JPH09293226A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH09293226A
JPH09293226A JP6127693A JP6127693A JPH09293226A JP H09293226 A JPH09293226 A JP H09293226A JP 6127693 A JP6127693 A JP 6127693A JP 6127693 A JP6127693 A JP 6127693A JP H09293226 A JPH09293226 A JP H09293226A
Authority
JP
Japan
Prior art keywords
ferromagnetic metal
metal film
silicon
film
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6127693A
Other languages
Japanese (ja)
Inventor
Kunihiro Ueda
国博 上田
Koji Kobayashi
康二 小林
Mitsuru Takai
充 高井
Hiromichi Kanazawa
弘道 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP6127693A priority Critical patent/JPH09293226A/en
Publication of JPH09293226A publication Critical patent/JPH09293226A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve moisture resistance and durability by incorporating silicon and oxygen into a ferromagnetic metal film on a nonmagnetic base body. CONSTITUTION: This magnetic recording medium is produced by forming a ferromagnetic metal film on a nonmagnetic base body. When the ferromagnetic metal film is formed, a silicon-based source material and oxygen are incorporated into the film. The ferromagnetic metal film consists of Co or a Co-Ni alloy. When the ferromagnetic metal film is formed by vapor deposition on the nonmagnetic base body, vapor deposition of the ferromagnetic metal film is performed while introducing oxygen as a plasma gas and a silicon gas. The silicon gas used in the production of the magnetic recording medium contains silicon in the molecule and is preferably controlled to 10<-5> Torr pressure. The ferromagnetic film is preferably formed by fusing Co or a Co-Ni alloy with electron beams and then depositing the vapor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、本発明は強磁性金属膜
を磁気記録層とする磁気記録媒体に関し、特に防錆効果
を持たせて耐湿耐久性を改善した改善した磁気記録媒体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium having a ferromagnetic metal film as a magnetic recording layer, and more particularly to an improved magnetic recording medium having a rustproof effect and improved moisture resistance and durability.

【0002】[0002]

【従来の技術】Co−Ni、Co−Crその他の強磁性
金属薄膜を磁気記録層とする磁気記録媒体に関する技術
は、ビデオ記録、ディジタル記録、ハイビジョン対応等
の高記録密度のためあるいは記録再生装置の小型化、高
性能化などのために従来から広く研究されており、また
実用化されている。しかし、金属薄膜媒体は、鉄、コバ
ルトなどの金属を直接基盤に成膜するために雰囲気中の
水分により、酸化が起こり錆が発生する問題点があっ
た。これを解決するためにたとえば、特開平2−132
623号や特開平3−224132号に示される保護膜
の形成により、防錆を解決することが提案されている。
しかし、この方法では磁性層の蒸着工程を経たあとに、
防錆工程を再度通過させなければならないことになり、
コスト高となる。また、場合によっては真空中にて磁性
層を形成したあと一旦大気雰囲気に取り出し、再度真空
中にて保護膜の成膜を行うことになり、磁性面に酸素及
び水分が付着し、その上に保護膜を成膜しても、たとえ
ば高温多湿(60℃90%RHなど)雰囲気で膜が剥離
するなどの問題点があり(常用雰囲気、たとえば40℃
20%RHなどでは剥離などの不具合はない)、実用的
ではない。
2. Description of the Related Art A technique relating to a magnetic recording medium using a ferromagnetic metal thin film such as Co-Ni, Co-Cr or the like as a magnetic recording layer is used for high recording density such as video recording, digital recording and high-definition recording, or a recording / reproducing apparatus. It has been widely researched and put into practical use in order to reduce its size and improve its performance. However, the metal thin film medium has a problem in that a metal such as iron or cobalt is directly formed on the substrate, so that oxidation occurs due to moisture in the atmosphere and rust occurs. In order to solve this, for example, Japanese Patent Laid-Open No. 2-132
It has been proposed to solve rust prevention by forming a protective film as disclosed in JP-A No. 623 and JP-A-3-224132.
However, in this method, after the deposition process of the magnetic layer,
You have to go through the rust prevention process again,
The cost is high. In some cases, after forming the magnetic layer in vacuum, the magnetic layer is once taken out into the atmosphere, and the protective film is formed again in vacuum. Oxygen and moisture adhere to the magnetic surface and Even if the protective film is formed, there is a problem that the film peels off in an atmosphere of high temperature and high humidity (60 ° C., 90% RH, etc.) (normal atmosphere, eg, 40 ° C.).
There is no problem such as peeling at 20% RH, etc.), which is not practical.

【0003】[0003]

【発明が解決しようとする課題】強磁性金属薄膜は一般
に雰囲気中の水分の影響を受けて酸化して錆を発生し、
電磁変換特性を劣化しやすいので、防錆用の保護膜を形
成する。例えば、無機の酸化物、炭化物、窒化物などや
ダイヤモンド様膜を形成したり、熱処理により金属表面
の酸化層を強固に形成するなどが行われている。しか
し、工程が複雑になりコスト高となる。また、原反から
必要巾に切断したとき端面への保護は全くなく、錆が進
行し電磁変換特性に影響を及ぼす。全く保護膜がない状
態のテープは通常この端面より劣化が始まるので、上部
保護層のみでは、この端面に関しては、保護膜有無にか
かわらず錆が発生することになる。本発明は、工程の省
略化によるコストダウンと保護膜形成時に考えられる真
空層より大気雰囲気に蒸着膜を出すことによる防錆特性
の劣化の防止及び切断工程での端面の暴露による錆発生
の防止方法を提供することにある。
Ferromagnetic metal thin films are generally oxidized under the influence of moisture in the atmosphere to generate rust,
Since the electromagnetic conversion characteristics are easily deteriorated, a protective film for rust prevention is formed. For example, inorganic oxides, carbides, nitrides and the like or diamond-like films are formed, and heat treatment is performed to firmly form an oxide layer on the metal surface. However, the process is complicated and the cost is high. In addition, when the original fabric is cut to the required width, the end face is not protected at all, and rust progresses, which affects the electromagnetic conversion characteristics. Since the tape without any protective film usually starts to deteriorate from this end face, rust is generated only with the upper protective layer on this end face regardless of the presence or absence of the protective film. The present invention is intended to reduce costs by omitting steps and prevent deterioration of rust-preventive properties by depositing a vapor deposition film from the vacuum layer, which is conceivable at the time of forming a protective film, into the air atmosphere, and prevent rusting due to exposure of end faces in the cutting process. To provide a method.

【0004】[0004]

【課題を解決するための手段】本発明は、非磁性基体上
に、強磁性金属膜を形成した磁気記録媒体において、前
記強磁性金属膜形成時にけい素系原料及び酸素を含有さ
せたことを特徴とする磁気記録媒体である。本発明はま
た、非磁性基体上に、強磁性金属膜を形成して磁気記録
媒体を製造する方法において、酸素及びけい素系ガスを
導入しながら前記強磁性金属膜を成膜することを特徴と
する方法を提供する。
According to the present invention, in a magnetic recording medium having a ferromagnetic metal film formed on a non-magnetic substrate, a silicon-based raw material and oxygen are contained when the ferromagnetic metal film is formed. It is a characteristic magnetic recording medium. The present invention is also a method for producing a magnetic recording medium by forming a ferromagnetic metal film on a non-magnetic substrate, wherein the ferromagnetic metal film is formed while introducing oxygen and a silicon-based gas. And provide a method.

【0005】非磁性基体の表面に強磁性金属膜を形成す
る方としては、電子ビーム蒸着法がある。この方法で
は、真空中で電子ビームによりるつぼ内に収容したCo
及び/又はCo−Ni合金等の磁性金属または合金を照
射して溶融させ、これを回転ドラムの面に沿って一定速
度で移動している長尺のポリエチレンテレフタレート等
の非磁性基体フィルム上に蒸着する。通常、この電子ビ
ーム蒸着法では、蒸着の最終段階で酸素を導入して磁性
金属膜の表面を酸化することにより酸化物層を形成し
て、表面硬度を上げ、耐久性を上げることが行われる。
As a method for forming a ferromagnetic metal film on the surface of a non-magnetic substrate, there is an electron beam evaporation method. In this method, Co stored in a crucible by an electron beam in a vacuum is used.
And / or a magnetic metal or alloy such as a Co-Ni alloy is irradiated and melted, and this is vapor-deposited on a long non-magnetic substrate film such as polyethylene terephthalate moving along the surface of the rotating drum at a constant speed. To do. Generally, in this electron beam evaporation method, oxygen is introduced at the final stage of evaporation to oxidize the surface of the magnetic metal film to form an oxide layer, thereby increasing the surface hardness and durability. .

【0006】本発明者は、真空中でガス化するけい素系
化合物を酸素の導入と同時に導入し、プラズマ状態を用
いて、強磁性金属蒸着膜にけい素と酸素とを結合させる
と、防錆効果が著しく向上することを確認した。けい素
酸化物は強磁性金属膜の表面及び内部にけい素酸化物を
形成して表面硬度を高め、同時に蒸着粒子をカラム方向
にそって被覆する。なお、ここでいうプラズマ放電と
は、磁性層形成用CANに対して、平行に電極を設け
て、適当な周波数を有する電源にて、放電を発生させる
か、通常電子ビームにより、成膜空間はプラズマ化して
いるそのエネルギーを用いても良い。ケイ素ガスは、常
温常圧でガス状のものであれば、酸素と同時に導入す
る。ケイ素原料が、常温常圧で液体のものは、液体ガス
化装置(液体を真空引きし、加温する)を用いて、蒸着
装置内に導入するか、酸素ガスでシラン系液体が入って
いる容器中をバブリングして、酸素ガスと同時に気化す
るなどの方法にて導入する。一般的にはこのように導入
する方法がとられるが、蒸着室に導入されれば良いの
で、方法は上記方法以外でも良い。本発明では、酸素と
けい素系分子を同時に導入し、プラズマ放電を使用して
成膜するので、表面硬化と防錆を同時に1回の成膜で行
うことができ、従来の別々に行っていた工程の大幅な短
縮ができ、製造コストを大幅に低下できる。また従来の
別々に成膜したものと同等以上の防錆効果を得ることが
できるほか、切断縁部の防錆効果が上がる。
[0006] The present inventors have found that when a silicon compound which is gasified in a vacuum is introduced at the same time as the introduction of oxygen and the silicon and oxygen are bonded to the ferromagnetic metal vapor deposition film by using the plasma state. It was confirmed that the rust effect was significantly improved. Silicon oxide forms silicon oxide on the surface and inside of the ferromagnetic metal film to increase the surface hardness, and at the same time coats vapor-deposited particles along the column direction. The plasma discharge here means that the electrode is provided in parallel with the CAN for forming the magnetic layer and the discharge is generated by a power source having an appropriate frequency, or the film-forming space is usually formed by an electron beam. The energy generated into plasma may be used. Silicon gas is introduced at the same time as oxygen if it is gaseous at room temperature and atmospheric pressure. If the silicon raw material is liquid at room temperature and normal pressure, it is introduced into the vapor deposition device using a liquid gasifier (the liquid is evacuated and heated), or a silane-based liquid is contained as oxygen gas. It is introduced by bubbling the inside of the container and vaporizing it simultaneously with oxygen gas. In general, the method of introducing in this way is adopted, but the method may be other than the above method as long as it is introduced into the vapor deposition chamber. In the present invention, oxygen and silicon-based molecules are introduced at the same time, and a film is formed by using plasma discharge. Therefore, surface hardening and rust prevention can be carried out at the same time by one film formation, which is different from the conventional method. The process can be significantly shortened and the manufacturing cost can be significantly reduced. Further, it is possible to obtain the same or more rustproofing effect as that of the conventional separately formed film, and the rustproofing effect of the cut edge portion is improved.

【0007】導入されるけい素系化合物としては、ガス
状または真空(10-5torr程度) 中でガス化できる化合
物を使用する。このようなガスとしては、S24 、ト
リメチルシラン、テトラメチルシラン、トリメトキシシ
ラン、テトラメトキシシラン等が使用できる。導入され
る酸素量とけい素系ガスの量は、蒸着テープ1m2 当た
り酸素30〜500SCCM、けい素系ガス量10〜2
00SCCMが望ましい。しかし、適当量は装置に依存
するので実験的に求めれば良い。けい素系ガスと酸素の
導入は強磁性金属膜の成膜と同時に行うが、強磁性金属
膜の磁気特性に対する影響は見られない。また、本発明
の磁気記録媒体の硬度あるいは耐摩耗性を増大させるた
めに、表面側にイオン化蒸着法等による公知のダイヤモ
ンド様炭素膜を形成しても良い。別法として、最上層に
けい素酸化物の膜を形成した後、潤滑層を形成しても良
い。なお、下地層としてSiOx(x=1.5〜1.9)
のような水分遮断性の高い層を設けると更に防錆効果が
上がる。
As the silicon compound to be introduced, a compound which can be gasified in a gaseous state or a vacuum (about 10 -5 torr) is used. As such a gas, S 2 H 4 , trimethylsilane, tetramethylsilane, trimethoxysilane, tetramethoxysilane or the like can be used. The amount of oxygen and the amount of silicon-based gas introduced are 30 to 500 SCCM of oxygen per 1 m 2 of vapor deposition tape, and the amount of silicon-based gas is 10 to 2
00SCCM is desirable. However, the appropriate amount depends on the device and may be determined experimentally. The introduction of the silicon-based gas and oxygen is carried out at the same time as the formation of the ferromagnetic metal film, but there is no effect on the magnetic properties of the ferromagnetic metal film. Further, in order to increase the hardness or wear resistance of the magnetic recording medium of the present invention, a known diamond-like carbon film may be formed on the surface side by an ionization vapor deposition method or the like. Alternatively, the lubricating layer may be formed after forming the silicon oxide film on the uppermost layer. In addition, SiO x as a base layer (x = 1.5~1.9)
If a layer having a high moisture barrier property is provided, the rust prevention effect is further enhanced.

【0008】強磁性金属膜の材料としてはCo、Co−
Ni、Co−Ti、Co−O、Co−Mo、Co−Ni
−O、Co−Cr、Co−Cr−Ni等が使用できる
が、特にCo−Ni(重量比で70〜95対30〜5)
が一般的である。以下の実施例ではCo80重量−Ni
20重量%のものを使用した。磁性層の構造は、単層、
多層(2層以上)何でも良く、特に効果に影響は出な
い。また多層は、各層同一組成でなくても良く、電磁変
換特性が最も良好となるように設計される。非磁性基体
としては、ポリアミド、ポリエステル、等従来公知のプ
ラスチック製基体が使用できるが、以下の例ではポリエ
チレンテレフタレートを使用した。
As the material of the ferromagnetic metal film, Co, Co--
Ni, Co-Ti, Co-O, Co-Mo, Co-Ni
-O, Co-Cr, Co-Cr-Ni, etc. can be used, but especially Co-Ni (weight ratio 70-95: 30-5).
Is common. In the following examples, Co80 weight-Ni
20% by weight was used. The structure of the magnetic layer is a single layer,
Any multilayer (two or more layers) may be used, and the effect is not particularly affected. Further, the multilayer does not have to have the same composition for each layer, and is designed to have the best electromagnetic conversion characteristics. Conventionally known plastic substrates such as polyamide and polyester can be used as the non-magnetic substrate, but polyethylene terephthalate is used in the following examples.

【0009】[0009]

【作用】けい素系化合物を酸素の導入と同時に導入し、
プラズマ放電を用いて、強磁性金属蒸着膜にけい素及び
酸素をを結合させると、強磁性金属膜の表面及び内部に
けい素酸化物が形成され、それが空気中の水分を効果的
に遮断する。またこのけい素酸化物あるいは同時に形成
される金属酸化物は表面硬度を高める。更に強磁性金属
膜の切断縁部からの水分の侵入も防止できる一方、磁気
特性には影響が出ない。
[Function] A silicon compound is introduced at the same time as the introduction of oxygen,
When silicon and oxygen are combined with the ferromagnetic metal vapor deposition film using plasma discharge, silicon oxide is formed on the surface and inside of the ferromagnetic metal film, which effectively blocks moisture in the air. To do. The silicon oxide or the metal oxide formed at the same time increases the surface hardness. Further, it is possible to prevent the invasion of water from the cut edge of the ferromagnetic metal film, but the magnetic characteristics are not affected.

【0010】[0010]

【実施例の説明】[Explanation of the embodiment]

実施例1 真空中で、電力5kWの電子銃を使用して、るつぼ内の
Co80−Ni20(重量比)を融解し、ポリエチレン
テレフタレート(PET)基体フィルムの上に蒸着を行
った。蒸着工程と同時に、50SCCMの酸素及び表1
に示した流量のけい素系ガスとしてシランを用い、AF
100KHz,100Wの条件を用いたプラズマ放電に
よりプラズマ化して基体フィルム上に強磁性金属膜を1
000Åに成膜した。得られた磁気記録媒体の飽和磁束
密度Bm、保磁力Hc、角型比、及び防錆効果を表1に
示す。防錆効果は60℃・80%RHの環境に1週間保
存し、飽和磁束密度の低下率を測定した。比較のため、
強磁性金属膜の成膜の最終段階で酸素だけを導入した磁
気記録媒体(ブランク)と、強磁性金属膜を形成した後
に、酸化けい素保護膜を形成したものを製造した。結果
を表1に示す。
Example 1 In a vacuum, an electron gun with a power of 5 kW was used to melt Co80-Ni20 (weight ratio) in a crucible and vapor deposition was performed on a polyethylene terephthalate (PET) substrate film. Simultaneously with the vapor deposition process, 50 SCCM oxygen and Table 1
Using silane as the silicon-based gas at the flow rate shown in
A ferromagnetic metal film is formed on the base film by plasmaizing it by plasma discharge using the conditions of 100 KHz and 100 W.
A film was formed at 000Å. Table 1 shows the saturation magnetic flux density Bm, the coercive force Hc, the squareness ratio, and the antirust effect of the obtained magnetic recording medium. The anticorrosive effect was stored in an environment of 60 ° C. and 80% RH for 1 week, and the reduction rate of the saturation magnetic flux density was measured. For comparison,
A magnetic recording medium (blank) into which only oxygen was introduced at the final stage of the formation of the ferromagnetic metal film and a magnetic recording medium having a ferromagnetic metal film and then a silicon oxide protective film formed thereon were manufactured. The results are shown in Table 1.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【効果】表1から明らかに、同時成膜と表示したサンプ
ルのうち、磁性層の成膜と同時に酸素とけい素を導入し
たものうち、10CSSM以上のけい素を導入したもの
は、別々成膜(磁性層と保護層を順次形成したもの)の
サンプルと同等以上の耐湿性を示す。しかし、切断縁に
関しては、本発明のものは十分保護されているのに対し
て、別々成膜と表示したサンプルは保護されていないか
ら、本発明のものが防錆効果の点で優れていることが明
らかである。更に、本発明では強磁性金属膜の成膜中に
同時に酸素とけい素を導入したにも拘らず、流量は10
〜200SCCMの範囲では磁気特性に影響が実質的に
生じていない。以上から、本発明はプラズマ放電を用い
て、強磁性金属蒸着膜にけい素及び酸素をを結合させた
ので、強磁性金属膜の表面及び内部にけい素酸化物が形
成され空気中の水分を効果的に遮断することができる。
またこのけい素酸化物あるいは同時に形成される金属酸
化物は表面硬度を高める。更に強磁性金属膜の切断縁部
からの水分の侵入も防止できる一方、磁気特性には影響
が出ない。
[Effect] It is clear from Table 1 that among the samples labeled as simultaneous film formation, oxygen and silicon were introduced at the same time as the formation of the magnetic layer, but those in which silicon of 10 CSSM or more was introduced were formed separately ( A sample having a magnetic layer and a protective layer sequentially formed) shows moisture resistance equal to or higher than that of the sample. However, with respect to the cutting edge, the sample of the present invention is sufficiently protected, whereas the samples indicated as separate film formation are not protected, so that the sample of the present invention is excellent in the rust prevention effect. It is clear. Further, in the present invention, the flow rate is 10 even though oxygen and silicon are simultaneously introduced during the formation of the ferromagnetic metal film.
In the range of up to 200 SCCM, the magnetic characteristics are not substantially affected. From the above, in the present invention, since silicon and oxygen are combined with the ferromagnetic metal vapor deposition film by using plasma discharge, silicon oxide is formed on the surface and inside of the ferromagnetic metal film, and moisture in the air is removed. It can be effectively blocked.
The silicon oxide or the metal oxide formed at the same time increases the surface hardness. Further, it is possible to prevent the invasion of water from the cut edge of the ferromagnetic metal film, but the magnetic characteristics are not affected.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金沢 弘道 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiromichi Kanazawa 1-13-1, Nihonbashi, Chuo-ku, Tokyo TDK Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基体上に、強磁性金属膜を形成し
た磁気記録媒体において、前記強磁性金属膜中にけい素
化合物と酸素を含有させたことを特徴とする磁気記録媒
体。
1. A magnetic recording medium having a ferromagnetic metal film formed on a non-magnetic substrate, wherein the ferromagnetic metal film contains a silicon compound and oxygen.
【請求項2】 強磁性金属膜はCoまたはCo−Ni合
金である請求項1に記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the ferromagnetic metal film is Co or a Co—Ni alloy.
【請求項3】 非磁性基体上に、強磁性金属膜を蒸着し
て磁気記録媒体を製造する方法において、プラズマガス
となる酸素とけい素系ガスを導入しながら前記強磁性金
属膜の蒸着を行うことを特徴とする磁気記録媒体の製造
方法。
3. A method for producing a magnetic recording medium by depositing a ferromagnetic metal film on a non-magnetic substrate, wherein the ferromagnetic metal film is deposited while introducing oxygen and a silicon-based gas as plasma gas. A method of manufacturing a magnetic recording medium, comprising:
【請求項4】 けい素系ガスは分子中にけい素を含み、
10-5torrの圧力で気体である請求項3に記載の製造方
法。
4. The silicon-based gas contains silicon in the molecule,
The method according to claim 3, wherein the gas is a gas at a pressure of 10 -5 torr.
【請求項5】 強磁性金属膜はCoまたはCo−Ni合
金を電子線にて融解して蒸着される請求項3または4に
記載の製造方法。
5. The method according to claim 3, wherein the ferromagnetic metal film is deposited by melting Co or Co—Ni alloy with an electron beam.
JP6127693A 1993-02-26 1993-02-26 Magnetic recording medium and its production Pending JPH09293226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6127693A JPH09293226A (en) 1993-02-26 1993-02-26 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6127693A JPH09293226A (en) 1993-02-26 1993-02-26 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH09293226A true JPH09293226A (en) 1997-11-11

Family

ID=13166529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6127693A Pending JPH09293226A (en) 1993-02-26 1993-02-26 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH09293226A (en)

Similar Documents

Publication Publication Date Title
JP2761859B2 (en) Magnetic recording media
JPH09293226A (en) Magnetic recording medium and its production
JPH0582652B2 (en)
JPH0612568B2 (en) Magnetic recording medium
JP4078641B2 (en) Thin film magnetic recording medium
US5885724A (en) Magnetic recording medium
JPH08306028A (en) Magnetic recording medium and its production
JPH0457213A (en) Magnetic recording medium
JPS6076015A (en) Magnetic recording medium and its production
JPH1064035A (en) Magnetic recording medium and its production
JPH103639A (en) Magnetic recording medium
JPH08325718A (en) Film formation
JPS61278026A (en) Production of magnetic recording medium
JPH06112043A (en) Magnetic recording medium and manufacture thereof
JPH01303623A (en) Magnetic recording medium
JPH10105945A (en) Magnetic recording medium
JPH1173643A (en) Production of magnetic recording medium
JPH0991663A (en) Magnetic recording medium and its production
JPS62298017A (en) Magnetic recording medium and its production
JPH06104116A (en) Magnetic recording medium and its production
JPH0460919A (en) Magnetic recording medium
JPH03224119A (en) Magnetic recording medium
JPH09153220A (en) Production of magnetic recording medium and magnetic recording medium produced by the same
JPH06295423A (en) Magnetic recording medium
JPS62281120A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011120