JPS62281120A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS62281120A
JPS62281120A JP12530286A JP12530286A JPS62281120A JP S62281120 A JPS62281120 A JP S62281120A JP 12530286 A JP12530286 A JP 12530286A JP 12530286 A JP12530286 A JP 12530286A JP S62281120 A JPS62281120 A JP S62281120A
Authority
JP
Japan
Prior art keywords
ferromagnetic material
magnetic
ferromagnetic
film layer
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12530286A
Other languages
Japanese (ja)
Other versions
JPH07118074B2 (en
Inventor
Takashi Kubota
隆 久保田
Takeshi Maro
毅 麿
Kunio Wakai
若居 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61125302A priority Critical patent/JPH07118074B2/en
Publication of JPS62281120A publication Critical patent/JPS62281120A/en
Publication of JPH07118074B2 publication Critical patent/JPH07118074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve magnetic characteristics, durability and corrosion resis tance by forming a thin ferromagnetic metallic film layer in which the columnar particles of a ferromagnetic material deposited with a nonmagnetic metal having <=300 deg.C m.p. on the surface and an org. high-polymer compd. co-exist. CONSTITUTION:To thin ferromagnetic metallic film layer 18 in which the colum nar particles 16 of the ferromagnetic material segregated with the nonmagnetic metal 15 having <=300 deg.C m.p. and the org. high-polymer compd. 17 co-exist is provided on a substrate 4. The vapor flow of the ferromagnetic material is, therefore, directed from a ferromagnetic material evaporating source toward the substrate 4 in a vacuum atmosphere and at the same time, the gaseous monomer of an org. metallic compd. contg. the nonmagnetic low melting metal having <=300 deg.C is introduced into the atmosphere to make a glow discharge treatment. The magnetic characteristics, durability and corrosion resistance of the magnetic recording medium are thereby improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は強磁性金属薄膜層を磁気記録層とする磁気記
録媒体およびその製造方法に関し、さらに詳しくは、磁
気特性、耐久性および耐食性に優れた前記の磁気記録媒
体およびその製造方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] This invention relates to a magnetic recording medium having a ferromagnetic metal thin film layer as a magnetic recording layer and a method of manufacturing the same. The present invention relates to the above-mentioned magnetic recording medium having excellent durability and corrosion resistance, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

強磁性金属薄膜層を磁気記録層とする磁気記録媒体は、
通常、強磁性金属またはそれらの合金などを真空蒸着、
スパッタリング等によって基体フィルム上に被着してつ
くられている。(特開昭52−153407号) 〔発明が解決しようとする問題点〕 ところが、この種の強磁性金属薄膜層を磁気記録層とす
る磁気記録媒体は、高密度記録に通した特性を有するも
のの未だ充分に満足できるものではなく、また磁気ヘッ
ドとの摩i察係数が大きくて摩耗や損傷を受は易(、ざ
らに可撓性に乏しくて、磁気ヘッドとの接触安定性に欠
けるという難点がある。また空気中に静置しておくと腐
食されて飽和磁束密度などの磁気特性が劣化するという
難点がある。
A magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film layer is
Usually, ferromagnetic metals or their alloys are vacuum-deposited,
It is made by depositing it on a base film by sputtering or the like. (Unexamined Japanese Patent Publication No. 52-153407) [Problems to be Solved by the Invention] However, although this type of magnetic recording medium having a ferromagnetic metal thin film layer as a magnetic recording layer has characteristics suitable for high-density recording, It is still not completely satisfactory, and it has a large coefficient of friction with the magnetic head, making it easily susceptible to wear and damage (it also has the disadvantages of being poorly flexible and lacking stability in contact with the magnetic head). Another drawback is that if left in the air, it will corrode and its magnetic properties such as saturation magnetic flux density will deteriorate.

C問題点を解決するための手段〕 この発明はかかる現状に鑑み鋭意研究を重ねた結果なさ
れたもので、真空雰囲気内で、基体に強磁性材蒸発源か
ら強磁性材の蒸気流を差し向けると同時に、非磁性で融
点が300 ”C以下の低融点金属を含む有機金属化合
物のモノマーガスを導入してグロー放電処理を行い、非
磁性で融点が300°C以下の金属を表面に偏析した強
磁性材の柱状粒子と、有機高分子化合物とが共存する強
磁性金属薄膜層を形成することによって、強磁性金属薄
膜層を磁気記録層とする磁気記録媒体の磁気特性、耐久
性および耐食性を充分に向上させたものである。
Means for Solving Problem C] This invention was made as a result of intensive research in view of the current situation, and it involves directing a vapor flow of a ferromagnetic material from a ferromagnetic material evaporation source to a substrate in a vacuum atmosphere. At the same time, a glow discharge treatment was performed by introducing a monomer gas of an organometallic compound containing a non-magnetic, low melting point metal with a melting point of 300°C or less, and the non-magnetic metal with a melting point of 300°C or less was segregated on the surface. By forming a ferromagnetic metal thin film layer in which columnar particles of a ferromagnetic material and an organic polymer compound coexist, we can improve the magnetic properties, durability, and corrosion resistance of a magnetic recording medium that uses the ferromagnetic metal thin film layer as a magnetic recording layer. This is a sufficient improvement.

この発明において、強磁性材を真空蒸着するなどして強
磁性金属薄膜層を形成するとき、同時に行うグロー放電
処理は、非磁性で融点が300°C以下の低融点金属を
含む有機金属化合物のモノマーガスを用いて行うのが好
ましく、このようなモノマーガスを用いたグロー放電処
理が行われると、有機金属化合物のモノマーガスが分解
してこのモノマーガス中に含まれる非磁性の低融点金属
が遊離し、強磁性材と固溶することな(強磁性材の柱状
粒子の表面に偏析する。また有機金属化合物のモノマー
ガス中の有機化合物は、重合し高分子化されて、強磁性
材の柱状粒子間の間隙を埋めるように基体上に析出され
、非磁性の低融点金泥を表面に偏析した強磁性材の柱状
粒子と、有機高分子化合物とが共存する強磁性金属薄膜
層が形成される。しかして、非磁性の低融点金属を表面
に偏析した強磁性材の柱状粒子は、有機高分子化合物中
に分散された状態となり、磁気ヘッドとの摩擦係数が低
減され、可撓性も改善されて耐久性が充分に向上される
。また強磁性材の柱状粒子表面に偏析した非磁性の低融
点金属および有機高分子化合物で、各強磁性材の柱状粒
子間が磁気的に絶縁され、各強磁性材の柱状粒子が単磁
区粒子的な構造となり微粒子化されるため、磁気特性が
充分に向上され、耐食性も向上される。
In this invention, when a ferromagnetic metal thin film layer is formed by vacuum evaporation of a ferromagnetic material, the glow discharge treatment performed simultaneously is an organic metal compound containing a nonmagnetic, low melting point metal with a melting point of 300°C or less. It is preferable to use a monomer gas, and when glow discharge treatment is performed using such a monomer gas, the monomer gas of the organometallic compound decomposes and the nonmagnetic low-melting metal contained in the monomer gas is decomposed. The organic compound in the monomer gas of the organometallic compound is polymerized and becomes a polymer, and does not form a solid solution with the ferromagnetic material (segregates on the surface of the columnar particles of the ferromagnetic material). A ferromagnetic metal thin film layer is formed, which is deposited on the substrate so as to fill the gaps between the columnar particles, and in which columnar particles of ferromagnetic material with non-magnetic low melting point gold mud segregated on the surface coexist with an organic polymer compound. The columnar particles of ferromagnetic material with non-magnetic low melting point metal segregated on the surface become dispersed in the organic polymer compound, reducing the coefficient of friction with the magnetic head and increasing flexibility. In addition, the non-magnetic low melting point metal and organic polymer compound segregated on the surface of the columnar particles of the ferromagnetic material provide magnetic insulation between the columnar particles of the ferromagnetic material. Since the columnar particles of each ferromagnetic material have a single-domain particle-like structure and are made into fine particles, the magnetic properties are sufficiently improved and the corrosion resistance is also improved.

以下、図面を参照しながらこの発明について説明する。The present invention will be described below with reference to the drawings.

第1図はこの発明で使用する真空蒸着装置の1例を断面
図で示したものであり、1は真空槽で、この真空槽1の
内部は排気系2により所定の真空に深持される。3は真
空槽1の中央部に配設された円筒状キャンであり、ポリ
エステルフィルム等の基体4は、原反ロール5からガイ
ドロール6を介してこの円筒状キャン3の周側面に沿っ
て移動され、ガイドロール7を介して巻き取りロール8
に巻き取られる。この間、真空槽1内の円筒状キャン3
の周側面に沿って移動する基体4に対向して、真空槽1
の下部に配設された強磁性材蒸発源9で強磁性材10が
加熱蒸発され、この蒸気流が基体4に差し向けられて真
空蒸着が行われる。同時に、真空槽1の側壁に取りつけ
られたグロー放電室11に連結されたガス導入管12か
ら、低融点の非磁性金属を含む有機金属化合物のモノマ
ーガスが導入され、グロー放電室11に巻回した高周波
コイル13に高周波電源14から高周波が印加されて、
グロー放電処理が行われる。
FIG. 1 shows a cross-sectional view of one example of a vacuum evaporation apparatus used in the present invention, and 1 is a vacuum chamber, and the inside of this vacuum chamber 1 is maintained at a predetermined vacuum level by an exhaust system 2. . 3 is a cylindrical can disposed in the center of the vacuum chamber 1, and a substrate 4 such as a polyester film is moved along the circumferential side of the cylindrical can 3 from a raw roll 5 via a guide roll 6. The take-up roll 8 is passed through the guide roll 7.
is wound up. During this time, the cylindrical can 3 inside the vacuum chamber 1
The vacuum chamber 1 is placed opposite the base 4 that moves along the circumferential side of
A ferromagnetic material 10 is heated and evaporated in a ferromagnetic material evaporation source 9 disposed below the substrate 4, and this vapor flow is directed toward the substrate 4 to perform vacuum evaporation. At the same time, monomer gas of an organometallic compound containing a low melting point non-magnetic metal is introduced from a gas introduction tube 12 connected to the glow discharge chamber 11 attached to the side wall of the vacuum chamber 1, and is wound around the glow discharge chamber 11. A high frequency is applied from the high frequency power supply 14 to the high frequency coil 13,
A glow discharge treatment is performed.

ここで、グロー放電処理される有機金属化合物のモノマ
ーガスは、融点が300℃以下の低融点の非磁性金属を
含むものが好ましく使用され、このようなモノマーガス
を使用して真空蒸着と同時にグロー放電処理が行われる
と、モノマーガスが分解して低融点の非磁性金属が遊離
するが、通常使用される強磁性材は融点が700 ℃以
上で、このような強磁性材に比して遊離する非磁性金属
の融点が非常に低いため、遊離した低融点の非磁性金属
は、強磁性材と固溶せず強磁性材の柱状粒子表面に偏析
する。またモノマーガス中の有機化合物は、高周波によ
るグロー放電処理により重合され高分子化されて、強磁
性材の柱状粒子間の間隙を埋めるように基体上に析出さ
れる。しかして、第2図の磁気記録媒体の拡大断面図に
示すように、表面に低融点の非磁性金属15が偏析した
強磁性材の柱状粒子16と、有機高分子化合物17とか
らなる強磁性金属薄膜層18が形成され、非磁性の低融
点金属15を表面に偏析した強磁性材の柱状粒子16は
、有機高分子化合物17中に分散された状態で共存され
るため、磁気ヘッドとの摩擦係数が低減されるとともに
、可撓性も改善されて耐久性が充分に向上される。また
各強磁性材の柱状粒子16間が、各強磁性材の柱状粒子
16表面に偏析した非磁性の低融点金属15および有機
高分子化合物17で磁気的に絶縁されるため、各強磁性
材の柱状粒子16が単磁区粒子的な構造となり、微粒子
化されて磁気特性が充分に向上され、耐食性も向上され
る。
Here, the monomer gas of the organometallic compound to be subjected to the glow discharge treatment preferably contains a non-magnetic metal with a low melting point of 300°C or less. When discharge treatment is performed, the monomer gas decomposes and non-magnetic metals with low melting points are liberated. However, the ferromagnetic materials normally used have melting points of 700 °C or higher, and are less liberated than such ferromagnetic materials. Since the melting point of the nonmagnetic metal is very low, the free nonmagnetic metal with a low melting point does not form a solid solution with the ferromagnetic material and segregates on the surface of the columnar particles of the ferromagnetic material. Further, the organic compound in the monomer gas is polymerized and made into a polymer by glow discharge treatment using high frequency, and is deposited on the substrate so as to fill the gaps between the columnar particles of the ferromagnetic material. As shown in the enlarged cross-sectional view of the magnetic recording medium in FIG. The columnar particles 16 of the ferromagnetic material on which the metal thin film layer 18 is formed and the non-magnetic low melting point metal 15 segregated on the surface coexist in a dispersed state in the organic polymer compound 17, so that there is no interaction with the magnetic head. The friction coefficient is reduced, flexibility is improved, and durability is sufficiently improved. Furthermore, since the spaces between the columnar particles 16 of each ferromagnetic material are magnetically insulated by the non-magnetic low melting point metal 15 and the organic polymer compound 17 segregated on the surface of the columnar particles 16 of each ferromagnetic material, each ferromagnetic material The columnar grains 16 have a single-domain grain-like structure, are made into fine particles, and the magnetic properties are sufficiently improved, and the corrosion resistance is also improved.

このようなグロー放電処理に使用される有機金属化合物
のモノマーガスとしては、たとえば、トリメチルビスマ
ス、トリエチルビスマス、トリメチルアンチモン、ペン
タメチルアンチモン、テトラメチルスズ、テトラメトキ
シスズ、ジメチル亜鉛、ジシクロペンタジェニル亜鉛、
テトラメチル亜鉛などの融点が300°C以下の低融点
の非磁性金属を含むモノマーガスが好適なものとして使
用される。このようなモノマーガス中に含まれる非磁性
金属は融点が300℃より高いものを使用すると、通常
使用される融点が700℃以上の強磁性材の柱状粒子表
面に偏析されず、強磁性材に固溶して強磁性金属薄膜層
の磁気特性がかえって低下される。またモノマーガス中
に含まれる非磁性金泥は、非磁性でないと各強磁性材の
柱状粒子表面に偏析して、各強磁性材の柱状粒子間を良
好に磁気的に絶縁することができず、磁気特性および耐
食性を充分に向上することができない。
Monomer gases of organometallic compounds used in such glow discharge treatment include, for example, trimethylbismuth, triethylbismuth, trimethylantimony, pentamethylantimony, tetramethyltin, tetramethoxytin, dimethylzinc, and dicyclopentadienyl. zinc,
A monomer gas containing a non-magnetic metal with a low melting point of 300° C. or lower, such as tetramethylzinc, is preferably used. If a non-magnetic metal contained in such a monomer gas is used with a melting point higher than 300°C, it will not be segregated on the surface of the columnar particles of a ferromagnetic material that has a melting point of 700°C or higher, which is usually used, and it will not be segregated into the ferromagnetic material. When solid solution occurs, the magnetic properties of the ferromagnetic metal thin film layer are deteriorated. In addition, if the non-magnetic gold mud contained in the monomer gas is not non-magnetic, it will segregate on the surface of the columnar particles of each ferromagnetic material, making it impossible to provide good magnetic insulation between the columnar particles of each ferromagnetic material. Magnetic properties and corrosion resistance cannot be sufficiently improved.

このように、非磁性の低融点金属15を表面に偏析した
強磁性材の柱状粒子16が、有限高分子化合物17中に
分散された状態で共存して形成される強磁性金属薄膜層
18において、強磁性材の柱状粒子16の表面に偏析さ
れる非磁性の低融点金属15は、その厚みが80〜10
0人の範囲内で、平均直径300人の強磁性材柱状粒子
16の表面に偏析されるようにし、強磁性金属薄膜層の
全容積に対する充填率が5〜30容量%の範囲内となる
ようにするのが好ましく、強磁性材の柱状粒子16の表
面に偏析される低融点金属15の厚みが80人より薄か
ったり、充填率が5容量%より少なくては、各強磁性材
の柱状粒子間を良好に磁気的に絶縁して磁気特性および
耐食性を充分に向上することができず、低融点金属15
の厚みが100人より厚かったり、充填率が3−Ot量
%より多くては強磁性金属の充填率が低くなり、充分な
磁気特性が得られない。また強磁性金属薄HIA層18
中の有機高分子化合物17の充填率は、強磁性金属薄膜
層の全容積に対して、10〜40容量%の範囲内にする
のが好ましく、有機高分子化合物の充填率が少なすぎて
は、各強磁性材の柱状粒子間を良好に磁気的に絶縁して
磁気特性および耐食性を充分に向上することができず、
多すぎると強磁性金属の充填率が低(なり、充分な磁気
特性が得られない。
In this way, in the ferromagnetic metal thin film layer 18 formed by coexisting in a dispersed state in the finite polymer compound 17, the columnar particles 16 of the ferromagnetic material with the nonmagnetic low melting point metal 15 segregated on the surface coexist. , the nonmagnetic low melting point metal 15 segregated on the surface of the columnar particles 16 of the ferromagnetic material has a thickness of 80 to 10
The ferromagnetic material is segregated on the surface of the ferromagnetic material columnar particles 16 with an average diameter of 300 particles within the range of 0 particles, and the filling rate with respect to the total volume of the ferromagnetic metal thin film layer is within the range of 5 to 30% by volume. If the thickness of the low melting point metal 15 segregated on the surface of the columnar particles 16 of the ferromagnetic material is thinner than 80% or the filling rate is less than 5% by volume, the columnar particles of each ferromagnetic material Since it is not possible to sufficiently improve magnetic properties and corrosion resistance by providing good magnetic insulation between
If the thickness is more than 100 mm or the filling rate is more than 3-Ot%, the filling rate of the ferromagnetic metal becomes low and sufficient magnetic properties cannot be obtained. In addition, the ferromagnetic metal thin HIA layer 18
The filling rate of the organic polymer compound 17 is preferably within the range of 10 to 40% by volume based on the total volume of the ferromagnetic metal thin film layer, and the filling rate of the organic polymer compound 17 should not be too small. , it is not possible to sufficiently improve magnetic properties and corrosion resistance by providing good magnetic insulation between columnar particles of each ferromagnetic material.
If the amount is too high, the filling rate of the ferromagnetic metal will be low, and sufficient magnetic properties will not be obtained.

このような低融点の非磁性金属を含む有機金属化合物の
モノマーガスのグロー放電処理は、通常、高周波電力、
直流電力、交流電力、マイクロ波電力などによりグロー
放電を発生して行われるが、比較的取扱が容易な13.
56MHzの高周波電力が好ましく使用される。
Glow discharge treatment of a monomer gas of an organometallic compound containing such a low melting point non-magnetic metal is usually performed using high frequency power,
13. Glow discharge is generated using direct current power, alternating current power, microwave power, etc., and it is relatively easy to handle.
RF power of 56 MHz is preferably used.

強磁性金属薄膜層の形成は、上記の真空層着の他、スパ
ッタリング、イオンブレーティング等の手段によって形
成してもよく、強磁性材としては、C01Ni S F
e、Co−Ni5  Co−Cr。
The ferromagnetic metal thin film layer may be formed by means such as sputtering and ion blasting in addition to the above-mentioned vacuum layer deposition. As the ferromagnetic material, CO1Ni SF
e, Co-Ni5Co-Cr.

Co−P、Co−Nt −Pなどの金属および合金、さ
らにはこれらの酸化物など、通常、強磁性金属薄膜層を
形成する際、使用される強磁性材がいずれも好適なもの
として使用される。
Any ferromagnetic material that is normally used when forming a ferromagnetic metal thin film layer is suitable, such as metals and alloys such as Co-P and Co-Nt-P, and their oxides. Ru.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 第1図に示す真空薄着装置を使用し、厚さが10μmの
ポリエステルフィルム4を、原反ロール5からガイドロ
ール6を介して円筒状キャン3の周側面に沿って移動さ
せ、さらにガイドロール7を介して巻き取りロール8に
巻き取るようにセ。
Example 1 Using the vacuum thinning device shown in FIG. 1, a polyester film 4 with a thickness of 10 μm was moved from the original roll 5 through the guide roll 6 along the circumferential side of the cylindrical can 3, and then It is set so as to be wound onto a winding roll 8 via a guide roll 7.

トした。次いで、排気系2で真空槽1内を約1×1O−
5)−ルに真空排気して、ポリエステルフィルム4を1
0m/fllinの速度で走行させ、強磁性材蒸発源9
内にセットしたコバルト−ニッケル合金(重量比80:
20)10を加熱蒸発させた。
I did it. Next, the inside of the vacuum chamber 1 is heated to about 1×1 O− by the exhaust system 2.
5) Evacuate the tube and remove the polyester film 4.
The ferromagnetic material evaporation source 9
cobalt-nickel alloy (weight ratio 80:
20) 10 was heated and evaporated.

同時にグロー放電処理室11に連結したガス導入管12
からトリメチルビスマスのモノマーガスを3Qsccm
の流量で導入し、高周波電源14により13.56MH
zの高周波を50Wの電力で印加してグロー放電処理を
行った。しかる後、所定の巾に裁断して第2図に示すよ
うな、ポリエステルフィルム4上に非磁性の低融点金属
15を表面に偏析した強磁性材の柱状粒子16と、有機
高分子化合物17とを共存した強磁性金属薄膜層18を
形成した磁気テープAをつくった。このようにして形成
された強磁性金属薄膜層は、コバルト−ニッケルービス
マス−有機高分子化合物の複合物からなり、膜厚は18
00人であった。
At the same time, a gas introduction pipe 12 connected to the glow discharge treatment chamber 11
3Qsccm of trimethyl bismuth monomer gas from
13.56MH by the high frequency power supply 14.
Glow discharge treatment was performed by applying a high frequency wave of z at a power of 50W. Thereafter, the columnar particles 16 of a ferromagnetic material with a non-magnetic low melting point metal 15 segregated on the surface and the organic polymer compound 17 are placed on a polyester film 4 cut into a predetermined width as shown in FIG. A magnetic tape A was produced in which a ferromagnetic metal thin film layer 18 was formed. The ferromagnetic metal thin film layer thus formed is made of a composite of cobalt-nickel-bismuth-organic polymer compound, and has a thickness of 18
There were 00 people.

実施例2 実施例1におけるグロー放電処理において、トリメチル
ビスマスのモノマーガスに代えて、ジシクロペンタジェ
ニル亜鉛のモノマーガスを同量導入した以外は実施例1
と同様にして、強磁性金属薄膜層を形成し、磁気テープ
Aをつ(った。このようにして形成された強磁性金属薄
膜層は、コバルト−ニッケルー亜鉛−有機高分子化合物
の複合物からなり、膜厚は1900人であった。
Example 2 Example 1 except that in the glow discharge treatment in Example 1, the same amount of dicyclopentagenyl zinc monomer gas was introduced instead of the trimethyl bismuth monomer gas.
A ferromagnetic metal thin film layer was formed in the same manner as above, and magnetic tape A was attached.The ferromagnetic metal thin film layer thus formed was made of a composite of cobalt-nickel-zinc-organic polymer compound. The film thickness was 1,900 people.

比較例1 実施例1におけるグロー放電処理において、トリメチル
ビスマスのモノマーガスに代えて、エチレンのモノマー
ガスを20secmの流量で導入した以外は、実施例1
と同様にして強磁性金属薄膜層を形成し、磁気テープを
つくった。このようにして形成された強磁性金属薄膜層
は、コバルト−ニッケルー有機高分子化合物の複合物か
らなり、膜厚は1900人であった。
Comparative Example 1 Example 1 except that in the glow discharge treatment in Example 1, ethylene monomer gas was introduced at a flow rate of 20 seconds instead of trimethyl bismuth monomer gas.
A ferromagnetic metal thin film layer was formed in the same manner as described above, and a magnetic tape was made. The ferromagnetic metal thin film layer thus formed was made of a composite of cobalt-nickel-organic polymer compound, and had a thickness of 1,900 mm.

比較例2 実施例1におけるグロー放電処理において、トリメチル
ビスマスのモノマーガスに代えて、オクタカルボニルコ
バルトのモノマーガスを同量導入した以外は実施例1と
同様にして、強磁性金属薄・膜層を形成し、磁気テープ
をつくった。このようにして形成された強磁性金属薄膜
層は、コバルト−ニッケルー有機高分子化合物の複合物
からなり、膜厚は1700人であった。
Comparative Example 2 A ferromagnetic metal thin film layer was formed in the same manner as in Example 1 except that the same amount of octacarbonyl cobalt monomer gas was introduced in place of the trimethyl bismuth monomer gas in the glow discharge treatment in Example 1. and created magnetic tape. The ferromagnetic metal thin film layer thus formed was made of a composite of cobalt-nickel-organic polymer compound and had a thickness of 1,700 mm.

比較例3 実施例1におけるトリメチルビスマスのモノマーガスの
グロー放電処理を省いた以外は実施例1と同様にして、
強磁性金属薄膜層を形成し、磁気テープをつくった。こ
のようにして形成された強磁性金属薄膜層は、コバルト
−ニッケル合金がらなり、膜厚は1500人であった。
Comparative Example 3 Same as Example 1 except that the glow discharge treatment of trimethyl bismuth monomer gas in Example 1 was omitted,
A magnetic tape was created by forming a ferromagnetic metal thin film layer. The ferromagnetic metal thin film layer thus formed was made of a cobalt-nickel alloy and had a thickness of 1,500 mm.

各実施例および比較例で得られた磁気テープについて、
強磁性金属薄膜層中における非磁性の低融点金属の充填
率、強磁性材の柱状粒子の表面に偏析された低融点金属
の厚みおよび有機高分子化合物の充填率を測定した。
Regarding the magnetic tapes obtained in each example and comparative example,
The filling rate of the nonmagnetic low melting point metal in the ferromagnetic metal thin film layer, the thickness of the low melting point metal segregated on the surface of the columnar particles of the ferromagnetic material, and the filling rate of the organic polymer compound were measured.

下記第1表はその結果である。Table 1 below shows the results.

第1表 また、各実施例および比較例で得られた磁気テープにつ
いて、保磁力を測定し、耐久性を調べるため常温スチル
寿命を測定した。常温スチル寿命はスチル寿命試験機を
用いて行い、磁性層が剥離したり、その摩耗粉によって
磁気へ・ノドが目づまりを生じて出力が停止するまでの
時間を測定した。さらに得られた磁気テープを、60”
C190%RHの雰囲気下に1週間数τして放置後の飽
和磁束密度を測定し、放置前の飽和磁束密度からの劣化
率を算出して耐食性を調べた。
Table 1 Also, for the magnetic tapes obtained in each example and comparative example, the coercive force was measured, and the room temperature still life was measured to examine the durability. The room-temperature still life was measured using a still life tester, and the time until the magnetic layer peeled off or its abrasion particles clogged the magnetic throat and output stopped. Furthermore, the obtained magnetic tape was
The saturation magnetic flux density after being left in a C190%RH atmosphere for several weeks was measured, and the deterioration rate from the saturation magnetic flux density before being left was calculated to examine the corrosion resistance.

下記第2表はその結果である。Table 2 below shows the results.

第2表 〔発明の効果〕 上記第2表から明らかなように、この発明で得られた磁
気テープ(実施例1および2)は、いずれも従来の磁気
テープ(比較例1〜3)に比し、保磁力が高く、スチル
寿命が長くて劣化率が小さく、このことからこの発明に
よって得られる磁気記録媒体は、磁気特性、耐久性およ
び耐食性が一段と向上されていることがわかる。
Table 2 [Effects of the Invention] As is clear from Table 2 above, the magnetic tapes obtained by the present invention (Examples 1 and 2) are both comparable to conventional magnetic tapes (Comparative Examples 1 to 3). However, it has a high coercive force, a long still life, and a low rate of deterioration, which indicates that the magnetic recording medium obtained by the present invention has further improved magnetic properties, durability, and corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は真空蒸着の1例を示す概略断面図、第2図はこ
の発明によって得られた磁気テープの部分拡大断面図で
ある。 1・・・真空槽、4・・・ポリエステルフィルム(基体
)、10・・・強磁性材、11・・・グロー放電処理室
、12・・・ガス導入管、15・・・非磁性低融点全屈
、16・・・強磁性材柱状粒子、17・・・有機高分子
化合物、18・・・強磁性金属薄膜層、A・・・磁気テ
ープ(磁気記録媒体)
FIG. 1 is a schematic sectional view showing an example of vacuum deposition, and FIG. 2 is a partially enlarged sectional view of a magnetic tape obtained by the present invention. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 4... Polyester film (substrate), 10... Ferromagnetic material, 11... Glow discharge treatment chamber, 12... Gas introduction tube, 15... Non-magnetic low melting point Total bending, 16... Ferromagnetic material columnar particles, 17... Organic polymer compound, 18... Ferromagnetic metal thin film layer, A... Magnetic tape (magnetic recording medium)

Claims (1)

【特許請求の範囲】 1、基体上に、非磁性で融点が300℃以下の金属を表
面に偏析した強磁性材の柱状粒子と、有機高分子化合物
とが共存する強磁性金属薄膜層を設けたことを特徴とす
る磁気記録媒体 2、真空雰囲気内で、基体に強磁性材蒸発源から強磁性
材の蒸気流を差し向けると同時に、非磁性で融点が30
0℃以下の低融点金属を含む有機金属化合物のモノマー
ガスを導入してグロー放電処理を行い、非磁性で融点が
300℃以下の金属を表面に偏析した強磁性材の柱状粒
子と、有機高分子化合物とが共存する強磁性金属薄膜層
を形成することを特徴とする磁気記録媒体の製造方法
[Claims] 1. A ferromagnetic metal thin film layer in which columnar particles of a ferromagnetic material in which a nonmagnetic metal with a melting point of 300° C. or less is segregated on the surface and an organic polymer compound coexist is provided on a substrate. A magnetic recording medium 2 characterized in that, in a vacuum atmosphere, a vapor flow of a ferromagnetic material is directed to the substrate from a ferromagnetic material evaporation source, and at the same time, a non-magnetic material with a melting point of 30
A glow discharge treatment is performed by introducing a monomer gas of an organometallic compound containing a metal with a low melting point of 0°C or lower, and columnar particles of a ferromagnetic material with a nonmagnetic metal with a melting point of 300°C or lower segregated on the surface and an organic high A method for producing a magnetic recording medium characterized by forming a ferromagnetic metal thin film layer coexisting with a molecular compound.
JP61125302A 1986-05-29 1986-05-29 Magnetic recording medium and manufacturing method thereof Expired - Lifetime JPH07118074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125302A JPH07118074B2 (en) 1986-05-29 1986-05-29 Magnetic recording medium and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125302A JPH07118074B2 (en) 1986-05-29 1986-05-29 Magnetic recording medium and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62281120A true JPS62281120A (en) 1987-12-07
JPH07118074B2 JPH07118074B2 (en) 1995-12-18

Family

ID=14906722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125302A Expired - Lifetime JPH07118074B2 (en) 1986-05-29 1986-05-29 Magnetic recording medium and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07118074B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116927A (en) * 1982-12-22 1984-07-06 Teijin Ltd Magnetic recording medium and its production
JPS60237623A (en) * 1984-05-10 1985-11-26 Matsushita Electric Ind Co Ltd Magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116927A (en) * 1982-12-22 1984-07-06 Teijin Ltd Magnetic recording medium and its production
JPS60237623A (en) * 1984-05-10 1985-11-26 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPH07118074B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US5378548A (en) Magnetic recording medium and its manufacturing process
JP2761859B2 (en) Magnetic recording media
JPH0532807B2 (en)
JPS6122852B2 (en)
JPS62281120A (en) Magnetic recording medium and its production
JPS62114124A (en) Production of magnetic disk
JPS6057533A (en) Magnetic recording medium
JPS6361420A (en) Magnetic recording medium and its production
JP2001250216A (en) Magnetic recording medium and its manufacturing method
JPS6154042A (en) Manufacture of magnetic recording medium
JPS6366727A (en) Production of magnetic recording medium
JPS59157828A (en) Magnetic recording medium
JPS62277618A (en) Magnetic recording medium and its production
JPH10162358A (en) Production of magnetic metallic thin-film type magnetic recording medium and apparatus for production therefor
JPH0528487A (en) Production of magnetic recording medium
JPH04184710A (en) Fixed magnetic disk and manufacture thereof
JPS61214115A (en) Magnetic recording medium and its production
JPH10112019A (en) Magnetic recording medium and its production
JPS61227222A (en) Magnetic recording medium
JPS6076015A (en) Magnetic recording medium and its production
JPH09293226A (en) Magnetic recording medium and its production
JPS61278026A (en) Production of magnetic recording medium
JPS61278027A (en) Production of magnetic recording medium
JPS58108030A (en) Metallic thin film type magnetic recording medium
JPH1074319A (en) Manufacture of magnetic recording medium and manufacturing device therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term