film on the surface of the ferromagnetic metal thin film layer is damaged by corrosion etc. If the layer is damaged, corrosion easily progresses to the inside of the ferromagnetic metal thin film layer, so the improvement in corrosion resistance is still not fully satisfactory.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる現状に鑑み、たとえ、腐食
等によつて強磁性金属薄膜層表面の酸化膜保護層
が損傷された場合でも、強磁性金属薄膜層の内部
にまで腐食が容易に進行していくということのな
い、耐食性に優れた強磁性金属薄膜層を有する磁
気記録媒体を提供することを目的としてなされた
もので、基体上に2層以上の強磁性金属薄膜層を
積層し、隣接する各強磁性金属薄膜層の界面およ
び最上層の強磁性金属薄膜層表面に、強磁性金属
薄膜層中に含まれる平均酸素原子濃度より高い酸
素原子濃度を有するプラズマ酸化境界層を設ける
ことによつて、所期の目的を達成したものであ
る。
In view of the current situation, the present invention was developed because even if the protective oxide film on the surface of the ferromagnetic metal thin film layer is damaged due to corrosion etc., the corrosion easily progresses to the inside of the ferromagnetic metal thin film layer. This technology was developed with the aim of providing a magnetic recording medium having a ferromagnetic metal thin film layer with excellent corrosion resistance, which does not cause corrosion. By providing a plasma oxidation boundary layer having an oxygen atom concentration higher than the average oxygen atom concentration contained in the ferromagnetic metal thin film layer at the interface of each ferromagnetic metal thin film layer and on the surface of the top ferromagnetic metal thin film layer. , the intended purpose has been achieved.

〔発明の概要〕[Summary of the invention]

この発明は、基体上に、2層以上の強磁性金属
薄膜層を積層し、隣接する各強磁性金属薄膜層の
界面および最上層の強磁性金属薄膜層表面に、強
磁性金属薄膜層中に含まれる平均酸素原子濃度よ
り高い酸素原子濃度を有するプラズマ酸化境界層
を設けることを特徴とするもので、これらの強磁
性金属薄膜層中に含まれる平均酸素原子濃度より
高い酸素原子濃度を有するプラズマ酸化境界層
を、2層以上積層して形成した強磁性金属薄膜層
の最上層表面および内部に多段式に設けることに
よつて、たとえ、腐食等によつて強磁性金属薄膜
層の最上層表面のプラズマ酸化境界層が損傷され
た場合でも、強磁性金属薄膜層の内部に多段式に
設けたプラズマ酸化境界層によつてそれ以上の浸
食を有効に防止し、強磁性金属薄膜層の耐食性を
充分に向上させたものである。
This invention consists of laminating two or more ferromagnetic metal thin film layers on a substrate, and applying the ferromagnetic metal thin film layer to the interface of each adjacent ferromagnetic metal thin film layer and the surface of the topmost ferromagnetic metal thin film layer. A plasma characterized by providing a plasma oxidation boundary layer having an oxygen atom concentration higher than the average oxygen atom concentration contained in these ferromagnetic metal thin film layers, and a plasma having an oxygen atom concentration higher than the average oxygen atom concentration contained in these ferromagnetic metal thin film layers. By providing an oxidation boundary layer in multiple stages on the surface and inside of the top layer of a ferromagnetic metal thin film layer formed by stacking two or more layers, it is possible to prevent the surface of the top layer of the ferromagnetic metal thin film layer from being damaged by corrosion or the like. Even if the plasma oxidation boundary layer of the ferromagnetic metal thin film layer is damaged, the plasma oxidation boundary layer provided in multiple stages inside the ferromagnetic metal thin film layer effectively prevents further erosion and improves the corrosion resistance of the ferromagnetic metal thin film layer. This is a sufficient improvement.

この発明において、2層以上の強磁性金属薄膜
層を積層した後、隣接する各強磁性金属薄膜層の
界面および最上層の強磁性金属薄膜層表面に形成
する境界層は、強磁性材を真空蒸着して1層の強
磁性金属薄膜層を形成する毎に、この強磁性金属
薄膜層表面をプラズマ酸化によつて酸化し、これ
を必要に応じて繰り返すことによつて形成され
る。
In this invention, after two or more ferromagnetic metal thin film layers are laminated, the boundary layer formed at the interface of each adjacent ferromagnetic metal thin film layer and the surface of the topmost ferromagnetic metal thin film layer is formed by depositing the ferromagnetic material under vacuum. Each time one ferromagnetic metal thin film layer is formed by vapor deposition, the surface of this ferromagnetic metal thin film layer is oxidized by plasma oxidation, and this process is repeated as necessary.

第1図は、このように強磁性金属薄膜層中に含
まれる平均酸素原子濃度より高い酸素原子濃度を
有するプラズマ酸化境界層を、隣接する各強磁性
金属薄膜層の界面および最上層の強磁性金属薄膜
層表面に多段式に形成する際に使用する、真空蒸
着兼プラズマ処理装置の1例の概略断面図を示し
たものであり、以下、この図面を参照しながら説
明する。
Figure 1 shows that a plasma oxidized boundary layer having an oxygen atom concentration higher than the average oxygen atom concentration contained in the ferromagnetic metal thin film layer is formed at the interface of each adjacent ferromagnetic metal thin film layer and at the ferromagnetic layer of the top layer. This is a schematic cross-sectional view of an example of a vacuum evaporation/plasma processing apparatus used to form a multi-stage metal thin film layer on the surface of the metal thin film layer, and the following description will be made with reference to this drawing.

図において、1および2は隣接して連結された
真空槽であり、これら真空槽1および2の内部は
それぞれ隔壁3および4,5および6で区画さ
れ、それぞれ真空槽1および2の中央部に配設さ
れた円筒状キヤン7および8が跨るように真空蒸
着室9とプラズマ処理室10、また真空蒸着室1
1とプラズマ処理室12が分離形成されている。
ポリエステルフイルム等の基体13は、真空槽1
内の原反ロール14より円筒状キヤン7の周側面
に沿つて移動し、ガイドロール15を介して隣接
する真空槽2に送り込まれ、さらにガイドロール
16を介して円筒状キヤン8の周側面に沿つて移
動し、巻き取りロール17に巻き取られる。この
間真空槽1内の円筒状キヤン7の周側面に沿つて
移動する基体13に対向して、真空蒸着室9の下
部に配設された強磁性材蒸発源18で強磁性材1
9が加熱蒸発されて、強磁性材19からなる強磁
性金属薄膜層が形成され、引き続いて隣接するプ
ラズマ処理室10で、酸素ガス導入管20から酸
素ガスが導入されて電極板21によりプラズマ酸
化が行われ、強磁性金属薄膜層上に強磁性金属の
酸化膜からなる界面層が形成される。
In the figure, 1 and 2 are adjacently connected vacuum chambers, and the insides of these vacuum chambers 1 and 2 are partitioned by partition walls 3 and 4, 5 and 6, respectively. The vacuum deposition chamber 9 and the plasma processing chamber 10, and the vacuum deposition chamber 1, are arranged so that the cylindrical cans 7 and 8 straddle them.
1 and a plasma processing chamber 12 are formed separately.
A substrate 13 such as a polyester film is placed in a vacuum chamber 1.
The material is moved along the circumferential side of the cylindrical can 7 from the inner fabric roll 14, is sent to the adjacent vacuum chamber 2 via the guide roll 15, and is further transferred to the circumferential side of the cylindrical can 8 via the guide roll 16. It moves along the same line and is wound up on a winding roll 17. During this time, a ferromagnetic material evaporation source 18 disposed at the lower part of the vacuum deposition chamber 9 is used to evaporate the ferromagnetic material 13, facing the substrate 13 moving along the circumferential side of the cylindrical can 7 in the vacuum chamber 1.
9 is heated and evaporated to form a ferromagnetic metal thin film layer made of the ferromagnetic material 19. Subsequently, in the adjacent plasma processing chamber 10, oxygen gas is introduced from the oxygen gas introduction pipe 20 and plasma oxidized by the electrode plate 21. is performed, and an interface layer consisting of a ferromagnetic metal oxide film is formed on the ferromagnetic metal thin film layer.

次いで、表面に強磁性金属の酸化膜からなる界
面層が形成された強磁性金属薄膜層を有する基体
13は、真空槽2内のガイドロール16を介して
円筒状キヤン8の周側面に沿つて移動し、この
間、真空蒸着室11の下部に配設された強磁性材
蒸発源22で強磁性材23が加熱蒸発されて、強
磁性材23からなる強磁性金属薄膜層が形成さ
れ、さらに引続いてプラズマ処理室12で酸素ガ
ス導入管24から酸素ガスが導入されて、電極板
25によりプラズマ酸化が行われ、強磁性金属の
酸化膜からなる界面層が形成される。26および
27はそれぞれ真空槽1および2に連結された排
気系、28および29はそれぞれ真空蒸着室9お
よび11に連結された排気系、30および31は
それぞれプラズマ処理室10および12に連結さ
れた排気系であり、これらの排気系によつて真空
槽1,2、真空蒸着室9,11およびプラズマ処
理室10,12はそれぞれ所定の真空度に真空排
気される。
Next, the base body 13 having a ferromagnetic metal thin film layer on the surface of which an interface layer made of a ferromagnetic metal oxide film is formed is moved along the circumferential side of the cylindrical can 8 via a guide roll 16 in the vacuum chamber 2. During this time, the ferromagnetic material 23 is heated and evaporated by the ferromagnetic material evaporation source 22 disposed at the lower part of the vacuum deposition chamber 11, forming a ferromagnetic metal thin film layer made of the ferromagnetic material 23, and further attracted. Next, in the plasma processing chamber 12, oxygen gas is introduced from the oxygen gas introduction pipe 24, and plasma oxidation is performed by the electrode plate 25, thereby forming an interface layer made of a ferromagnetic metal oxide film. 26 and 27 are exhaust systems connected to vacuum chambers 1 and 2, respectively, 28 and 29 are exhaust systems connected to vacuum deposition chambers 9 and 11, respectively, and 30 and 31 are connected to plasma processing chambers 10 and 12, respectively. These exhaust systems evacuate the vacuum chambers 1 and 2, the vacuum deposition chambers 9 and 11, and the plasma processing chambers 10 and 12 to a predetermined degree of vacuum, respectively.

このように強磁性金属薄膜層の形成と強磁性金
属薄膜層表面のプラズマ酸化が繰り返し行われる
と、積層される強磁性金属薄膜層の界面および最
上層の強磁性金属薄膜層表面に、強磁性金属薄膜
層中に含まれる平均酸素原子濃度より高い酸素原
子濃度を有するプラズマ酸化境界層が形成され
る。従つて、たとえ、最上層の強磁性金属薄膜層
表面の強磁性金属の酸化膜からなるプラズマ酸化
境界層が腐食等によつて損傷されても、腐食は強
磁性金属薄膜層中に多段式に形成された強磁性金
属の酸化膜からなるプラズマ酸化境界層のところ
で、食い止められ、強磁性金属薄膜層の耐食性が
充分に向上される。なお、強磁性金属薄膜層中に
含まれる平均酸素原子濃度より高い酸素原子濃度
を有するプラズマ酸化境界層は、少なくとも1層
以上適宜に設ければよく、このプラズマ酸化境界
層の数が多いほど強磁性金属薄膜層の耐食性はよ
り良好なものとなる。
When the formation of the ferromagnetic metal thin film layer and the plasma oxidation of the ferromagnetic metal thin film layer surface are repeated in this way, ferromagnetic A plasma oxidation boundary layer is formed having an oxygen atomic concentration higher than the average oxygen atomic concentration contained in the metal thin film layer. Therefore, even if the plasma oxidation boundary layer consisting of a ferromagnetic metal oxide film on the surface of the topmost ferromagnetic metal thin film layer is damaged by corrosion, corrosion will occur in multiple stages within the ferromagnetic metal thin film layer. The plasma oxidation is stopped at the formed plasma oxidation boundary layer consisting of a ferromagnetic metal oxide film, and the corrosion resistance of the ferromagnetic metal thin film layer is sufficiently improved. Note that at least one plasma oxidation boundary layer having an oxygen atom concentration higher than the average oxygen atom concentration contained in the ferromagnetic metal thin film layer may be appropriately provided, and the greater the number of plasma oxidation boundary layers, the stronger the plasma oxidation boundary layer. The corrosion resistance of the magnetic metal thin film layer becomes better.

強磁性金属薄膜層のプラズマ酸化を行う際のプ
ラズマ処理室10および12における酸素ガスの
ガス圧は、5×10-1トール〜1×10-2トールの範
囲内にするのが好ましく、酸素ガス圧を1×10-2
トールより低くするとプラズマ密度が低すぎ、5
×10-1トールより高くするとプラズマ放電が発生
しない。
The gas pressure of oxygen gas in the plasma processing chambers 10 and 12 when performing plasma oxidation of the ferromagnetic metal thin film layer is preferably within the range of 5 × 10 -1 Torr to 1 × 10 -2 Torr. Pressure 1×10 -2
If it is lower than Thor, the plasma density is too low, and 5
If the temperature is higher than ×10 -1 Torr, no plasma discharge will occur.

このように、2層以上積層形成した強磁性金属
薄膜層の界面および最上層の強磁性金属薄膜層表
面に、プラズマ酸化によつて形成される境界層に
おける酸素原子濃度は、強磁性金属薄膜層中に含
まれる平均酸素原子濃度より5%以上高いことが
好ましく、これより少なくては強磁性金属薄膜層
の耐食性が充分に改善されない。またこのように
して形成されるプラズマ酸化境界層の層厚は、20
〜100Åの範囲内であることが好ましく、20Åよ
り薄くては耐食性が充分に改善されず、100Åよ
り厚くすると強磁性金属薄膜層がもろくなり耐久
性が低下する。
In this way, the oxygen atom concentration in the boundary layer formed by plasma oxidation on the interface of two or more ferromagnetic metal thin film layers and on the surface of the uppermost ferromagnetic metal thin film layer is It is preferable that the concentration is 5% or more higher than the average oxygen atom concentration contained therein, and if it is less than this, the corrosion resistance of the ferromagnetic metal thin film layer will not be sufficiently improved. The thickness of the plasma oxidation boundary layer formed in this way is 20
The thickness is preferably within the range of ~100 Å; if it is thinner than 20 Å, the corrosion resistance will not be sufficiently improved, and if it is thicker than 100 Å, the ferromagnetic metal thin film layer will become brittle and its durability will decrease.

強磁性材としては、Co、Fe、Ni、Co−Ni合
金、Co−Cr合金、Co−P合金、Co−Ni−P合
金など一般に真空蒸着に使用される強磁性材がい
ずれも使用される。
The ferromagnetic materials used include Co, Fe, Ni, Co-Ni alloy, Co-Cr alloy, Co-P alloy, Co-Ni-P alloy, and other ferromagnetic materials commonly used in vacuum deposition. .

また、基体としては、ポリエステル、ポリイミ
ド、ポリアミド等一般に使用されている高分子成
形物からなるプラスチツクフイルム、および銅な
どの非磁性金属からなる金属フイルムが使用され
る。
Further, as the substrate, a plastic film made of a commonly used polymer molded product such as polyester, polyimide, or polyamide, and a metal film made of a nonmagnetic metal such as copper are used.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例 1 第1図に示す真空蒸着装置を使用し、厚さ10μ
のポリエステルフイルム13を原反ロール14よ
り円筒状キヤン7の周側面に沿つて移動させ、さ
らにガイドロール15および16を介して円筒状
キヤン8の周側面に沿つて移動させ、巻き取りロ
ール17に巻き取るようにセツトした。同時に真
空蒸着室9内の強磁性材蒸発源18および真空蒸
着室11内の強磁性材蒸発源22にCo−Ni合金
(重量比8:2)19および23をセツトした。
次に、排気系26および27で真空槽1および2
を真空排気するとともに、排気系26および29
で真空蒸着室9および11を1×10-5トールまで
真空排気し、排気系30および31でプラズマ処
理室10および12を0.1トールまで真空排気し
た。次いで、強磁性材蒸発源18内のCo−Ni合
金19を加熱蒸発してポリエステルフイルム13
上にCo−Ni合金からなる約600Å厚の強磁性金属
薄膜層を形成し、引続きプラズマ処理室10内に
酸素ガス導入管20から酸素ガスを導入し、酸素
ガス圧1×10-1トールで、電極板21と円筒状キ
ヤン7との間に1.2KW/m2の電場を生じさせて
プラズマ酸化を行つた。次いで、強磁性材蒸発源
22内のCo−Ni合金23を加熱蒸発して前記の
表面をプラズマ酸化した強磁性金属薄膜層上に、
さらにCo−Ni合金からなる約600Å厚の強磁性金
属薄膜層を形成し、引き続いて、プラズマ処理室
12内に酸素ガス導入管24から酸素ガスを導入
し、酸素ガス圧1×10-1トールで、電極板25を
円筒状キヤン8との間に1.2KW/m2の電場を生
じさせてプラズマ酸化を行つた。しかる後、所定
の巾に裁断して第2図に示すように、ポリエステ
ルフイルム13上に、強磁性金属薄膜層32、プ
ラズマ酸化境界層33、強磁性金属薄膜層34お
よびプラズマ酸化境界層35を順次に積層形成し
た磁気テープをつくつた。このようにして得られ
た磁気テープの強磁性金属薄膜層中のCo−Cr合
金および酸素原子の濃度分布をオージエ電子分光
計によつて調べた結果、第3図の曲線Aに示され
るように、表面および中央部で濃度の高い酸素原
子の濃度分布が検知された。なお、第3図におい
て曲線BはCoの濃度分布であり、曲線CはNiの
濃度分布である。また13はポリエステルフイル
ムである。
Example 1 Using the vacuum evaporation equipment shown in Figure 1, a film with a thickness of 10 μm was deposited.
The polyester film 13 is moved along the circumferential side of the cylindrical can 7 from the raw roll 14, further moved along the circumferential side of the cylindrical can 8 via guide rolls 15 and 16, and then transferred to the take-up roll 17. I set it to wind up. At the same time, Co--Ni alloys (weight ratio 8:2) 19 and 23 were set in the ferromagnetic material evaporation source 18 in the vacuum deposition chamber 9 and the ferromagnetic material evaporation source 22 in the vacuum deposition chamber 11.
Next, the vacuum chambers 1 and 2 are
At the same time, the exhaust systems 26 and 29
The vacuum deposition chambers 9 and 11 were evacuated to 1×10 -5 Torr, and the plasma processing chambers 10 and 12 were evacuated to 0.1 Torr using exhaust systems 30 and 31. Next, the Co-Ni alloy 19 in the ferromagnetic material evaporation source 18 is heated and evaporated to form the polyester film 13.
A ferromagnetic metal thin film layer of about 600 Å thick made of Co-Ni alloy is formed on top, and then oxygen gas is introduced into the plasma processing chamber 10 from the oxygen gas introduction pipe 20 at an oxygen gas pressure of 1×10 -1 Torr. An electric field of 1.2 KW/m 2 was generated between the electrode plate 21 and the cylindrical can 7 to perform plasma oxidation. Next, the Co--Ni alloy 23 in the ferromagnetic material evaporation source 22 is heated and evaporated onto the ferromagnetic metal thin film layer whose surface is plasma-oxidized.
Furthermore, a ferromagnetic metal thin film layer of about 600 Å thick made of Co-Ni alloy is formed, and then oxygen gas is introduced into the plasma processing chamber 12 from the oxygen gas introduction pipe 24, and the oxygen gas pressure is 1×10 -1 Torr. Then, an electric field of 1.2 KW/m 2 was generated between the electrode plate 25 and the cylindrical can 8 to perform plasma oxidation. Thereafter, the polyester film 13 is cut into a predetermined width, and as shown in FIG. A magnetic tape was created by sequentially laminating layers. The concentration distribution of Co-Cr alloy and oxygen atoms in the ferromagnetic metal thin film layer of the thus obtained magnetic tape was investigated using an Auger electron spectrometer. , a high concentration distribution of oxygen atoms was detected at the surface and center. In addition, in FIG. 3, curve B is the concentration distribution of Co, and curve C is the concentration distribution of Ni. Further, 13 is a polyester film.

実施例 2 実施例1において、強磁性材蒸発源18および
22内に、Co−Ni合金(重量比8:2)19お
よび23に代えて、Co19および23をセツト
した以外は実施例1と同様にして磁気テープをつ
くつた。得られた磁気テープの強磁性金属薄膜層
中のCoおよび酸素の濃度分布をオージエ電子分
光計によつて調べた結果、第4図の曲線Aに示さ
れるように、表面および中央部で濃度の高い酸素
原子の濃度分布が検知された。なお、第4図にお
いて曲線BはCoの濃度分布であり、13はポリ
エステルフイルムである。
Example 2 Same as Example 1 except that Co-Ni alloy (weight ratio 8:2) 19 and 23 were set in the ferromagnetic material evaporation sources 18 and 22 instead of Co-Ni alloy (weight ratio 8:2) 19 and 23. He used it to make magnetic tape. The concentration distribution of Co and oxygen in the ferromagnetic metal thin film layer of the obtained magnetic tape was investigated using an Auger electron spectrometer. As shown by curve A in Figure 4, the concentration distribution was found to be large at the surface and center. A high concentration distribution of oxygen atoms was detected. In addition, in FIG. 4, curve B is the concentration distribution of Co, and 13 is the polyester film.

比較例 1 実施例1において、真空蒸着室11内での真空
蒸着およびプラズマ処理室12内でのプラズマ処
理を省き、真空蒸着室9内で形成する強磁性金属
薄膜層の厚みを約600Åから約1200Åに変更した
以外は、実施例1と同様にして第5図に示すよう
にポリエステルフイルム13上に、Co−Ni合金
からなる強磁性金属薄膜層36およびプラズマ酸
化境界層37を、順次積層形成した磁気テープを
つくつた。
Comparative Example 1 In Example 1, the vacuum deposition in the vacuum deposition chamber 11 and the plasma treatment in the plasma treatment chamber 12 were omitted, and the thickness of the ferromagnetic metal thin film layer formed in the vacuum deposition chamber 9 was reduced from about 600 Å to about 600 Å. A ferromagnetic metal thin film layer 36 made of a Co-Ni alloy and a plasma oxidation boundary layer 37 were sequentially laminated on a polyester film 13 as shown in FIG. 5 in the same manner as in Example 1 except that the thickness was changed to 1200 Å. created magnetic tape.

比較例 2 実施例1において、プラズマ処理室10内での
プラズマ処理、真空蒸着室11内での真空蒸着お
よびプラズマ処理室12内でのプラズマ処理を省
いた以外は、実施例1と同様にして表面に境界層
のない磁気テープをつくつた。
Comparative Example 2 The same procedure as in Example 1 was carried out except that the plasma treatment in the plasma treatment chamber 10, the vacuum deposition in the vacuum deposition chamber 11, and the plasma treatment in the plasma treatment chamber 12 were omitted. Created a magnetic tape with no boundary layer on its surface.

各実施例および各比較例で得られた磁気テープ
を60℃、90%RHの条件下に放置し、時間の経過
に伴う飽和磁化の劣化率を、放置前の磁気テープ
の飽和磁化を100%として測定し、耐食性を調べ
た。第6図はその飽和磁化の劣化率の変化をグラ
フで表したもので、グラフAは実施例1で得られ
た磁気テープ、グラフBは実施例2で得られた磁
気テープ、グラフCは比較例1で得られた磁気テ
ープ、グラフDは比較例2で得られた磁気テープ
を示す。
The magnetic tapes obtained in each example and each comparative example were left under conditions of 60°C and 90% RH, and the deterioration rate of saturation magnetization over time was determined to be 100%. The corrosion resistance was investigated. Figure 6 is a graph showing the change in the deterioration rate of saturation magnetization, where graph A is the magnetic tape obtained in Example 1, graph B is the magnetic tape obtained in Example 2, and graph C is the comparison. Graph D shows the magnetic tape obtained in Example 1, and graph D shows the magnetic tape obtained in Comparative Example 2.

〔発明の効果〕〔Effect of the invention〕

第6図に示すグラフから明らかなように、比較
例1および2で得られた磁気テープは、時間の経
過に伴つて劣化率が非常に大きくなるが、この発
明で得られた磁気テープ(実施例1および2)は
いずれも時間が経過してもそれほど劣化率が大き
くならず、このことからこの発明によつて得られ
る磁気記録媒体は耐食性に優れていることがわか
る。
As is clear from the graph shown in FIG. 6, the deterioration rate of the magnetic tapes obtained in Comparative Examples 1 and 2 becomes extremely large over time, whereas the magnetic tapes obtained according to the present invention (implemented) In both Examples 1 and 2), the deterioration rate did not increase significantly over time, and this shows that the magnetic recording medium obtained by the present invention has excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の磁気記録媒体を製造するの
に使用する真空蒸着兼プラズマ処理装置の1例を
示す概略断面図、第2図はこの発明で得られた磁
気テープの部分拡大断面図、第3図および第4図
はこの発明で得られた磁気テープの強磁性金属薄
膜層中における強磁性金属および酸素の分布状態
をオージエ電子分光計によつて調べた結果を示す
説明図、第5図は比較例1で得られた磁気テープ
の部分拡大断面図、第6図は各実施例および比較
例で得られた磁気テープの飽和磁化の劣化率と経
過時間との関係図である。 13……ポリエステルフイルム(基体)、32,
34……強磁性金属薄膜層、33,35……プラ
ズマ酸化境界層。
FIG. 1 is a schematic sectional view showing an example of a vacuum evaporation/plasma processing apparatus used to manufacture the magnetic recording medium of the present invention, and FIG. 2 is a partially enlarged sectional view of the magnetic tape obtained by the present invention. 3 and 4 are explanatory diagrams showing the results of examining the distribution state of ferromagnetic metal and oxygen in the ferromagnetic metal thin film layer of the magnetic tape obtained by the present invention using an Auger electron spectrometer; The figure is a partially enlarged cross-sectional view of the magnetic tape obtained in Comparative Example 1, and FIG. 6 is a diagram showing the relationship between the deterioration rate of saturation magnetization and elapsed time of the magnetic tape obtained in each Example and Comparative Example. 13... Polyester film (substrate), 32,
34...Ferromagnetic metal thin film layer, 33, 35...Plasma oxidation boundary layer.

Claims (1)

【特許請求の範囲】[Claims] 1 基体上に、2層以上の強磁性金属薄膜層を積
層し、隣接する各強磁性金属薄膜層の界面および
最上層の強磁性金属薄膜層表面に、強磁性金属薄
膜層中に含まれる平均酸素原子濃度より高い酸素
原子濃度を有するプラズマ酸化境界層を設けたこ
とを特徴とする磁気記録媒体。
1. Two or more ferromagnetic metal thin film layers are laminated on a substrate, and the average amount contained in the ferromagnetic metal thin film layer is stacked on the interface of each adjacent ferromagnetic metal thin film layer and on the surface of the topmost ferromagnetic metal thin film layer. A magnetic recording medium characterized in that a plasma oxidation boundary layer having an oxygen atom concentration higher than that of oxygen atom is provided.
JP26934884A 1984-12-20 1984-12-20 Magnetic recording medium Granted JPS61145722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26934884A JPS61145722A (en) 1984-12-20 1984-12-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26934884A JPS61145722A (en) 1984-12-20 1984-12-20 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61145722A JPS61145722A (en) 1986-07-03
JPH0532807B2 true JPH0532807B2 (en) 1993-05-18

Family

ID=17471121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26934884A Granted JPS61145722A (en) 1984-12-20 1984-12-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61145722A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107734B2 (en) * 1986-07-03 1995-11-15 ティーディーケイ株式会社 Magnetic recording medium
JP2566134B2 (en) * 1986-09-19 1996-12-25 ティーディーケイ株式会社 Magnetic recording media
JPH0760482B2 (en) * 1986-07-02 1995-06-28 ティーディーケイ株式会社 Magnetic recording method
JP2566135B2 (en) * 1986-09-22 1996-12-25 ティーディーケイ株式会社 Magnetic recording media
JP2562306B2 (en) * 1986-09-18 1996-12-11 ティーディーケイ株式会社 Magnetic recording media
JP2562308B2 (en) * 1986-09-25 1996-12-11 ティーディーケイ株式会社 Magnetic recording media
JPS6386110A (en) * 1986-09-29 1988-04-16 Tdk Corp Magnetic recording medium
JPH0795367B2 (en) * 1987-08-25 1995-10-11 コニカ株式会社 Magnetic recording medium
JP2558770B2 (en) * 1987-12-29 1996-11-27 松下電器産業株式会社 Magnetic recording media

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720920A (en) * 1980-07-14 1982-02-03 Sekisui Chem Co Ltd Magnetic recording medium and its manufacture
JPS5798133A (en) * 1980-12-05 1982-06-18 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720920A (en) * 1980-07-14 1982-02-03 Sekisui Chem Co Ltd Magnetic recording medium and its manufacture
JPS5798133A (en) * 1980-12-05 1982-06-18 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS61145722A (en) 1986-07-03

Similar Documents

Publication Publication Date Title
US4495242A (en) Magnetic recording medium
JPH0479044B2 (en)
JPH0546014B2 (en)
JPH0532807B2 (en)
US4673610A (en) Magnetic recording medium having iron nitride recording layer
JPH044649B2 (en)
JPH0834001B2 (en) Method of manufacturing magnetic recording medium
JPS61115232A (en) Magnetic recording medium
JPH0479065B2 (en)
JPS60185224A (en) Magnetic recording medium
JPH0896339A (en) Magnetic recording medium
JPS58222439A (en) Magnetic recording medium and its manufacture
JPH0510732B2 (en)
JPS60179925A (en) Magnetic recording medium and its production
JPS59167834A (en) Magnetic recording medium
JPS59157826A (en) Production of magnetic recording medium
JPS6236285B2 (en)
JPS6087437A (en) Production of magnetic recording medium
JPS63149831A (en) Production of magnetic recording medium
JPH04111220A (en) Magnetic recording medium and its production
JPH07118074B2 (en) Magnetic recording medium and manufacturing method thereof
JPH0320815B2 (en)
JPH06306602A (en) Production of thin film
JPH0969220A (en) Magnetic recording medium
JPH08161728A (en) Magnetic recording medium and manufacture thereof