JPS6057533A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6057533A
JPS6057533A JP16621883A JP16621883A JPS6057533A JP S6057533 A JPS6057533 A JP S6057533A JP 16621883 A JP16621883 A JP 16621883A JP 16621883 A JP16621883 A JP 16621883A JP S6057533 A JPS6057533 A JP S6057533A
Authority
JP
Japan
Prior art keywords
film layer
thin film
metal thin
nitride
magnetic tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16621883A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
博司 山本
Fumio Komi
文夫 小海
Tsunemi Oiwa
大岩 恒美
Yasunori Kanazawa
金沢 安矩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP16621883A priority Critical patent/JPS6057533A/en
Publication of JPS6057533A publication Critical patent/JPS6057533A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve durability and corrosion resistance by providing a thin metallic film layer consisting of metals of >=1 kind among Cr, Ti, Al and Ta on the surface of a thin ferromagnetic metallic film layer, oxidizing or nitriding the surface and forming the oxide or nitride of the metals. CONSTITUTION:A thin metallic film layer 9 consisting of metals such as Cr, Ti, Al, Ta, etc. or an alloy thereof is provided on a thin ferromagnetic metallic film layer 8 and the surface thereof is oxidized or nitrided to form an oxide film layer or nitride film layer 10 consisting of the oxide or nitride of the metals. The layers 8 and 9 have good adhesiveness and the oxide film layer or nitride film layer 10 is dense, hard, small in coefft. of friction and is highly resistant to wear and corrosion. The oxidation (nitriding) of the surface of the layer 9 is accomplished by exposing the layer 9 to the inside of the plasma of gaseous oxygen (gaseous nitrogen). The thickness of the layer 9 is made 30-1,000Angstrom and the thickness of the oxide (nitride) film layer 10 is made 20-100Angstrom .

Description

【発明の詳細な説明】 この発明は強磁性金N簿膜層を記録層とする磁気記録媒
体に関し、その目的とするところは、耐久性および耐食
性に優れた前記の磁気記録媒体を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium having a ferromagnetic gold film layer as a recording layer, and an object thereof is to provide the above-mentioned magnetic recording medium having excellent durability and corrosion resistance. It is in.

強磁性金属薄膜層を磁気記録層とする磁気記録媒体は、
通當、金属もしくはそれらの合金などを真空蒸着、スパ
ッタリング等によって基体フィルム上に被着してつくら
れ、高密度記録に適した特性を有するが、反面塗布型磁
気記録媒体に比し磁気ヘッドとの摩擦係数が大きくて走
行性が悪く、かつ摩耗や損傷を受け易い。また空気中で
除々に酸化を受けて最大磁束密度などの磁気特性が劣化
するなどの難点がある。
A magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film layer is
Generally, they are made by depositing metals or their alloys on a base film by vacuum evaporation, sputtering, etc., and have characteristics suitable for high-density recording, but they are less sensitive to magnetic heads than coated magnetic recording media. The coefficient of friction is large, resulting in poor running performance and being susceptible to wear and damage. Another disadvantage is that it is gradually oxidized in the air, resulting in deterioration of magnetic properties such as maximum magnetic flux density.

このため、従来から強磁性金属薄I!2i層上に、潤滑
剤からなる保護膜層なと種々の保護膜層を設けることに
よって耐久性および耐食性を改善することが行われてい
るが、未だ充分に満足できる結果は得られていない。
For this reason, conventionally, ferromagnetic metal thin I! Attempts have been made to improve durability and corrosion resistance by providing various protective film layers, such as a protective film layer made of a lubricant, on the 2i layer, but satisfactorily results have not yet been obtained.

この発明者らは、かかる現状に鑑み種々検討を行った結
果、この強磁性金属薄膜層上にクロム、チタン、アルミ
ニウム、タンタル等の金属またはこれらの合金からなる
金属薄MIWを設け、この金属薄膜層の表面を酸化膜た
は窒化して金属の酸化物または窒化物からなる酸化19
層または窒化膜層を金属薄膜層の表面に形成すると、強
磁性金属薄1Iii!1m上に前記の金属または合金か
らなる金属薄膜層が接着性よく強固に被着形成されると
ともにこの金属薄膜層の表面に形成される前記の金属ま
たは合金からなる金属薄19層の酸化膜層または窒化膜
層が緻密で硬くかつ摩擦係数が小さくて耐摩耗性および
耐食性に優れるため、耐久性および耐食性が充分に改善
されることを見いだし、この発明をなすに至った。
As a result of various studies in view of the current situation, the inventors provided a thin metal MIW made of metals such as chromium, titanium, aluminum, tantalum, or alloys thereof on this ferromagnetic metal thin film layer, and Oxide 19 made of metal oxide or nitride by oxidizing or nitriding the surface of the layer
When a layer or a nitride film layer is formed on the surface of a thin metal film layer, a ferromagnetic metal thin film 1Iii! A metal thin film layer made of the above-mentioned metal or alloy is firmly adhered with good adhesion over 1 m above the surface, and a 19-layer thin metal oxide film layer made of the above-mentioned metal or alloy is formed on the surface of this metal thin film layer. Alternatively, it was discovered that the nitride film layer is dense and hard, has a small friction coefficient, and has excellent wear resistance and corrosion resistance, so that durability and corrosion resistance are sufficiently improved, and this invention has been completed.

この発明において、強磁性金属薄膜層上への金属薄膜層
の形成は、クロム、チタン、アルミニウムおよびタンタ
ル等の金属またはこれらの合金を真空荊着あるいはスパ
ッタリングもしくはイオンブレーティング等の方法で強
磁性金属薄膜層上に被着させるなどの方法で行われる。
In this invention, the metal thin film layer is formed on the ferromagnetic metal thin film layer by depositing metals such as chromium, titanium, aluminum, tantalum, or alloys thereof on the ferromagnetic metal by vacuum deposition, sputtering, ion blating, etc. This is done by a method such as depositing it on a thin film layer.

このようにこの種の金属薄膜層は強磁性材を真空蒸着あ
るいはスパッタリングもしくはイオンブレーティング等
によって基体上に被着した後、直ちに引き続いて同し方
法で強磁性金属薄膜層上に被着して形成することかでき
るため形成が容易で、また金属薄膜層形成後その表面の
酸化および窒化も容易である。またこの種の金属薄膜層
は強磁性金属薄膜層との接着性が極めてよく、従って強
磁性金属薄膜層上に強固に被着形成される。層厚は30
〜]、 O00人の範囲内となるようにするのが好まし
く、30人より薄くすると耐食性および耐久性が充分に
改善されず、1000人より厚くするとスペーシングロ
スが大きくなって感度が低下するおそれがある。
In this way, this type of metal thin film layer is formed by depositing a ferromagnetic material on a substrate by vacuum evaporation, sputtering, ion blating, etc., and then immediately subsequently depositing the ferromagnetic material on the ferromagnetic metal thin film layer by the same method. It is easy to form the metal thin film layer, and the surface of the metal thin film layer can be easily oxidized and nitrided. Further, this type of metal thin film layer has extremely good adhesion to the ferromagnetic metal thin film layer, and therefore is formed firmly on the ferromagnetic metal thin film layer. Layer thickness is 30
], preferably within the range of 000 people; if it is thinner than 30 people, the corrosion resistance and durability will not be sufficiently improved, and if it is thicker than 1000 people, there is a risk that the spacing loss will increase and the sensitivity will decrease. There is.

このようにして形成された金属薄膜層の表面の酸化は金
属N膜層を、高周波電極または交流電極もしくは直流電
極で発生させた酸素ガスのプラズマ中にさらすなどして
処理槽内でプラズマ化した酸素ガスを金属薄膜層に接触
させることによって行われ、このようにプラズマ化した
酸素ガスを金属薄膜層に接触させると、プラズマ化した
酸素ガスが高エネルギーを有しているため金属薄膜層の
表面を低温で迅速に酸化し、表面から緻密な被膜が成長
して金属の表面を覆う。この他、金属薄膜層の表面の酸
化は、酸素ガス雰囲気中で熱酸化もしくは紫外線加速酸
化することによっても行われ、前記のプラズマ化した酸
素ガスを金属薄膜層に接触させる場合と同様に金属また
は合金の酸化物からなる酸化膜層が金B薄膜層の表面に
良好に形成される。このようにして形成される酸化膜層
の層厚ば20〜100人の範囲内にするのが好ましく、
20人より薄いと所期の効果が得られないおそれがある
。またプラズマ化した酸素ガスを金属薄膜層の表面に接
触させる場合、処理槽内における酸素ガスのガス圧は、
高周波電極で酸素ガスのプラズマを発生させる場合、I
X’l0−3)−ルより低くすると放電せず、3トール
より高くすると基体として使用されるプラスチックフィ
ルムへ悪影響を及ぼすためlXl0’〜3トールノ範囲
内ムこするのが好ましく、交流電極および直流電極で酸
素ガスのプラズマを発生させる場合は、3×10→トー
ルより低くすると放電せず、5トールより高くするとプ
ラスチックフィルムへ悪影響を及ぼすため3X10’〜
5トールの範囲内にするのが好ましい。
The surface of the metal thin film layer thus formed was oxidized by exposing the metal N film layer to plasma of oxygen gas generated by a high frequency electrode, an AC electrode, or a DC electrode to turn it into plasma in a processing tank. This is done by bringing oxygen gas into contact with the metal thin film layer, and when the plasma-formed oxygen gas is brought into contact with the metal thin-film layer, the plasma-formed oxygen gas has high energy, so the surface of the metal thin film layer is heated. oxidizes rapidly at low temperatures, and a dense film grows from the surface to cover the metal surface. In addition, the surface of the metal thin film layer can be oxidized by thermal oxidation or ultraviolet accelerated oxidation in an oxygen gas atmosphere. An oxide film layer made of an oxide of the alloy is well formed on the surface of the gold B thin film layer. The thickness of the oxide film layer formed in this way is preferably within the range of 20 to 100 layers,
If it is thinner than 20 people, the desired effect may not be obtained. In addition, when plasma oxygen gas is brought into contact with the surface of the metal thin film layer, the gas pressure of the oxygen gas in the processing tank is
When generating oxygen gas plasma with a high frequency electrode, I
If it is lower than 3 Torr, no discharge will occur, and if it is higher than 3 Torr, it will have a negative effect on the plastic film used as the base. When generating oxygen gas plasma at the electrode, if it is lower than 3×10 → Torr, no discharge will occur, and if it is higher than 5 Torr, it will have a negative effect on the plastic film, so it should be 3×10′ or higher.
Preferably, it is within the range of 5 torr.

また、金属薄膜層の表面の窒化は、金属薄膜層を、高周
波電極または交流電極もしくは直流電極で発生させた窒
素ガスのプラズマ中にさらすなどして処理槽内でプラズ
マ化した窒素ガスを金属薄膜層に接触させることによっ
て行われ、このようにプラズマ化した窒素ガスを金属薄
膜層に接触させると、前記の酸化の場合と同様にプラズ
マ化した窒素ガスが高エネルギーを有しているため金属
薄膜層の表面が低温で迅速に窒化され、表面から緻密な
被膜が成長して金属または合金の窒化物からなる窒化膜
層が表面に良好に形成される。このようにして形成され
る窒化膜層のN厚は、前記酸化膜層と同様に20〜10
0人の範囲内にするのが好ましく、20人より薄いと所
期の効果が得られないおそれがある。またプラズマ化し
た窒素ガスを金属薄膜層の表面に接触させるに際し、処
理槽内において使用する窒素ガスのガス圧は、前記酸化
する際の酸素ガスの場合と同様に、高周波電極で窒素ガ
スのプラズマを発生させる場合、1×10−ヨトールよ
り低くすると放電せず、3トールより高くすると基体と
して使用されるプラスチックフィルムへ悪影響を及ぼす
ためlXl0−’〜3トールの範囲内にするのが好まし
く、交流電極および直流電極で窒素ガスのプラズマを発
生させる場合は、3X10’l−−ルより低くすると放
電せず、51・−ルより高くするとプラスチックフィル
ムへ悪影響を及ばずため3X10−3〜51・−ルの範
囲内にするのが好ましい。
In addition, nitriding the surface of a metal thin film layer can be done by exposing the metal thin film layer to nitrogen gas plasma generated by a high frequency electrode, an AC electrode, or a DC electrode. When nitrogen gas that has been turned into plasma in this way is brought into contact with the metal thin film layer, the nitrogen gas that has turned into plasma has high energy, so that the metal thin film layer is heated. The surface of the layer is quickly nitrided at low temperature, and a dense film grows from the surface, so that a nitride film layer made of metal or alloy nitride is well formed on the surface. The N thickness of the nitride film layer formed in this way is 20 to 10
It is preferable to keep the amount within the range of 0 people, and if it is less than 20 people, there is a risk that the desired effect may not be obtained. In addition, when bringing nitrogen gas into plasma into contact with the surface of the metal thin film layer, the gas pressure of the nitrogen gas used in the processing tank is controlled by a high-frequency electrode, as in the case of oxygen gas during oxidation. When generating an AC current, if it is lower than 1 x 10-yotorr, no discharge will occur, and if it is higher than 3 torr, it will have a negative effect on the plastic film used as the substrate, so it is preferable to keep it within the range of lXl0-' to 3 torr. When generating nitrogen gas plasma with electrodes and DC electrodes, if the temperature is lower than 3X10'L, no discharge will occur, and if it is higher than 51L, it will not have a negative effect on the plastic film; It is preferable to keep it within the range of

強磁性金属薄膜層の形成材料としては、Co、Fc、N
i、、Co−Ni合金、Co−Cr合金、Co−P合金
、0.o−Ni −P合金などの強磁性材が使用され、
これらの強磁性材からなる強磁性金属薄膜層は、真空蒸
着、イオンブレーティング、スパッタリング、メッキ等
の手段によって基体上に被着形成される。
Materials for forming the ferromagnetic metal thin film layer include Co, Fc, and N.
i, Co-Ni alloy, Co-Cr alloy, Co-P alloy, 0. Ferromagnetic materials such as o-Ni-P alloy are used,
A ferromagnetic metal thin film layer made of these ferromagnetic materials is deposited on a substrate by means such as vacuum evaporation, ion blasting, sputtering, or plating.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 厚さ10μのポリエステルフィルムを真空蒸着装置に装
填し、lX1O−5)−ルの真空下で、コバルト−ニッ
ケル合金(重量比8:2)を加熱蒸発させて、ポリエス
テルフィルム上に厚さ0.1μのコバルト−ニッケル合
金からなる強磁性金属薄膜層を形成した。引き続いて、
クロムを加熱蒸発させて強磁性金属薄膜層上に厚さ30
0人のクロムからなる金属薄膜層を形成した。次いで、
第1図に示すプラズマ処理装置を使用し、この強磁性金
属薄膜層上に金属薄膜層を形成したポリエステルフィル
ム1を、処理槽2内で原反ロール3から円筒状キャン4
の周側面に沿って移動させ、巻き取りロール5に巻き取
るようにセットし、ガス導入管6から酸素ガスを200
secmの流量で導入して、酸素ガス圧0.1トール、
交流電極7の出力600Wでプラズマ処理を行い、金属
薄膜層の表面にクロムの酸化膜層を形成した。しかる後
、所定の巾に裁断して第2図に示すようなポリエステル
フィルム1上に強磁性金属薄膜層8、金属薄膜層9およ
び酸化膜層10を順次に積層形成した磁気テープAをつ
くった。このときの金属薄膜層表面の酸化膜層10の厚
みは100人と推定される。
Example 1 A polyester film with a thickness of 10μ was loaded into a vacuum evaporation apparatus, and a cobalt-nickel alloy (weight ratio 8:2) was heated and evaporated under a vacuum of 1X1O-5) to form a thick layer on the polyester film. A ferromagnetic metal thin film layer made of a cobalt-nickel alloy with a diameter of 0.1 μm was formed. Subsequently,
Chromium is heated and evaporated to a thickness of 30 mm on the ferromagnetic metal thin film layer.
A thin metal film layer consisting of zero chromium was formed. Then,
Using the plasma processing apparatus shown in FIG.
is moved along the circumferential side of the cylinder, set so as to be wound up on the winding roll 5, and oxygen gas is supplied from the gas introduction pipe 6 at 200 ml of oxygen gas.
Introducing at a flow rate of secm, oxygen gas pressure 0.1 torr,
Plasma treatment was performed with an output of 600 W from the AC electrode 7 to form a chromium oxide film layer on the surface of the metal thin film layer. Thereafter, it was cut to a predetermined width to produce a magnetic tape A in which a ferromagnetic metal thin film layer 8, a metal thin film layer 9, and an oxide film layer 10 were sequentially laminated on a polyester film 1 as shown in FIG. . The thickness of the oxide film layer 10 on the surface of the metal thin film layer at this time is estimated to be 100 people.

なお、図中11は処理槽2内を減圧するための排気系で
あり、12は電極7に高゛周波を印加するための交流電
源である。
In the figure, 11 is an exhaust system for reducing the pressure inside the processing tank 2, and 12 is an AC power source for applying a high frequency to the electrode 7.

実施例2 実施例1における金属薄膜層の形成において、クロムか
らなる金属薄膜層の厚みを100人にした以外は実施例
1と同様にして磁気テープをつくった。このときのクロ
ムからなる金属薄tliji層の表面に形成された酸化
膜層の厚みは50人と推定される。
Example 2 A magnetic tape was produced in the same manner as in Example 1, except that in forming the metal thin film layer in Example 1, the thickness of the metal thin film layer made of chromium was changed to 100. The thickness of the oxide film layer formed on the surface of the thin metal tliji layer made of chromium at this time is estimated to be 50.

実施例3 実施例1における金属薄HUBの形成において、クロム
からなる金属薄膜層の厚みを50人にした以外は、実施
例1と同様にして磁気テープをつくった。このときのク
ロムからなる金属薄膜層の表面に形成された酸化膜層の
厚みは50人未満と推定される。
Example 3 A magnetic tape was produced in the same manner as in Example 1, except that in forming the thin metal HUB in Example 1, the thickness of the metal thin film layer made of chromium was changed to 50. The thickness of the oxide film layer formed on the surface of the metal thin film layer made of chromium at this time is estimated to be less than 50 people.

実施例4 実施例1における金属薄膜層の形成において、真空蒸着
に代えてスパッタリングを行い、強磁性金属薄膜層上に
クロムからなる300人の金属薄膜層を形成した以外は
実施例1と同様にして磁気テープをつくった。
Example 4 The procedure was the same as in Example 1, except that in the formation of the metal thin film layer in Example 1, sputtering was performed instead of vacuum evaporation, and a 300 metal thin film layer made of chromium was formed on the ferromagnetic metal thin film layer. and made magnetic tape.

実施例5 実施例1において、真空蒸着によるクロムからなる金属
薄膜層の形成を省き、厚さ0.1μのコハルトーニソケ
ル合金(重量比8:2)からなる強磁性金属薄膜層を形
成したポリエステルフィルムを、平行板型の電極を用い
かつ電極にクロムメッキしたステンレス鋼板を用いたプ
ラズマ処理装置に装填し、プラズマ処理装置中に酸素ガ
スを導入してプラズマ処理を行った以外は実施例1と同
様にして磁気テープをつくった。
Example 5 In Example 1, the formation of a metal thin film layer made of chromium by vacuum evaporation was omitted, and a ferromagnetic metal thin film layer made of a cohartonisokel alloy (weight ratio 8:2) with a thickness of 0.1 μm was formed. Example 1 except that the polyester film was loaded into a plasma processing apparatus using a parallel plate type electrode and a chrome-plated stainless steel plate, and plasma processing was performed by introducing oxygen gas into the plasma processing apparatus. I made magnetic tape in the same way.

実施例6 実施例1における金属薄膜層形成において、クロムにか
えてチタンを使用し、強磁性金属薄膜層上に厚さ300
人のチタンからなる金属薄膜層をスパッタリングで形成
した以外は実施例1と同様にして磁気テープをつくった
。このときのチタンからなる金属薄膜層の表面に形成さ
れた酸化膜層の厚みは100人と推定される。
Example 6 In forming the metal thin film layer in Example 1, titanium was used instead of chromium, and a thickness of 300 mm was formed on the ferromagnetic metal thin film layer.
A magnetic tape was produced in the same manner as in Example 1 except that a metal thin film layer made of titanium was formed by sputtering. The thickness of the oxide film layer formed on the surface of the metal thin film layer made of titanium at this time is estimated to be 100 people.

実施例7 実施例1における金属薄膜層形成において、クロムにか
えてアルミニウムを使用し、強磁性金属薄膜層上に厚さ
300人のアルミニウムからなる金属N膜層を形成した
以外は実施例1と同様にして磁気テープをつくった。こ
のときのアルミニウムからなる金属薄膜層の表面に形成
された酸化膜層の厚みは100人と推定される。
Example 7 Same as Example 1 except that in forming the metal thin film layer in Example 1, aluminum was used instead of chromium and a metal N film layer made of aluminum with a thickness of 300 mm was formed on the ferromagnetic metal thin film layer. Magnetic tape was made in the same way. The thickness of the oxide film layer formed on the surface of the metal thin film layer made of aluminum at this time is estimated to be 100 people.

実施例8 実施例1における金属薄膜層形成において、クロムにか
えてタンクルを使用し、強磁性金属薄膜層上に厚さ30
0人のタンタルからなる金属薄膜層をスパッタリングで
形成した以外は実施例1と同様にして磁気テープをつく
った。このときのタンタルからなる金属薄膜層の表面に
形成された酸化膜層の厚みは100人と推定される。
Example 8 In forming the metal thin film layer in Example 1, tankle was used instead of chromium, and a thickness of 30 mm was formed on the ferromagnetic metal thin film layer.
A magnetic tape was produced in the same manner as in Example 1 except that a metal thin film layer made of tantalum was formed by sputtering. The thickness of the oxide film layer formed on the surface of the metal thin film layer made of tantalum at this time is estimated to be 100 people.

実施例9 実施例1において、処理槽2内に酸素ガス代えて、窒素
ガスを200secmの流量で導入し、窒素ガス圧0.
1トール、交流電極7の出力600Wでプラズマ処理を
おこない、窒化を行おこなった以外は実施例1と同様に
して磁気テープをつくった。このときの窒化膜層の厚み
は100人と推定される。
Example 9 In Example 1, nitrogen gas was introduced into the processing tank 2 at a flow rate of 200 seconds instead of oxygen gas, and the nitrogen gas pressure was 0.
A magnetic tape was produced in the same manner as in Example 1, except that plasma treatment was performed at 1 Torr and output of AC electrode 7 was 600 W, and nitriding was performed. The thickness of the nitride film layer at this time is estimated to be 100 people.

実施例10 実施例6において、処理槽2内に酸素ガス代えて、窒素
ガスを2’OOsccmの流量で導入し、窒素ガス圧0
.1トール、交流電極7の出力600Wでプラズマ処理
を行い、窒化を行った以外は実施例6と同様にして磁気
テープをつくった。このときの窒化膜層の厚みは100
人と推定される。
Example 10 In Example 6, nitrogen gas was introduced into the processing tank 2 at a flow rate of 2'OOsccm instead of oxygen gas, and the nitrogen gas pressure was 0.
.. A magnetic tape was produced in the same manner as in Example 6, except that plasma treatment was performed at 1 Torr and output of AC electrode 7 was 600 W, and nitriding was performed. The thickness of the nitride film layer at this time is 100
Estimated to be a person.

実施例11 実施例7において、処理槽2内に酸素ガス代えて、窒素
ガスを200 secmの流量で導入し、窒素ガス圧0
.1トール、交流電極の出力600wでプラズマ処理を
行い0、窒化を行った以外は実施例7と同様にして磁気
テープをつくった。このときの窒化膜層の厚みは100
人と推定される。
Example 11 In Example 7, nitrogen gas was introduced into the processing tank 2 at a flow rate of 200 sec instead of oxygen gas, and the nitrogen gas pressure was 0.
.. A magnetic tape was produced in the same manner as in Example 7, except that plasma treatment was performed at 1 torr and AC electrode output of 600 w, and nitriding was performed. The thickness of the nitride film layer at this time is 100
Estimated to be a person.

実施例12 実施例8において、処理槽2内に酸素ガス代えて、窒素
ガスを200secmの流量で導入し、窒素ガス圧0.
1トール、交流電極の出力600Wでプラズマ処理を行
い、窒化を行った以外は実施例8と同様にして磁気テー
プをつくった。このときの窒化膜層の厚めは100人と
推定される。
Example 12 In Example 8, nitrogen gas was introduced into the processing tank 2 at a flow rate of 200 seconds instead of oxygen gas, and the nitrogen gas pressure was 0.
A magnetic tape was produced in the same manner as in Example 8, except that plasma treatment was performed at 1 Torr and AC electrode output of 600 W, and nitriding was performed. The thickness of the nitride film layer at this time is estimated to be 100 people.

実施例13 実施例5において、プラズマ処理装置中にアルゴンガス
を導入してプラズマ処理を行なった以外は実施例5と同
様にして磁気テープをつくった。
Example 13 A magnetic tape was produced in the same manner as in Example 5, except that argon gas was introduced into the plasma processing apparatus to perform the plasma treatment.

この場合、アルゴンガスによるプラズマ処理によりクロ
ム金属薄膜層の表面が活性化され、この状態で気中に取
り出すと、活性化されたクロム金属薄膜層の表面が気中
の酸素によって酸化されて酸化膜が形成される。
In this case, the surface of the chromium metal thin film layer is activated by plasma treatment with argon gas, and when it is taken out into the air in this state, the surface of the activated chromium metal thin film layer is oxidized by oxygen in the air, forming an oxide film. is formed.

比較例1 実施例1において、金属薄膜層および金属薄膜層表面の
酸化を省き、強磁性金属薄膜層上表面をアルゴンガスで
プラズマ処理した以外は実施例1と同様にして磁気テー
プをつくった。
Comparative Example 1 A magnetic tape was produced in the same manner as in Example 1, except that the oxidation of the metal thin film layer and the surface of the metal thin film layer was omitted, and the upper surface of the ferromagnetic metal thin film layer was plasma-treated with argon gas.

各実施例および比較例で得られた磁気テープについて、
磁気ヘッドを摺動させ、磁気ヘッドの摺動回数の増加に
伴う摩擦係数の変化を測定し、耐久性を調べた。また、
得られた磁気テープを60℃、90%RHの条件下に放
置し、時間の経過に伴う最大磁束密度の劣化率を、放置
前の磁気テープの最大磁束密度を100%として測定し
、耐食性を調べた。第3図は摩擦係数の変化を、また第
4図は最大磁束密度の劣化率の変化をそれぞれグラフで
表したもので、それぞれグラフAは実施例1で得られた
磁気テープ、グラフBは実施例2で得られた磁気テープ
、グラフCば実施例3で得られた磁気テープ、グラフD
は実施例4で得られた磁気テープ、グラフEは実施例5
で得られた磁気テープ、グラフFは実施例6で得られた
磁気テープ、グラフGは実施例7で得られた磁気テープ
、グラフHは実施例8で得られた磁気テープ、グラフ■
は実施例って(qられた磁気テープ、グラフJは実施例
10て得られた磁気テープ、グラフには実施例11で得
られた磁気テープ、グラフLは実施例12て得られた磁
気テープ、グラフMは実施例I3で得られた磁気テープ
、グラフNは比較例1で得られた磁気テープを示す。こ
れらのグラフから明らかなように比較例1で得られた磁
気テープは、摩擦係数が大きく、磁気ヘッドの摺動回数
が増大するに伴って摩擦係数が非常に大きくなるが、こ
の発明で(Mられた磁気テープ(実施例1〜13)はい
ずれも摩擦係数が小さくて、磁気ヘッドの摺動回数が増
大してもそれほど摩擦係数が大きくならず、このことか
らこの発明によって得られる磁気記録媒体は耐久性に優
れていることがわかる。また、最大磁束密度の劣化率も
同様に、比較例1で得られた磁気テープは、時間の経過
に伴って劣化率が非常に大きくなるが、この発明で得ら
れた磁気テープ(実施例1〜13)はいずれも時間が経
過してもそれほど劣化率が大きくならず、このことから
この発明によって得られる磁気記録媒体は耐食性に優れ
ていることがわかる。
Regarding the magnetic tapes obtained in each example and comparative example,
The durability was investigated by sliding the magnetic head and measuring changes in the coefficient of friction as the number of times the magnetic head slid was increased. Also,
The resulting magnetic tape was left under conditions of 60°C and 90% RH, and the deterioration rate of the maximum magnetic flux density over time was measured, with the maximum magnetic flux density of the magnetic tape before being left as 100%, and the corrosion resistance was evaluated. Examined. Figure 3 graphs the changes in the coefficient of friction, and Figure 4 graphs the changes in the deterioration rate of the maximum magnetic flux density. Graph A is the magnetic tape obtained in Example 1, and graph B is the graph obtained from the magnetic tape obtained in Example 1. Magnetic tape obtained in Example 2, graph C; magnetic tape obtained in Example 3, graph D
is the magnetic tape obtained in Example 4, and graph E is the magnetic tape obtained in Example 5.
Graph F is the magnetic tape obtained in Example 6, Graph G is the magnetic tape obtained in Example 7, Graph H is the magnetic tape obtained in Example 8, Graph ■
Graph J is the magnetic tape obtained in Example 10, graph L is the magnetic tape obtained in Example 11, and graph L is the magnetic tape obtained in Example 12. , graph M shows the magnetic tape obtained in Example I3, and graph N shows the magnetic tape obtained in Comparative Example 1.As is clear from these graphs, the magnetic tape obtained in Comparative Example 1 has a coefficient of friction of However, as the number of times the magnetic head slides increases, the coefficient of friction becomes very large.However, the magnetic tapes (Examples 1 to 13) manufactured in this invention all have small coefficients of friction and Even if the number of times the head slides increases, the coefficient of friction does not increase significantly, which indicates that the magnetic recording medium obtained by this invention has excellent durability.Also, the rate of deterioration of the maximum magnetic flux density is also the same. In addition, the magnetic tape obtained in Comparative Example 1 has a very high deterioration rate over time, but the magnetic tapes obtained in the present invention (Examples 1 to 13) all have a very high deterioration rate over time. However, the deterioration rate did not increase that much, and this shows that the magnetic recording medium obtained by the present invention has excellent corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属薄膜層を酸化または窒化する際に使用する
プラズマ処理装置の1例を示す概略断面図、第2図はこ
の発明によって得られた磁気テープの部分拡大断面図、
第3図はこの発明で得られた磁気テープの摩擦係数と磁
気ヘッドの摺動回数との関係図、第4図はこの発明で得
られた磁気テープの劣化率と経過時間との関係図である
。 ■・・・ポリエステルフィルム(基体)、8・・・強磁
性金属’AV膜層、9・・・金属薄膜層、10・・・酸
化膜層(窒化膜層)、A・・・磁気テープ(磁気記録媒
体)特許出願人 口立マクセル株式会社 第1図 第2図
FIG. 1 is a schematic sectional view showing an example of a plasma processing apparatus used for oxidizing or nitriding a metal thin film layer, and FIG. 2 is a partially enlarged sectional view of a magnetic tape obtained by the present invention.
Fig. 3 is a diagram showing the relationship between the friction coefficient of the magnetic tape obtained by this invention and the number of times the magnetic head slides, and Fig. 4 is a relation diagram between the deterioration rate and elapsed time of the magnetic tape obtained by this invention. be. ■...Polyester film (substrate), 8...Ferromagnetic metal AV film layer, 9...Metal thin film layer, 10...Oxide film layer (nitride film layer), A...Magnetic tape ( Magnetic recording media) Patent applicant Kuchitachi Maxell Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に金属もしくはそれらの合金からなる強磁性
金17iS薄膜層を形成し、この強磁性金属薄B’AM
の表面にクロム、チタン、アルミニウム、タンタルから
選ばれる少なくとも1種以上の金属からなる金属薄膜層
を設け、この金属′4膜層の表面を酸化または窒化して
金属の酸化物または窒化物からなる酸化膜層または窒化
ll!j!層を金属薄膜層の表面に形成したことを特徴
とする磁気記録媒体
1. Form a ferromagnetic gold 17iS thin film layer made of a metal or an alloy thereof on a substrate, and form this ferromagnetic metal thin B'AM
A metal thin film layer made of at least one metal selected from chromium, titanium, aluminum, and tantalum is provided on the surface of the metal, and the surface of this metal film layer is oxidized or nitrided to form a metal oxide or nitride. Oxide layer or nitride! j! A magnetic recording medium characterized in that a layer is formed on the surface of a metal thin film layer.
JP16621883A 1983-09-08 1983-09-08 Magnetic recording medium Pending JPS6057533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16621883A JPS6057533A (en) 1983-09-08 1983-09-08 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16621883A JPS6057533A (en) 1983-09-08 1983-09-08 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6057533A true JPS6057533A (en) 1985-04-03

Family

ID=15827294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16621883A Pending JPS6057533A (en) 1983-09-08 1983-09-08 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6057533A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144728A (en) * 1984-12-19 1986-07-02 Hitachi Ltd Protective film for magnetic disk
JPS62120630A (en) * 1985-11-20 1987-06-01 Nec Corp Magnetic memory medium and its production
JPS6366722A (en) * 1986-04-03 1988-03-25 コ−マグ,インコ−ポレイテツド Corrosion and wear resistant magnetic disc
EP0373539A2 (en) * 1988-12-14 1990-06-20 Teijin Limited Optical recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144728A (en) * 1984-12-19 1986-07-02 Hitachi Ltd Protective film for magnetic disk
JPS62120630A (en) * 1985-11-20 1987-06-01 Nec Corp Magnetic memory medium and its production
JPH0534727B2 (en) * 1985-11-20 1993-05-24 Nippon Electric Co
JPS6366722A (en) * 1986-04-03 1988-03-25 コ−マグ,インコ−ポレイテツド Corrosion and wear resistant magnetic disc
EP0373539A2 (en) * 1988-12-14 1990-06-20 Teijin Limited Optical recording medium

Similar Documents

Publication Publication Date Title
JP2572745B2 (en) How to make a wear and corrosion resistant magnetic recording film
JPS6057533A (en) Magnetic recording medium
JPH0437484B2 (en)
JPS6057534A (en) Magnetic recording medium
JPS60251519A (en) Magnetic recording medium
JPS6057535A (en) Magnetic recording medium
JPS62279521A (en) Production of magnetic recording medium
JPS60179925A (en) Magnetic recording medium and its production
JPS6154030A (en) Magnetic recording medium and its production
JPH076354A (en) Magnetic recording medium and production of magnetic recording medium
JPS58222439A (en) Magnetic recording medium and its manufacture
JPH06223356A (en) Magnetic recording medium
JPS60185224A (en) Magnetic recording medium
JPS5877033A (en) Magnetic recording medium
JPS61211833A (en) Production of magnetic recording medium
JPS63183608A (en) Magnetic recording medium
JPS58108030A (en) Metallic thin film type magnetic recording medium
JPS5888829A (en) Magnetic recording medium and its manufacture
JPS61214137A (en) Production of magnetic recording medium
JPH10255263A (en) Magnetic recording medium
JPH10308019A (en) Metallic thin-film type magnetic recording medium
JPH0553011B2 (en)
JPS62298917A (en) Magnetic recording medium
JPS6089820A (en) Magnetic recording medium
JPS62281120A (en) Magnetic recording medium and its production