JPS60185224A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS60185224A
JPS60185224A JP4068684A JP4068684A JPS60185224A JP S60185224 A JPS60185224 A JP S60185224A JP 4068684 A JP4068684 A JP 4068684A JP 4068684 A JP4068684 A JP 4068684A JP S60185224 A JPS60185224 A JP S60185224A
Authority
JP
Japan
Prior art keywords
thin film
layer
alloy
ferromagnetic
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4068684A
Other languages
Japanese (ja)
Inventor
Takeshi Tottori
猛志 鳥取
Kunio Wakai
若居 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4068684A priority Critical patent/JPS60185224A/en
Publication of JPS60185224A publication Critical patent/JPS60185224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance of a magnetic metal layer and to expand the life of the magnetic metal layer by containing Cr, Al and Si and metal selected from alloys containing one or more said metals or their metal oxide into a ferromagnetic metallic thin film layer formed on a base body so as to be gradually reduced. CONSTITUTION:The base body 7 such as a polyester film is moved from a negative roll 8 along a cylindrical can 4 and wound around a winding roll 11, a magnetic material 14 such as Co and Co-Ni is set in an evaporation source 12 in a vacuum evaporation room 6 and Co-Cr alloy or individual metal 15 of Ar, Al and Si is set in an evaporation source 13 to evaporate these materials simultaneously in vacuum. Thus, a ferromagnetic material 14 is evaporated on the base body 7 at first, and then Cr, Al or Si is evaporated. Subsequently, O2 gas is supplied from a leading-in pipe by a glow discharge electrode 17 in a plasma treatment room 5 to oxidize the ferromagnetic metal thin film with plasma. Thus, a Co-rich cylindrical layer 20 consisting of Co or Co alloy is formed on the base body 7 and a corrosion-resistant alloy layer 21 containing much Co-Cr or the like and a layer 22 consisting of metal oxide and having high corrosion resistance are successively laminated on the layer 20 so that the density of these components is gradually reduced in the direction of the base board. Consequently, a magnetic recording medium having high durability can be obtained.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は強磁性金属薄膜層を記録層とする磁気記録媒
体に関し、さらに詳しくは強磁性金属薄膜層中に金属も
しくはそれらの酸化物を含有する前記の磁気記録媒体に
関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer, and more particularly relates to a magnetic recording medium having a ferromagnetic metal thin film layer containing a metal or an oxide thereof. Related to magnetic recording media.

〔背景技術〕[Background technology]

強磁性金属薄膜層を記録層とする磁気記録媒体は、通常
、金属もしくはそれらの合金などを真空蒸着等によって
ポリエステルフィルム等の基体上に被着してつくられ、
高密度記録に適した特性を有するが、反面空気中の酸素
によって酸化され易く、この酸化によって最大磁束密度
などの磁気特性が劣化するなどの難点がある。
A magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer is usually made by depositing metals or their alloys on a substrate such as a polyester film by vacuum deposition or the like.
Although it has characteristics suitable for high-density recording, it is easily oxidized by oxygen in the air, and this oxidation causes problems such as deterioration of magnetic properties such as maximum magnetic flux density.

このため、従来から酸素ガス雰囲気下で真空蒸着を行い
強磁性金属薄膜層を構成する柱状結晶の表面を酸化する
などして耐食性を改善することが行われている(特開昭
56−23208号)が、強磁性金属薄膜層を構成する
柱状結晶の表面を酸化する方法では強磁性金属薄膜層の
化学的安定性が充分でなく、未だ充分に耐食性を改善す
ることができない。
For this reason, conventional efforts have been made to improve corrosion resistance by oxidizing the surface of the columnar crystals constituting the ferromagnetic metal thin film layer by vacuum evaporation in an oxygen gas atmosphere (Japanese Patent Laid-Open No. 56-23208). ) However, with the method of oxidizing the surface of the columnar crystals constituting the ferromagnetic metal thin film layer, the chemical stability of the ferromagnetic metal thin film layer is insufficient, and corrosion resistance cannot be sufficiently improved.

〔発明の目的〕[Purpose of the invention]

この発明は、かかる欠点を解消するため種々検討を行っ
た結果なされたもので、その目的とするところは強磁性
金属薄膜層中に耐食性に優れた金属もしくはそれらの酸
化物を含有させることにより、耐食性に優れた前記の磁
気記録媒体を提供することにある。
This invention was made as a result of various studies to eliminate such drawbacks, and its purpose is to incorporate metals or their oxides with excellent corrosion resistance into the ferromagnetic metal thin film layer. It is an object of the present invention to provide the above-mentioned magnetic recording medium having excellent corrosion resistance.

〔発明の概要〕[Summary of the invention]

この発明は、強磁性金属薄1模層中に、クロム、アルミ
ニウム、ケイ素および少なくともこれらの1種を含む合
金から選ばれる金属もしくはそれらの酸化物を基体に近
づくにつれて漸減するように含有させ゛たことを特徴と
するもので、これらの金属もしくはそれらの酸化物を基
体に近づくにつれて/41i減するように含有させるこ
とによって、強磁性金属薄膜層の化学的安定性を改善す
るとともに磁気特性を劣化することなく耐食性を充分に
向上させたものである。
In this invention, a metal selected from chromium, aluminum, silicon, and an alloy containing at least one of these metals, or an oxide thereof, is contained in a thin ferromagnetic metal layer so as to gradually decrease as it approaches a substrate. The chemical stability of the ferromagnetic metal thin film layer is improved and the magnetic properties are deteriorated by containing these metals or their oxides so that /41i decreases as it approaches the substrate. Corrosion resistance has been sufficiently improved without causing any damage.

この発明において、クロム、アルミニウム、ケイ素およ
び少なくともこれらの1種を含む合金から選ばれる金属
もしくはそれらの酸化物を基体に近づくにつれて漸減す
るように濃度勾配をもって含有する強磁性金属薄膜層の
形成は、これらの金属もしくはそれらの酸化物を強磁性
材とともに二元蒸着するか、二元蒸着後さらにプラズマ
酸化等によって酸化することによって行われる。
In this invention, the formation of a ferromagnetic metal thin film layer containing a metal selected from chromium, aluminum, silicon, and alloys containing at least one of these or their oxides with a concentration gradient that gradually decreases as it approaches the substrate includes: This is carried out by binary vapor deposition of these metals or their oxides together with a ferromagnetic material, or by further oxidizing the binary vapor deposition by plasma oxidation or the like.

第一1図は、このように前記の金属もしくはそれらの酸
化物を基体に近づくにつれて漸減するように濃度勾配を
もって含有する強磁性金属薄膜層を形成する際に使用す
る真空茄着装置の1例の概略断面図を示したものであり
、以下、この図面を参照しながら説明する。
Figure 11 shows an example of a vacuum deposition apparatus used to form a ferromagnetic metal thin film layer containing the metals or their oxides with a concentration gradient that gradually decreases as it approaches the substrate. This figure shows a schematic cross-sectional view of the figure, and the following description will be made with reference to this figure.

図において、1は真空槽であり、この真空槽1の内部ば
隔壁2および3で区画され、真空槽1の中央部に配設さ
れた円筒状キャン4が跨るようにプラズマ処理室5が真
空蒸着室6がら分離形成されている。ポリエステルフィ
ルム等の基体7は原反ロール8よりガイドロール9を介
して円筒状キャン4の周側面に沿って移動し、ガイドロ
ール10を介して巻き取りロール11に巻き取られる。
In the figure, 1 is a vacuum chamber, and the inside of this vacuum chamber 1 is divided by partition walls 2 and 3, and a plasma processing chamber 5 is evacuated so that a cylindrical can 4 disposed in the center of the vacuum chamber 1 straddles it. It is formed separately from the vapor deposition chamber 6. A substrate 7 such as a polyester film moves along the circumferential side of the cylindrical can 4 from a raw roll 8 via a guide roll 9, and is wound onto a take-up roll 11 via a guide roll 10.

この間円筒状キャン4の周側面に沿って移動する基体7
に対して、真空蒸着室6の下部に隣接して配設された強
磁性材蒸発源12および金属蒸発源13で強磁性材14
および前記のクロム、アルミニウム、ケイ素等の金属ま
たは少なくともこれらの1種を含む合金15が加熱蒸発
され、強磁性材14および前記の金属または合金15が
同時に蒸着される。このとき強磁性材蒸発源12は基体
7が導入される側に配設されているため、基体7上には
まず強磁性材が蒸着され、引き続いて前記の金属または
合金が強磁性材とともに蒸着される。
During this time, the base body 7 moves along the circumferential side of the cylindrical can 4.
In contrast, a ferromagnetic material 14 is produced by a ferromagnetic material evaporation source 12 and a metal evaporation source 13 arranged adjacent to the lower part of the vacuum deposition chamber 6.
Then, the metal such as chromium, aluminum, silicon, or an alloy 15 containing at least one of these metals is heated and evaporated, and the ferromagnetic material 14 and the metal or alloy 15 are simultaneously deposited. At this time, since the ferromagnetic material evaporation source 12 is disposed on the side where the substrate 7 is introduced, the ferromagnetic material is first deposited on the substrate 7, and then the metal or alloy mentioned above is deposited together with the ferromagnetic material. be done.

その結果、前記の金属または合金を基体に近づくにつれ
て漸減するように濃度勾配をもって含有する強磁性金属
薄膜層が形成される。そしてこのようにして形成された
強磁性金属薄膜層は、引き続いて隣接するプラズマ処理
室5で酸素ガス導入管16から酸素ガスを導入してグロ
ー放電電極17によるグロー放電によりプラズマ酸化が
行われ、強磁性金属薄膜層中に含有された前記の金属ま
たは合金が酸化される。その結果、前記の金属または合
金を基体に近づくにつれて漸減する濃度勾配でもって含
有する強磁性金属薄I!層の上部に、さらにこれらの金
属または合金の酸化物が基体に近づくにつれて漸減する
ように濃度勾配をもって含有する強磁性金属薄膜層が形
成される。このようなプラズマ酸化が行われる場合強磁
性材も同時に酸化されるため、前記金属または合金の酸
化物とともに強磁性材の酸化物も同様に基体に近づくに
つれて漸減するように濃度勾配をもって含有される。1
8および19はそれぞれ真空蒸着室6およびプラズマ処
理室5に連結された排気系であり、これらの排気系によ
って真空蒸着室6およびプラズマ処理室5はそれぞれ所
定の真空度に真空排気される”。なお、以上の説明にお
いては、金属または合金を基体に近づくにつれて漸減す
る濃度勾配でもって含有する強磁性金属薄膜層をさらに
酸化する場合について説明したが、酸化をしなくても充
分に良好な耐食性が得られるため、酸化は必すしも必要
ではない。
As a result, a ferromagnetic metal thin film layer containing the metal or alloy with a concentration gradient that gradually decreases as it approaches the substrate is formed. The ferromagnetic metal thin film layer thus formed is subsequently subjected to plasma oxidation in the adjacent plasma processing chamber 5 by introducing oxygen gas from the oxygen gas introduction tube 16 and by glow discharge from the glow discharge electrode 17. The metal or alloy contained in the ferromagnetic metal thin film layer is oxidized. As a result, a ferromagnetic metal thin I! containing the aforementioned metal or alloy with a concentration gradient that gradually decreases as it approaches the substrate! On top of the layer, a ferromagnetic metal thin film layer is further formed containing oxides of these metals or alloys with a concentration gradient that gradually decreases as it approaches the substrate. When such plasma oxidation is performed, the ferromagnetic material is also oxidized at the same time, so the oxide of the ferromagnetic material is similarly contained with a concentration gradient such that it gradually decreases as it approaches the substrate. . 1
8 and 19 are exhaust systems connected to the vacuum deposition chamber 6 and the plasma processing chamber 5, respectively, and these exhaust systems evacuate the vacuum deposition chamber 6 and the plasma processing chamber 5 to a predetermined degree of vacuum, respectively. In addition, in the above explanation, a case was explained in which a ferromagnetic metal thin film layer containing a metal or alloy with a concentration gradient that gradually decreases as it approaches the substrate is further oxidized. is obtained, so oxidation is not necessary.

このように強磁性金属薄膜層中に基体に近づくにつれて
漸減するように濃度勾配をもって含有させる金属および
合金は、クロム、アルミニウム、ケイ素等の耐食性に優
れた金属、および少なくともこれらの1種を含む合金が
好ましく使用され、コバルト−クロム合金等のように耐
食性に優れたこれらの金属と強磁性金属との合金等も好
適に使用される。そしてこれらの耐食性に優れたクロム
、アルミニウム、ケイ素等の金属およびこれらを含む合
金が、強磁性金属薄膜層中に基体に近づくにつれて漸減
するように濃度勾配をもって含有されると、これら表面
にいくほど高い濃度で含有された耐食性に優れた金属に
よって強磁性金属薄膜層の耐食性が充分に向上される。
The metals and alloys that are contained in the ferromagnetic metal thin film layer with a concentration gradient that gradually decreases as it approaches the substrate include metals with excellent corrosion resistance such as chromium, aluminum, and silicon, and alloys containing at least one of these metals. are preferably used, and alloys of these metals with excellent corrosion resistance and ferromagnetic metals, such as cobalt-chromium alloys, are also suitably used. When these highly corrosion-resistant metals such as chromium, aluminum, and silicon, and alloys containing these metals, are contained in a ferromagnetic metal thin film layer with a concentration gradient that gradually decreases as it approaches the substrate, The corrosion resistance of the ferromagnetic metal thin film layer is sufficiently improved by the metal having excellent corrosion resistance contained in a high concentration.

また強磁性金属薄膜層中における強磁性材は前記の金属
とは反対に強磁性金属薄膜層表面に近づくにつれて漸減
するような濃度勾配になり、表面にも存在しているため
、磁気特性が劣化することもない。
In addition, the ferromagnetic material in the ferromagnetic metal thin film layer has a concentration gradient that gradually decreases as it approaches the surface of the ferromagnetic metal thin film layer, contrary to the metals mentioned above, and because it is also present on the surface, the magnetic properties deteriorate. There's nothing to do.

このように耐食性に優れた金属を、強磁性金属薄膜層中
に基体に近づ(につれて漸減するように濃度勾配をもっ
て含有させただけでも、磁気特性の劣化を招くことなく
耐食性を充分に向上させることができるため、さらに酸
化することは必ずしも必要でないが、さらに、これをプ
ラズマ酸化すると、これらの耐食性に優れた金属または
合金が選択的に酸化されてこれらの金属または合金の酸
化物が強磁性金属薄膜層中に基体に近づくにつれて漸減
するように濃度勾配をもって含有され、この表面にいく
ほど高い濃度で含有された耐食性に優れた金属または合
金の酸化物によって強磁性金属薄膜層の耐食性はさらに
一段と向上される。そしてこのプラズマ酸化が行われる
ときは強磁性材も同時に酸化されるため強磁性材の酸化
物も前記金属の酸化物と同じ濃度で強磁性金属薄膜層中
に含有ざ゛れ、強磁性金属薄膜層の耐食性は一段と向上
される。このようにプラズマ酸化を行う際のプラズマ処
理室5中における酸素ガスのガス圧は、3X10−’)
−ルヘ−I X 1’ 0−2トールの範囲内にするの
が好ましく、酸素ガス圧を5X10−2)−ルより低く
するとプラズマ密度が低ずぎ、5×10−1トールより
高くするとプラズマ放電が発生しない。
In this way, even if a metal with excellent corrosion resistance is contained in a ferromagnetic metal thin film layer with a concentration gradient that gradually decreases as it approaches the substrate, corrosion resistance can be sufficiently improved without causing deterioration of magnetic properties. However, plasma oxidation selectively oxidizes these corrosion-resistant metals or alloys, making the oxides of these metals or alloys ferromagnetic. The corrosion resistance of the ferromagnetic metal thin film layer is further improved by the metal or alloy oxide with excellent corrosion resistance, which is contained in the metal thin film layer with a concentration gradient that gradually decreases as it approaches the substrate. When this plasma oxidation is performed, the ferromagnetic material is also oxidized at the same time, so the oxide of the ferromagnetic material is also contained in the ferromagnetic metal thin film layer at the same concentration as the oxide of the metal. , the corrosion resistance of the ferromagnetic metal thin film layer is further improved.The gas pressure of oxygen gas in the plasma processing chamber 5 during plasma oxidation is 3X10-').
- I No discharge occurs.

このように、強磁性金属薄膜層中に基体に近づくにつれ
て漸減するように濃度勾配をもって含有される、前記の
金属または合金もしくはそれらの酸化物の含有割合は、
強磁性材との合計量に対して基体の近傍で1〜IO重量
%、表面近傍で1〜70重量%で平均含有量が1〜20
重量%の範囲内であることが好ましく、表面近傍の含有
量がこれより少なずぎると耐食性が充分に改善されず、
多すぎると磁気特性に悪影響を及ぼすおそれがある。
In this way, the content of the metal, alloy, or oxide thereof, which is contained in the ferromagnetic metal thin film layer with a concentration gradient that gradually decreases as it approaches the substrate, is
The average content is 1 to 20% by weight near the substrate, 1 to 70% by weight near the surface, based on the total amount with the ferromagnetic material.
It is preferable that the content is within the range of % by weight, and if the content near the surface is too small, corrosion resistance will not be sufficiently improved.
If the amount is too large, it may adversely affect magnetic properties.

強磁性材としては、C02F e 1N iSCo−N
i合金、Co−Cr合金、Go−P合金、C,。
As a ferromagnetic material, C02F e 1N iSCo-N
i alloy, Co-Cr alloy, Go-P alloy, C,.

−Ni−P合金など一般に真空蒸着に使用される強磁性
材がいずれも使用される。
-Ni-P alloys and other ferromagnetic materials commonly used in vacuum deposition may be used.

また、基体としては、ポリエステル、ポリイミド、ポリ
アミド等一般に使用されている高分子成形物からなるプ
ラスチックフィルム、および銅などの非磁性金属からな
る金属フィルムが使用される。
Further, as the substrate, a plastic film made of commonly used polymer moldings such as polyester, polyimide, polyamide, etc., and a metal film made of a nonmagnetic metal such as copper are used.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 第1図に示す真空蒸着装置を使用し、厚さ10μのポリ
エステルフィルム7を原反ロール8よりガイドロール9
を介して円筒状キャン4の周側面に沿って移動させ、さ
らにガイドロール10を介して巻き取りロール11に巻
き取るようにセントした。同時に真空蒸着室6内の強磁
性材蒸発源12内に0014をセントし、金属蒸発源1
3内にCo−Cr合金(重量比7:3)15をセットし
た。次いで排気系18および19で真空蒸着室6をlX
10j)−ルまで真空排気するとともに、プラス・冑処
理室5をlX10−6トールまで真空排気し、強磁性材
蒸発源12内のC014および金属蒸発源13内のC,
o−Cr合金15を加熱蒸発して、ポリエステルフィル
ム7上にGoからなり、かつco−Cr合金をポリエス
テルフィルム7に近づくにつれて漸減するように含有し
た厚さが1000人の強磁性金属薄膜層を形成した。次
にプラズマ処理室5内の酸素ガス導入管16から酸素ガ
スを導入し、酸素ガス圧1xlO−1トールでグロー放
電電極17の印加電圧を550■にしてプラズマ酸化を
行った。しかる後、所定の中に裁断して磁気テープをつ
くった。このようにして得られた磁気テープの強磁性金
属薄膜層を、電子顕微鏡で観察したところ、第2図に示
すように中心にCoを多く含みCo−Cr合金を少量含
有する柱状の結晶20が析出形成され、その周面に中心
よりCo−Cr合金を多く含有したcoとCo−Cr合
金との薄膜層21が析出形成され、さらにその周面にC
o−Cr合金の酸化物を多く含み少量のCo酸化物を含
有する薄膜1’ti22が析出形成されて強磁性金属薄
膜層23が形成されていた。
Example 1 Using the vacuum evaporation apparatus shown in FIG.
The sheet was moved along the circumferential side of the cylindrical can 4 through the guide roll 10 and then wound onto the winding roll 11. At the same time, place 0014 into the ferromagnetic material evaporation source 12 in the vacuum evaporation chamber 6, and
A Co-Cr alloy (weight ratio 7:3) 15 was set in the chamber. Next, the vacuum deposition chamber 6 is heated to 1X using the exhaust systems 18 and 19.
At the same time, the plus/armor treatment chamber 5 is evacuated to lx10-6 Torr, and C014 in the ferromagnetic material evaporation source 12 and C014 in the metal evaporation source 13 are evacuated.
The o-Cr alloy 15 is heated and evaporated to form a 1,000-thick ferromagnetic metal thin film layer made of Go on the polyester film 7 and containing the co-Cr alloy so as to gradually decrease as it approaches the polyester film 7. Formed. Next, oxygen gas was introduced from the oxygen gas inlet pipe 16 in the plasma processing chamber 5, and plasma oxidation was performed at an oxygen gas pressure of 1×1 O −1 Torr and an applied voltage of the glow discharge electrode 17 of 550 μm. After that, they were cut into predetermined shapes to make magnetic tape. When the ferromagnetic metal thin film layer of the magnetic tape thus obtained was observed with an electron microscope, it was found that columnar crystals 20 containing a large amount of Co and a small amount of Co-Cr alloy were found in the center, as shown in FIG. A thin film layer 21 of co and Co-Cr alloy containing more Co-Cr alloy than the center is precipitated and formed on the circumferential surface.
A thin film 1'ti22 containing a large amount of o-Cr alloy oxide and a small amount of Co oxide was deposited to form a ferromagnetic metal thin film layer 23.

また、この強磁性金属薄膜層中のCo −’Cr合金お
よび酸素の濃度分布をオージェ電子分光計によって調べ
た結果、第3図の曲線Aに示されるように厚み方向の分
析で厚み450人まででCrが基体7に近づくにつれて
漸減する濃度分布が検知され、曲線Bに示されるように
厚み方向の分析で厚み400人までで酸素が基体7に近
づくにつれて漸減する濃度分布が検知された。なお、第
3図において曲線CはCoの濃度分布であり、7はポリ
エステルフィルムである。
In addition, as a result of examining the concentration distribution of Co-'Cr alloy and oxygen in this ferromagnetic metal thin film layer using an Auger electron spectrometer, analysis in the thickness direction showed that the concentration distribution of Co-'Cr alloy and oxygen in this ferromagnetic metal thin film layer was up to 450 mm as shown in curve A in Figure 3. A concentration distribution in which Cr gradually decreases as it approaches the substrate 7 was detected, and as shown by curve B, a concentration distribution in which oxygen gradually decreases as it approaches the substrate 7 was detected in the analysis in the thickness direction up to a thickness of 400 mm. In addition, in FIG. 3, curve C is the concentration distribution of Co, and 7 is the polyester film.

実施例2 実施例1において、強磁性材蒸発源12内に、Co14
代えてCo−Ni合金(重量比8:2)14をセットし
、金属蒸発源13内にCo−Cr合金15に代えてCr
15をセントし、さらにプラズマ処理室5に取りつけた
グロー放電電極の印加電圧を550Vから450■に変
更した以外は実施例1と同様にして磁気テープをつくっ
た。得られた磁気テープの強磁性金属薄膜層中のCrお
よび酸素の濃度分布をオージェ電子分光計によって調べ
た結果、第4図の曲線Aに示されるように厚み方向の分
析で厚み350人まででCrが基体7に近づくにつれて
漸減する濃度分布が検知され、曲線Bに示されるように
厚み方向の分析で厚み300人までで酸素が基体7に近
づくにつれて漸減する濃度分布が検知された。尚、第4
図において曲線CはCoの濃度分布であり、曲線りはN
iの濃度分布である。また7はポリエステルフィルムで
ある。
Example 2 In Example 1, Co14 was added in the ferromagnetic material evaporation source 12.
Instead, a Co-Ni alloy (weight ratio 8:2) 14 is set, and Cr is set in place of the Co-Cr alloy 15 in the metal evaporation source 13.
A magnetic tape was produced in the same manner as in Example 1, except that the voltage applied to the glow discharge electrode attached to the plasma processing chamber 5 was changed from 550 V to 450 V. The concentration distribution of Cr and oxygen in the ferromagnetic metal thin film layer of the obtained magnetic tape was investigated using an Auger electron spectrometer. As a result of the analysis in the thickness direction, as shown by curve A in Fig. A concentration distribution in which Cr gradually decreased as it approached the substrate 7 was detected, and as shown by curve B, a concentration distribution in which oxygen gradually decreased as it approached the substrate 7 was detected in the analysis in the thickness direction up to a thickness of 300 mm. Furthermore, the fourth
In the figure, curve C is the concentration distribution of Co, and the curve is N
This is the concentration distribution of i. Further, 7 is a polyester film.

実施例3 実施例1において、金属蒸発源13内にco−Cr合金
15に代えてA115をセットし、さらにプラズマ処理
室5に取りつけたグロー放電電極の印加電圧を550V
から450■に変更した以外は、実施例1と同様にして
磁気テープをつくった。得られた磁気テープの強磁性金
属薄膜層中のAlおよび酸素の濃度分布をオージェ電子
分光計によって調べた結果、第5図の曲線へに示される
ように厚み方向の分析で厚み500人まででAIが基体
7に近づくにつれて漸減する濃度分布が検知され、曲線
Bに示されるように厚み方向の分析で厚み300人まで
で酸素が基体7に近づくにつれて漸減する濃度分布が検
知された。なお、第5図において曲線CはCoの濃度分
布であり、7はポリエステルフィルムである。
Example 3 In Example 1, A115 was set in place of the co-Cr alloy 15 in the metal evaporation source 13, and the voltage applied to the glow discharge electrode attached to the plasma processing chamber 5 was set at 550 V.
A magnetic tape was produced in the same manner as in Example 1, except that the magnetic tape was changed from 450 square meters to 450 square meters. The concentration distribution of Al and oxygen in the ferromagnetic metal thin film layer of the obtained magnetic tape was investigated using an Auger electron spectrometer. As shown in the curve in Figure 5, the analysis in the thickness direction showed that the concentration distribution of Al and oxygen in the ferromagnetic metal thin film layer was up to 500 mm. A concentration distribution that gradually decreased as AI approached the substrate 7 was detected, and as shown in curve B, a concentration distribution that gradually decreased as oxygen approached the substrate 7 was detected in the analysis in the thickness direction up to a thickness of 300. In addition, in FIG. 5, curve C is the concentration distribution of Co, and 7 is the polyester film.

実施例4 “ 実施例1において、金属蒸発源13内にCo −Cr合
金15に代えて5i15をセットし、さらにプラズマ処
理室5に取りつげたグロー放電電極の印加電圧を550
Vから450vに変更した以外は、実施例1と同様にし
て磁気テープをつくった。得られた磁気テープの強磁性
金属薄膜層中のSiおよび酸素の濃度分布をオージェ電
子分光計によって調べた結果、第6図の曲線Aに示され
るように厚み方向の分析で厚み800人まででSiが基
体7に近づくにつれて漸減する濃度分布が検知され、曲
線Bに示されるように厚み方向の分析で厚f71400
人までで酸素が基体7に近づくにつれて漸減する濃度分
布が検知された。なお、第6図にお′いて曲線CはCo
の濃度分布であり、7はポリエステルフィルムである。
Example 4 "In Example 1, 5i15 was set in place of the Co-Cr alloy 15 in the metal evaporation source 13, and the voltage applied to the glow discharge electrode attached to the plasma processing chamber 5 was set to 550.
A magnetic tape was produced in the same manner as in Example 1 except that V was changed to 450V. As a result of examining the concentration distribution of Si and oxygen in the ferromagnetic metal thin film layer of the obtained magnetic tape using an Auger electron spectrometer, analysis in the thickness direction showed that the thickness up to 800 mm was observed as shown in curve A in Figure 6. A concentration distribution that gradually decreases as Si approaches the substrate 7 is detected, and as shown in curve B, the thickness f71400 is determined by analysis in the thickness direction.
A concentration distribution was detected in which oxygen gradually decreased as it approached the base 7 up to the human body. In addition, in Fig. 6, the curve C is Co'
7 is a polyester film.

実施例5 実施例1において、プラズマ酸化処理を省いた以外は実
施例1と同様にして磁気テープをつくった。このように
して得られた磁気テープの強磁性金属薄膜層を、電子顕
微鏡で観察したところ、第7図に示すように中心にGo
を多く含み、Co〜Cr合金を少量含有する柱状の結晶
2oが析出形成され、その周面に中心よりCo−Cr合
金を多く含有したCoとco−Cr合金との薄膜層21
が析出形成されて強磁性金属薄膜層24が形成されてい
た。また、得られた磁気テープの強磁性金属S膜層中の
Co−Cr合金の濃度分布をオージェ電子分光計によっ
て調べた結果、第8図の曲線Aに示されるように厚み方
向の分析で厚み500人まででCrが基体7に近づくに
つれて漸減する濃度分布が検知された。なお、第8図に
おいて曲線BばCOの濃度分布であり、7はポリエステ
ルフィルムである。
Example 5 A magnetic tape was produced in the same manner as in Example 1 except that the plasma oxidation treatment was omitted. When the ferromagnetic metal thin film layer of the magnetic tape thus obtained was observed with an electron microscope, it was found that Go
A columnar crystal 2o containing a large amount of Co-Cr alloy and a small amount of Co-Cr alloy is precipitated, and on its peripheral surface a thin film layer 21 of Co and co-Cr alloy containing a larger amount of Co-Cr alloy from the center.
The ferromagnetic metal thin film layer 24 was formed by precipitation. In addition, as a result of examining the concentration distribution of the Co-Cr alloy in the ferromagnetic metal S film layer of the obtained magnetic tape using an Auger electron spectrometer, it was found that the thickness A concentration distribution in which Cr gradually decreased as it approached the substrate 7 was detected up to 500 people. In addition, in FIG. 8, curve B is the concentration distribution of CO, and 7 is the polyester film.

実施例6 実施例2において、プラズマ酸化処理を省いた以外は実
施例1と同様にして磁気テープをつくった。得られた磁
気テープの強磁性金属薄膜層中のCrの濃度分布をオー
ジェ電子分光計によって調べた結果、第9図の曲線Aに
示されるように厚み方向の分析で厚み800人まででC
rが基体7に近づくにつれて漸減する濃度分布が検知さ
れた。
Example 6 In Example 2, a magnetic tape was produced in the same manner as in Example 1 except that the plasma oxidation treatment was omitted. The concentration distribution of Cr in the ferromagnetic metal thin film layer of the obtained magnetic tape was investigated using an Auger electron spectrometer, and as shown by curve A in Figure 9, analysis in the thickness direction revealed that Cr up to a thickness of 800 mm was observed.
A concentration distribution was detected that gradually decreased as r approached the substrate 7.

なお、第9図において曲線BはCOの濃度分布であり、
曲線CはNiの濃度分布である。また7はポリエステル
フィルムである。
In addition, in FIG. 9, curve B is the concentration distribution of CO,
Curve C is the concentration distribution of Ni. Further, 7 is a polyester film.

実施例7 実施例3において、プラズマ酸化処理を省いた以外は実
施例1と同様にして磁気テープをつくった。得られた磁
気テープの強磁性金属薄膜層中のAIの濃度分布をオー
ジェ電子分光計によって調べた結果、第10図の曲線A
に示されるように厚み方向の分析で厚み900人までで
AIが基体7に近づくにつれて漸減する濃度分布が検知
された。なお、第10図において曲線BはCoの濃度分
布であり、7はポリエステルフィルムである。
Example 7 In Example 3, a magnetic tape was produced in the same manner as in Example 1 except that the plasma oxidation treatment was omitted. As a result of examining the concentration distribution of AI in the ferromagnetic metal thin film layer of the obtained magnetic tape using an Auger electron spectrometer, curve A in Fig. 10 was obtained.
As shown in FIG. 2, analysis in the thickness direction detected a concentration distribution in which AI gradually decreased as it approached the substrate 7 up to a thickness of 900 layers. In addition, in FIG. 10, curve B is the concentration distribution of Co, and 7 is the polyester film.

実施例8 実施例4において、プラズマ酸化処理を省いた以外は実
施例1と同様にして磁気テープをつくった。得られた磁
気テープの強磁性金属薄膜層中のSiの濃度分布をオー
ジェ電子分光計によって調べた結果、第11図の曲線A
に示されるように厚み方向の分析で厚み900人までで
Siが基体7に近づくにりれて漸減する濃度分布が検知
された。なお、第11図において曲線BはCoの濃度分
布であり、7はポリエステルフィルムである。
Example 8 In Example 4, a magnetic tape was produced in the same manner as in Example 1 except that the plasma oxidation treatment was omitted. As a result of examining the Si concentration distribution in the ferromagnetic metal thin film layer of the obtained magnetic tape using an Auger electron spectrometer, curve A in FIG.
As shown in FIG. 2, analysis in the thickness direction detected a concentration distribution in which Si gradually decreased as it approached the substrate 7 up to a thickness of 900 mm. In addition, in FIG. 11, curve B is the concentration distribution of Co, and 7 is the polyester film.

比較例1 第12図に示すように、真空槽25内に円筒状キャン2
6を配設し、基体7を原反ロール27がらガイドロール
28を介して円筒状キャン26の周側面に沿って移動さ
せ、ガイドロール29を介して巻き取りロール30に巻
き取るようにし、かつ真空槽25の側壁にガス導入管3
1を取りつけた真空蒸着装置を使用し、真空槽25の下
部に配設した強磁性材蒸発源32内にC’o 3 ”3
をセットするとともにガス導入管31あ・ら酸素ガスを
導入し、酸素ガス圧lXl0−5トニルで強磁性材蒸発
源32内のCo33を加熱蒸発して真空蒸着を行い、基
体7上にcoからなる表面が酸化された柱状結晶の粒子
で構成された強磁性金属薄膜層を形成した。しかる後、
所定の11に裁断して磁気テープをつくった。
Comparative Example 1 As shown in FIG.
6 is arranged, the substrate 7 is moved along the circumferential side of the cylindrical can 26 from the original fabric roll 27 via the guide roll 28, and is wound onto the take-up roll 30 via the guide roll 29, and A gas introduction pipe 3 is installed on the side wall of the vacuum chamber 25.
Using a vacuum evaporation apparatus equipped with C'o 3''3, C'o 3''3
At the same time, oxygen gas is introduced into the gas introduction pipes 31a and 31, and Co33 in the ferromagnetic material evaporation source 32 is heated and evaporated at an oxygen gas pressure of 1X10-5 tons to perform vacuum evaporation. A ferromagnetic metal thin film layer composed of columnar crystal grains with oxidized surfaces was formed. After that,
A magnetic tape was made by cutting it into 11 pieces.

比較例2 実施例1において、金属蒸発源13内でのC。Comparative example 2 In Example 1, C in the metal evaporation source 13.

−Cr合金の真空蒸着およびプラズマ酸化処理を省いた
以外は実施例1と同様にして磁気テープをつくった。
A magnetic tape was produced in the same manner as in Example 1 except that the vacuum deposition of the -Cr alloy and the plasma oxidation treatment were omitted.

比較例3 実施例2において、金属蒸発源13内でのCrの真空蒸
着およびプラズマ酸化処理を省いた以外は実施例2と同
様にして磁気テープをつくった。
Comparative Example 3 A magnetic tape was produced in the same manner as in Example 2, except that the vacuum evaporation of Cr in the metal evaporation source 13 and the plasma oxidation treatment were omitted.

各実施例および各比較例で得られた磁気テープを60℃
、90%RHの条件下に放置し、時間の経過に伴う最大
磁束密度の劣化率を、放置前の磁気テープの最大磁束密
度を100%として測定し、耐食1生を調べた。第13
図はその最大磁束密度の劣化率の変化をグラフで表した
もので、グラフAは実施例1で得られた磁気テープ、グ
ラフBは実施例2で得られた磁気テープ、グラフCは実
施例3で得られた磁気テープ、グラフDば実施例4で得
られた磁気テープ、グラフEは実施例5で得られた磁気
テープ、グラフFは実施例6で得られた磁気テープ、グ
ラフGは実施例7で得られた磁気テープ、グラフHは実
施例8で得られた磁気テープ、グラフIば比較例1で得
られた磁気テープ、グラフJは比較例2で得られた磁気
テープ、グラフには比較例3で得られた磁気テープを示
す。
The magnetic tape obtained in each example and each comparative example was heated at 60°C.
, 90% RH, and the deterioration rate of the maximum magnetic flux density over time was measured, with the maximum magnetic flux density of the magnetic tape before being left as 100%, to examine corrosion resistance. 13th
The figure is a graph showing the change in the deterioration rate of the maximum magnetic flux density, where graph A is the magnetic tape obtained in Example 1, graph B is the magnetic tape obtained in Example 2, and graph C is the magnetic tape obtained in Example 2. Graph D is the magnetic tape obtained in Example 4. Graph E is the magnetic tape obtained in Example 5. Graph F is the magnetic tape obtained in Example 6. Graph G is the magnetic tape obtained in Example 6. Graph H shows the magnetic tape obtained in Example 7. Graph I shows the magnetic tape obtained in Comparative Example 1. Graph J shows the magnetic tape obtained in Comparative Example 2. shows the magnetic tape obtained in Comparative Example 3.

〔発明の効果〕〔Effect of the invention〕

第13図に示すグラフから明らかなように、比較例1な
いし3で得られた磁気テープは、時間の経過に伴って劣
化率が非常に大きくなるが、この発明で得られた磁気テ
ープ(実施例1ないし8)はいずれも時間が経過しても
それほど劣化率が大きくならす、このことからこの発明
によって得られる磁気記録媒体は耐食性に優れているこ
とがわかる。
As is clear from the graph shown in FIG. 13, the deterioration rate of the magnetic tapes obtained in Comparative Examples 1 to 3 becomes extremely large with the passage of time, whereas the magnetic tapes obtained according to the present invention (implemented) In all of Examples 1 to 8), the deterioration rate increases over time, which indicates that the magnetic recording medium obtained by the present invention has excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の磁気記録媒体を製造するのに使用す
る真空蒸着装置の1例を示す概略断面図、第2図および
第7図はこの発明で得られた磁気テープの電子顕微鏡で
観察した強磁性金属薄膜層の拡大断面説明図、第3図な
いし第6図はこの発明で得られた磁気テープの強磁性金
属薄II!ii!層中における強磁性材、金属および酸
素の分布状態をオージェ電子分光計によって調べた結果
を示す説明図、第8図ないし第11図はこの発明で得ら
れた磁気テープの強磁性金属薄膜層中における強磁性材
および金属の分布状態をオージェ電子分光針によって調
べた結果を示す説明図、第12図は従来の磁気記録媒体
を製造するのに使用する真空蒸着装置の1例を示す概略
断面図、第13図はこの発明で得られた磁気テープの劣
化率と経過時間との関係図である。 7・・・ポリエステルフィルム(基体)、23.24・
・・強磁性金属薄膜層 特許出願人 日立マクセル株式会社 第12図 第15図 経 過 時 間 (凋)
FIG. 1 is a schematic cross-sectional view showing an example of a vacuum evaporation apparatus used to manufacture the magnetic recording medium of the present invention, and FIGS. 2 and 7 are electron microscope observations of the magnetic tape obtained by the present invention. The enlarged cross-sectional explanatory views of the ferromagnetic metal thin film layer shown in FIGS. 3 to 6 show the ferromagnetic metal thin film II of the magnetic tape obtained according to the present invention! ii! Explanatory diagrams showing the results of examining the distribution state of ferromagnetic material, metal, and oxygen in the layer using an Auger electron spectrometer, Figures 8 to 11 are diagrams showing the results of examining the distribution state of the ferromagnetic material, metal, and oxygen in the layer in the ferromagnetic metal thin film layer of the magnetic tape obtained by the present invention. An explanatory diagram showing the results of examining the distribution state of ferromagnetic materials and metals using an Auger electron spectrometer, and FIG. 12 is a schematic cross-sectional view showing an example of a vacuum evaporation apparatus used to manufacture conventional magnetic recording media. , FIG. 13 is a diagram showing the relationship between the deterioration rate of the magnetic tape obtained by the present invention and the elapsed time. 7... Polyester film (substrate), 23.24.
...Ferromagnetic metal thin film layer patent applicant Hitachi Maxell Co., Ltd. Figure 12 Figure 15 Elapsed time

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に強磁性金属薄膜層を設けた磁気記録媒体に
おいて、強磁性金属薄膜層中に、クロム、アルミニウム
、ケイ素および少なくともこれらの1種を含む合金から
選ばれる金属もしくはそれらの酸化物を基体に近づ(に
つれて漸減するように含有させたことを特徴とする磁気
記録媒体
1. In a magnetic recording medium in which a ferromagnetic metal thin film layer is provided on a substrate, a metal selected from chromium, aluminum, silicon, and an alloy containing at least one of these or an oxide thereof is contained in the ferromagnetic metal thin film layer. A magnetic recording medium characterized in that the content gradually decreases as it approaches the substrate.
JP4068684A 1984-03-03 1984-03-03 Magnetic recording medium Pending JPS60185224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4068684A JPS60185224A (en) 1984-03-03 1984-03-03 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4068684A JPS60185224A (en) 1984-03-03 1984-03-03 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60185224A true JPS60185224A (en) 1985-09-20

Family

ID=12587425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4068684A Pending JPS60185224A (en) 1984-03-03 1984-03-03 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60185224A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258723A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Magnetic recording medium and magnetic memory medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258723A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Magnetic recording medium and magnetic memory medium

Similar Documents

Publication Publication Date Title
JPH0532807B2 (en)
JPH044649B2 (en)
JPS60185224A (en) Magnetic recording medium
JPS5841443A (en) Manufacture of magnetic recording medium
JPS6057533A (en) Magnetic recording medium
JPS6087425A (en) Magnetic recording medium
JPH09320031A (en) Magnetic recording medium
JPS60179925A (en) Magnetic recording medium and its production
JPH01125723A (en) Production of perpendicular magnetic recording medium
JPS6154030A (en) Magnetic recording medium and its production
JPS6313117A (en) Magnetic recording medium
JPH01124115A (en) Magnetic recording medium and its production
JPS6154042A (en) Manufacture of magnetic recording medium
JPS59157826A (en) Production of magnetic recording medium
JPH04111220A (en) Magnetic recording medium and its production
JPS62298917A (en) Magnetic recording medium
JPS59186136A (en) Manufacture of magnetic recording medium
JPS6126941A (en) Production of magnetic recording medium
JPS5963031A (en) Manufacture of magnetic recording medium
JPS6154024A (en) Magnetic recording medium
JPS63266627A (en) Perpendicular magnetic recording medium
JPS60251519A (en) Magnetic recording medium
JPS6378336A (en) Production of magnetic recording medium
JPS61278026A (en) Production of magnetic recording medium
JPS58108030A (en) Metallic thin film type magnetic recording medium