JPS5877033A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS5877033A
JPS5877033A JP56175316A JP17531681A JPS5877033A JP S5877033 A JPS5877033 A JP S5877033A JP 56175316 A JP56175316 A JP 56175316A JP 17531681 A JP17531681 A JP 17531681A JP S5877033 A JPS5877033 A JP S5877033A
Authority
JP
Japan
Prior art keywords
aluminum
magnetic
layer
protective layer
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56175316A
Other languages
Japanese (ja)
Inventor
Tsunemi Oiwa
大岩 恒美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP56175316A priority Critical patent/JPS5877033A/en
Publication of JPS5877033A publication Critical patent/JPS5877033A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide a magnetic recording medium having excellent abrasion resistance by providing a protective layer consisting of aluminum nitride on a ferromagnetic thin metallic film layer. CONSTITUTION:A film 1 formed with a ferromagnetic thin metallic layer is transferred from the stock roll 5 is vacuum vessel 2 to a take-up roll 8 along the circumferential side surface of a cylindrical can 3 via guide rolls 6, 7, and gaseous nitrogen and gaseous argon are introduced through a gas introducing pipe 10; at the same time, aluminum is sputtered thereon from a target 4 consisting of aluminum, whereby a protective layer of aluminum nitride of 0.7- 1.3 ratio of nitrogen to aluminum N/Al is formed on the ferromagnetic thin metallic film layer.

Description

【発明の詳細な説明】 この発明は、磁性層表面に保詣層を設けた磁気記録媒体
の改良に関し、耐久性を改善することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the improvement of a magnetic recording medium in which a protection layer is provided on the surface of a magnetic layer, and an object thereof is to improve durability.

近年、磁気記録の高密度化に対応して開発された強磁性
金属薄膜層を記録層とする磁気記録媒体は、通常、強磁
性金属またはそれらの合金などを真空蒸着等によってポ
リエステルフィルムなどの基体上に被着してつくられ、
゛高密度記録に適した特性を有するが、反面磁気ヘッド
との摩擦係数が大きいため摩耗や損傷を受は易くて耐久
性に欠ける幡点がある。
In recent years, magnetic recording media with a ferromagnetic metal thin film layer as a recording layer, which has been developed in response to higher density magnetic recording, are usually deposited on a substrate such as a polyester film by vacuum deposition of ferromagnetic metals or their alloys. Made by coating on top of
``Although it has characteristics suitable for high-density recording, on the other hand, it has a large coefficient of friction with the magnetic head, making it susceptible to wear and damage and lacking in durability.

そのため、このような強磁性金F!14N膜層上に保護
層を設けるなどの方法で耐久性を改善する試みがなされ
またとえば窒化チタンからなる保護層を真空蒸着等によ
って仰磁性金jI4薄膜層上に設けたものが提案されて
いる。
Therefore, such ferromagnetic gold F! Attempts have been made to improve durability by methods such as providing a protective layer on the 14N film layer. For example, it has been proposed to provide a protective layer made of titanium nitride on the magnetic gold jI4 thin film layer by vacuum evaporation or the like. .

−ところが、この窒化チタンからなる保護層によって耐
久性は改善されるものの充分ではなく、さらにこの窒化
チタンからなる保護層では初期の耐摩耗性は改善されて
もくり返し使用すると耐摩耗性が大きく低下し、長期間
良好な耐摩耗性を持続で。きないという呻点があった。
-However, although this protective layer made of titanium nitride improves durability, it is not sufficient.Furthermore, even though the protective layer made of titanium nitride improves initial wear resistance, repeated use significantly reduces wear resistance. and maintains good wear resistance for a long period of time. There was a point where I couldn't stand it.

この発明者らはかかる事情に鑑み種々検討を行なった結
果、基゛体上に金属またはそれらの合金等からなる強磁
性金属薄膜層を形成した後、この強磁性金属薄膜層上に
、アルミニウムに対する窒素の比N/Alが0.7以上
でかっ1,3以下の窒化アルミニウムからなる保#胎を
設けると、初期の耐摩耗性力2向上するばかりかくり返
しの使用によって覗耐阜耗性がそれほど低下するときな
く優れた耐摩耗性が持続されて一段と耐久性に優れな−
磁−気らなる保′WIP4を、磁性粉末をノくインダー
とともに基体上に結着して形成される磁性層上に設けて
も゛、前記と同様に優れた耐摩耗性が持続されて一段と
耐久性に脩れた磁気記録媒体が得られることを見いだし
、この発明をかすに至った。  。
The inventors conducted various studies in view of the above circumstances, and found that after forming a ferromagnetic metal thin film layer made of metals or their alloys on a substrate, Providing a retainer made of aluminum nitride with a nitrogen ratio N/Al of 0.7 or more and 1.3 or less not only improves the initial wear resistance 2 but also improves the wear resistance with repeated use. Excellent abrasion resistance is maintained without much deterioration, making it even more durable.
Even if a magnetic retainer WIP 4 is provided on a magnetic layer formed by bonding magnetic powder and an inder on a substrate, the same excellent abrasion resistance as described above is maintained and it is further improved. It was discovered that a magnetic recording medium with excellent durability could be obtained, and this invention was completed. .

この発明にセいて、磁性層上への窒化アル、ミニ゛ウム
からなる保護!@の形成は、磁性階上にスパッタリング
、イオンブレーティングおよび真空蒸着等によって窒素
°ガスもしくは窒素ガスと他の不活性ガスとの混合ガス
雰囲気下でアルミニウムの蒸−気を差し向けて行なわれ
、アルミニウムに対する窒素の比N/Alは窒素ガス圧
もしくは混合ガス中の窒素ガス分圧を調整することによ
って自由に調整される〇 このような窒化アルミニウムからなる保護1韓のアルミ
ニウムに対する窒素の比N/AIは0.7より□   
   小さいと摩擦係数が大きくて耐摩耗性が充分に向
上されず、反対に1.3より大きくなると保護層の硬度
が低下して耐久性が劣化するため9.7〜1.3の範囲
内であることが好ましく、また層厚は5゜Aより薄いと
充分な耐摩耗性が得られず、1oo。
In this invention, protection made of aluminum nitride, minium, on the magnetic layer! Formation of @ is carried out by directing aluminum vapor onto the magnetic layer in an atmosphere of nitrogen gas or a mixed gas of nitrogen gas and other inert gas by sputtering, ion blasting, vacuum evaporation, etc. The ratio of nitrogen to aluminum, N/Al, can be freely adjusted by adjusting the nitrogen gas pressure or the partial pressure of nitrogen gas in the mixed gas. AI is from 0.7□
If it is too small, the friction coefficient will be large and the abrasion resistance will not be sufficiently improved, whereas if it is larger than 1.3, the hardness of the protective layer will decrease and the durability will deteriorate. If the layer thickness is thinner than 5°A, sufficient abrasion resistance cannot be obtained, and the thickness is 1oo.

Aより厚くなるとスペーシングロスが大きくなって電磁
変換特性に悪影響を及ぼすため50〜1000子のよう
にして形成、された″アルミニウムに対する窒素の比N
/AIが0.7〜1.3の窒化アルミニウムからなる保
護層は、緻密で適度な硬度を有する 、とともに潤滑効
果も有し、磁性一層の耐摩耗性を充分に向上する。、 
    。
If it is thicker than A, the spacing loss will increase and have a negative effect on the electromagnetic conversion characteristics, so the nitrogen to aluminum ratio N
The protective layer made of aluminum nitride with /AI of 0.7 to 1.3 is dense and has appropriate hardness, and also has a lubricating effect, and sufficiently improves the wear resistance of the magnetic layer. ,
.

基体上に形成される強磁性金属薄膜層の形成材料として
は、鉄、コバルト、ニッケルなどの金属単体の他、これ
らの合金およびCo−P N Co−N1−Pなどの磁
性材が好適なものとして使用され、これらの磁性材から
なる強磁性金属薄膜層は、真空蒸着、イオンブレーティ
ング、スパッタリングおよびメッキ等の手段によってプ
ラスチックフィルム等の基体上に被着形成される。また
基体上に形成される磁性層はこの他、磁性粉末、バイン
ダー、有機溶剤およびその他の必要成分からなる磁性塗
料をプラスチックフィルム等の基体上に塗布、乾燥して
形成され、この際使用される磁性粉末としてはγ−Fe
20.粉末、Fe、O,粉末、Co含有γyFe203
粉末、Co含有Fe 、 O,粉末、Fe粉末など従来
公知の各種磁性粉末がいずれも使用される。
Suitable materials for forming the ferromagnetic metal thin film layer formed on the substrate include single metals such as iron, cobalt, and nickel, as well as alloys thereof and magnetic materials such as Co-P N Co-N1-P. A ferromagnetic metal thin film layer made of these magnetic materials is deposited on a substrate such as a plastic film by means such as vacuum evaporation, ion blasting, sputtering, and plating. In addition, the magnetic layer formed on the substrate is formed by applying a magnetic paint consisting of magnetic powder, binder, organic solvent, and other necessary components onto a substrate such as a plastic film, and drying it. γ-Fe as magnetic powder
20. Powder, Fe, O, powder, Co-containing γyFe203
Any of various conventionally known magnetic powders such as powder, Co-containing Fe, O, powder, and Fe powder can be used.

またバインダーとしては塩化ビニル−酢酸ビニ/ルービ
ニルアルコール共重合体、ポリウレタン巣樹薔など従来
一般にバインダーとして使用されるものがいずれも使用
され、有機溶剤もシクロヘキサノン、メチルエチルケト
ン、トルエン等バインダーを溶解するのに一般に使用さ
れているものがいずれも単独または混合して使用される
In addition, as binders, all conventionally used binders such as vinyl chloride-vinyl acetate/ruvinyl alcohol copolymer and polyurethane resin are used, and organic solvents such as cyclohexanone, methyl ethyl ketone, and toluene that dissolve the binder are used. Any of those commonly used can be used alone or in combination.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 厚さ10μのポリエステルベースフィルムに表面処理(
Arガス、ボンバード処理)を施こした後、これを真空
蒸着装置に装填し、ベースフィルム上に酸素ガス圧lX
l0”5)−ル、アルゴンガス圧lXl0”)−ルの残
留ガス圧の下で、コバルトを100OAの膜1vになる
ように蒸着して強磁性金属薄膜層を形成した。次いでこ
の強磁性金1 一薄膜層を形成したポリエステルベースフィルム1を第
1図に示すように、真空槽2内に円筒状キャン3と、円
筒状キャン3の下半部に対応して彎曲されたアルミニウ
ムからなるターゲット4とを上下に配設してなる装置の
原反ロール5よりガイドローラ6を介して円筒状キャン
3の周側面に沿って移11させ、ガイドローラ7を介し
て巻き取りロール8に巻き取るようにセットした。次に
排気系9で真空排気するとともに真空槽2の下方側壁に
配設されたガス導入管10から窒素ガスおよびアルゴン
ガスを導入して真空槽2内の窒素ガス分圧を7X10”
3)−ル、アルゴンガス分圧を1×10 トールとし、
高周波電源11のパワー200Wで円筒状キャン3とタ
ーゲット4との間に電圧を加えてスパッタリングを行な
い、ポリエステルベースフィルム1表面の強磁性金属薄
膜層上に窒化アルミニウムからなる保護層を形成した。
Example 1 Surface treatment (
After applying Ar gas (Ar gas, bombardment treatment), this is loaded into a vacuum evaporator and an oxygen gas pressure of 1X is applied onto the base film.
A ferromagnetic metal thin film layer was formed by vapor-depositing cobalt to a film thickness of 100 OA under a residual gas pressure of 10"5)-L and an argon gas pressure of 1X10")-L. Next, the polyester base film 1 on which a thin layer of ferromagnetic gold 1 was formed was placed in a vacuum chamber 2 with a cylindrical can 3 and a curved shape corresponding to the lower half of the cylindrical can 3, as shown in FIG. The raw material roll 5 of the device has targets 4 made of aluminum arranged above and below, and is transferred 11 along the circumferential side of a cylindrical can 3 via guide rollers 6, and wound up via guide rollers 7. It was set to be wound up on roll 8. Next, the exhaust system 9 evacuates the chamber 2, and nitrogen gas and argon gas are introduced from the gas introduction pipe 10 provided on the lower side wall of the vacuum chamber 2 to raise the nitrogen gas partial pressure inside the vacuum chamber 2 to 7×10".
3) -L, argon gas partial pressure is 1 × 10 Torr,
Sputtering was performed by applying a voltage between the cylindrical can 3 and the target 4 with a power of 200 W from the high frequency power source 11, and a protective layer made of aluminum nitride was formed on the ferromagnetic metal thin film layer on the surface of the polyester base film 1.

形成された窒化アルミニウムからなる保疎層のアルミニ
ウムに対する屋素の比N/A1tI′i0.7で層厚は
100λであった。次いでこれを所定の巾に裁断して磁
気テープをつくった。なお、第1図において14U電前
真空計である。
The spacing layer formed of aluminum nitride had an aluminum to aluminum ratio N/A1tI'i of 0.7 and a layer thickness of 100λ. This was then cut to a predetermined width to make magnetic tape. In addition, in FIG. 1, it is a 14U Denzen vacuum gauge.

実施例2 実施例1において、スパッタリングを行なう際、の真空
槽2内の窒素ガス分圧を0.O’l)−ル、アルゴンガ
ス分圧を0.01)−/l、どした以外は実施例1と同
様にしてアルミニウムに対する窒素の比N/AIが1.
0で層厚が10OAの窒化アルミニウムからなる保護層
を強磁性金属薄膜層上に形成i、磁気テープをつくった
0 実施例3 実り例iにおいて、スパッタリングを行なう際ガス分圧
を1,3X10−2)− ル、アルゴンガス分圧をlXl0−2)−ルとした以外
は実施例1と同様にしてアルミニウムに対する窒素の比
N/Alが1.3で層厚がtooXの窒化アルミニウム
からな 上に形成し、磁気テープをつくった。
Example 2 In Example 1, when performing sputtering, the nitrogen gas partial pressure in the vacuum chamber 2 was set to 0. Example 1 was repeated except that the partial pressure of the argon gas was changed to 0.01)-/l, and the ratio of nitrogen to aluminum, N/AI, was 1.01)-/l.
A protective layer made of aluminum nitride with a layer thickness of 10 OA was formed on a ferromagnetic metal thin film layer i to produce a magnetic tape. 2) - L, the argon gas partial pressure was l It was formed into a magnetic tape.

実施例4 実施例1と同様にして弾磁性金属#膜層を形成したポリ
エステルベースフィルム1 ’)、第2図に示すように
、真空槽2内愕円筒状キャン3とBNボート15−とを
上下に配設し、さらに真空槽2の下方側壁にイオン源1
6を配設置てなる装置の原反ローぷ5よりガイドローラ
6を介して円筒状キャン3の一側面に沿って移動させ、
ガイドローラ7を介して巻き取、リロール8に巻き取る
ようにセットするとともにBN’ボー′ト15上にアル
ミニウム1フをセットした。次いで排気系9で貞空排気
するとともにイオン源16二からイオン化された窒素ガ
スを真空槽2内に導入し、同時に交流電源18でBNボ
ート15を加熱してアルミニウムを蒸発させ、真空槽2
内の窒素ガス圧3X10−’)−ルの下で蒸着を行ない
、ポリエステルベースフィルム1表面の強磁性金属薄膜
層上に窒化アルミニウムからなる保護層を形成した。形
成された窒化アルミニウムからなる保護層のアルミニウ
ムに対す〜 た。次いでこれを所定の巾に裁断して磁気テープをつく
った。なお第2図において19および2゜け絶縁導入端
子である。
Example 4 A polyester base film 1') having an elastic metal film layer formed thereon in the same manner as in Example 1 was used, and as shown in FIG. The ion source 1 is placed above and below the vacuum chamber 2.
6 is moved along one side of the cylindrical can 3 via the guide roller 6 from the raw fabric rope 5 of the device in which the can 6 is arranged.
It was set to be wound up through the guide roller 7 and rerolled to the reroll 8, and at the same time, an aluminum sheet was set on the BN' boat 15. Next, the exhaust system 9 exhausts the air, and ionized nitrogen gas is introduced from the ion source 162 into the vacuum chamber 2. At the same time, the AC power supply 18 heats the BN boat 15 to evaporate aluminum, and the vacuum chamber 2 is heated.
A protective layer made of aluminum nitride was formed on the ferromagnetic metal thin film layer on the surface of the polyester base film 1 by vapor deposition under a nitrogen gas pressure of 3×10−'). The formed protective layer made of aluminum nitride was applied to aluminum. This was then cut to a predetermined width to make magnetic tape. In addition, in FIG. 2, the insulation introduction terminals are 19 and 2 degrees.

比較例 填(地側2において1スパツタリングを行なう際に使用
する装ff/のターゲットを、アルミニウムからなるタ
ーゲットからチタンからなる°ターゲットに伏えてスパ
ッタリングを行なった以外は実姉例2と同様にしてチタ
ンに対する窒素の比N/Tiが1.0で層厚が100X
の窒化チタンからなる保護層を強磁性金属重膜層上に形
成し1、磁気テープをつくった。
Comparative Example (Titanium was sputtered in the same manner as in Sister Example 2, except that sputtering was performed with the target of ff/ used when performing 1 sputtering on the ground side 2 facing down from a target made of aluminum to a target made of titanium. The ratio of nitrogen to Ti is 1.0 and the layer thickness is 100X
A protective layer made of titanium nitride was formed on the ferromagnetic metal heavy film layer 1 to produce a magnetic tape.

各実施例および比較例で得られた磁気テープについて、
耐久性を調べるため各磁気テープをカートリッジに組み
込んで初期と500回走行させた後の一擦係数を測定し
た。
Regarding the magnetic tapes obtained in each example and comparative example,
To examine durability, each magnetic tape was assembled into a cartridge and the friction coefficient was measured at the initial stage and after running 500 times.

下表はその結果である。The table below shows the results.

上表から明らかなように、この発明で得られた?磁気テ
ープ(実施例1〜4)は従来の磁気テープ(比較例)に
比し、いずれも初期および500回走行後の摩擦係数が
小さく、このことからこの発明によって得られる磁気記
録媒体は耐摩耗性に優、れるとともにこの優れた耐摩耗
性が持続され、耐久性が一段と向上されていることがわ
かる。
As is clear from the table above, what was obtained with this invention? The magnetic tapes (Examples 1 to 4) each have a smaller coefficient of friction at the initial stage and after 500 runs than the conventional magnetic tape (comparative example), which indicates that the magnetic recording medium obtained by the present invention is wear-resistant. It can be seen that this excellent abrasion resistance is maintained and the durability is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の磁気記録媒体を製造するの6で使用
する装置の一実施例を示す概略断面図、第2図は同伴の
実施例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an embodiment of an apparatus used in manufacturing a magnetic recording medium of the present invention, and FIG. 2 is a schematic cross-sectional view showing a corresponding embodiment.

Claims (1)

【特許請求の範囲】[Claims] 1、アルミニウムに対する窒素の比N/Atが0.7〜
1.3の窒化アルミニウムからなる保護層を磁性層表面
に設けたことを特徴とする剛気記録媒体
1. The ratio of nitrogen to aluminum N/At is 0.7~
A rigid recording medium characterized in that a protective layer made of aluminum nitride of 1.3 is provided on the surface of a magnetic layer.
JP56175316A 1981-10-31 1981-10-31 Magnetic recording medium Pending JPS5877033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56175316A JPS5877033A (en) 1981-10-31 1981-10-31 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56175316A JPS5877033A (en) 1981-10-31 1981-10-31 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS5877033A true JPS5877033A (en) 1983-05-10

Family

ID=15993956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56175316A Pending JPS5877033A (en) 1981-10-31 1981-10-31 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5877033A (en)

Similar Documents

Publication Publication Date Title
JPH0437484B2 (en)
JPS5877033A (en) Magnetic recording medium
JPH1049853A (en) Magnetic recording medium and its manufacture
JPS6057533A (en) Magnetic recording medium
JPS6045271B2 (en) Vacuum deposition equipment
JPH097172A (en) Magnetic recording medium and its production
JPH10255263A (en) Magnetic recording medium
JPS6344318A (en) Production of magnetic recording medium
JPH0636281A (en) Manufacture of magnetic recording medium
JPS60179925A (en) Magnetic recording medium and its production
JPH0636272A (en) Magnetic recording medium and manufacture thereof
JPS60251519A (en) Magnetic recording medium
JPS6124023A (en) Manufacture of magnetic recording medium
JPH08319572A (en) Plasma cvd device
JPH02214017A (en) Magnetic recording tape
JPH10283633A (en) Production of magnetic recording medium
JPH103650A (en) Magnetic recording medium
JPS60205820A (en) Magnetic recording medium and its production
JPH10317149A (en) Thin film forming device, and thin film forming method using the device
JPH06282841A (en) Magnetic recording medium and manufacture thereof
JPH03266219A (en) Production of magnetic recording medium
JPH10308019A (en) Metallic thin-film type magnetic recording medium
JPH087269A (en) Production of magnetic recording medium
JPS6262432A (en) Production of magnetic recording medium
JPH0841644A (en) Thin film forming device