JPS6089820A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6089820A
JPS6089820A JP19712383A JP19712383A JPS6089820A JP S6089820 A JPS6089820 A JP S6089820A JP 19712383 A JP19712383 A JP 19712383A JP 19712383 A JP19712383 A JP 19712383A JP S6089820 A JPS6089820 A JP S6089820A
Authority
JP
Japan
Prior art keywords
plasma
film layer
protective film
film
polymerized protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19712383A
Other languages
Japanese (ja)
Inventor
Tsunemi Oiwa
大岩 恒美
Fumio Komi
文夫 小海
Kunio Wakai
若居 邦夫
Yasunori Kanazawa
金沢 安矩
Hiroshi Yamamoto
博司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP19712383A priority Critical patent/JPS6089820A/en
Publication of JPS6089820A publication Critical patent/JPS6089820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having excellent durability without affecting adversely the electromagnetic conversion characteristic thereof by forming a thin ferromagnetic metallic film on a base body, forming a plasma- polymerized protective film of an org. compd. on the film surface and oxidizing or nitriding the surface of the protective film. CONSTITUTION:A thin ferromagnetic film 8 of a metal such as Co, Ni, Fe or the alloy thereof is formed on a base body 1 consisting of a polyester film, etc. A protective film 9 by plasma polymn. of hydrocarbon, fluorine org. compd. such as C2F4 or silicon org. compd. such as tetremethylsilane is formed on the surface of the film 8. The surface of the film 9 is then exposed to gaseous nitrogen or O2 and high-frequency or DC plasma is generated to form a nitride or oxide film 10. The surface of the film 9 is thus made to the dense hard film 10 by which the magnetic recording medium having improved wear resistance and excellent durability is obtd.

Description

【発明の詳細な説明】 この発明は強磁性金属薄膜層を磁気記録層とする磁気記
録媒体に関し、その目的とするところ番よ、耐久性に優
れた前記の磁気記録媒体を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium having a ferromagnetic metal thin film layer as a magnetic recording layer, and an object thereof is to provide the above-mentioned magnetic recording medium having excellent durability. .

強磁性金属薄1!ii層を磁気記録層とする磁気記録媒
体は、通富、金属もしくはそれらの合金などを真空蒸着
等によって基体フィルム上に被着してつくられ、高密度
記録に適した特性を有するが、反面磁気ヘッドとの摩擦
係数が大きくて摩耗や損傷を受り易く、良好な耐久性が
得られないという難点がある。
Ferromagnetic metal thin 1! A magnetic recording medium in which the ii layer is a magnetic recording layer is made by depositing metals or their alloys on a base film by vacuum deposition, etc., and has characteristics suitable for high-density recording. It has the disadvantage that it has a large coefficient of friction with the magnetic head and is easily subject to wear and damage, making it difficult to obtain good durability.

このため、従来から強磁性金属薄膜層上に種々の保護膜
層を設けるなどして耐久性を改善することが行われてお
り、近年、有機化合物のプラズマ重合保護膜層を強磁性
金属薄膜層上に設けることが提案・されている。
For this reason, durability has been conventionally improved by providing various protective film layers on the ferromagnetic metal thin film layer, and in recent years, plasma polymerized protective film layers of organic compounds have been replaced with ferromagnetic metal thin film layers. It has been proposed and proposed that it be installed on top.

ところが、この自機化合物のプラズマ重合保護膜層によ
って耐久性が改善されるものの未だ充分でなく、特にプ
ラズマ重合時のガス圧を高くしたりして析出速度を速く
すると、比較的低分子量でプラズマ重合されて硬い保護
l!!i層が得られず、良好な耐摩耗性が得られないと
いうffllt点があった。
However, although the plasma polymerized protective film layer of this self-organized compound improves the durability, it is still not sufficient, and especially when the deposition rate is increased by increasing the gas pressure during plasma polymerization, plasma polymerization with a relatively low molecular weight Polymerized and hard protection! ! There was a ffllt point where an i-layer could not be obtained and good wear resistance could not be obtained.

この発明者らは、かかる現状に鑑み種々検削を行った結
果、まず、強磁性金属薄膜層の表面に有機化合物のプラ
ズマ重合保護膜層を形成した後、このプラズマ重合保護
膜層の少なくとも表面を酸化または窒化すると、プラズ
マ重合保護膜層の架橋密度が向上して硬(なり、比較的
硬いプラズマ重合保護膜の酸化膜層または窒化膜層が形
成されて耐摩耗性が充分に向上され、耐久性に優れた磁
気記録媒体が得られることを見いだし、この発明をなす
に至った。
As a result of conducting various inspections in view of the current situation, the inventors first formed a plasma polymerized protective film layer of an organic compound on the surface of a ferromagnetic metal thin film layer, and then, at least on the surface of this plasma polymerized protective film layer. When oxidized or nitrided, the crosslinking density of the plasma-polymerized protective film layer increases and becomes hard, and a relatively hard oxide or nitride film layer of the plasma-polymerized protective film is formed to sufficiently improve wear resistance. It was discovered that a magnetic recording medium with excellent durability can be obtained, and this invention was made.

この発明において、強磁性金属薄膜層上へのプラズマ重
合保護膜層の形成は、処理槽内で、炭化水素系化合物、
フッ素系有機化合物およびケイ素系有(浅化合物等のモ
ノマーガスを、高周波によりプラズマ重合さ・Uて、強
磁性金JiA薄IQ Jfi上に析出することによって
形成される。このプラズマ重合保護膜層を形成するのに
使用する七ツマーガスとしては、たとえば、プロパン、
エチレン、プロピレンなどの炭化水素系化合物のモノマ
ーガス、C2p4、C3FGなどのフッ素系杓機化合物
のモノマーガスおよびテトラメチルシラン、オクタメチ
ルシクロテトラシロキサン、ヘキサメチルジシラザンな
どのケイ素系有機化合物のモノマーガス等が好ましく使
用され、これらの有機化合物のモノマーガスは、高周波
によりラジカルが生成され、この生成されたラジカルが
反応し重合して被験となる。このラジカルはこれらの有
機化合物が二重結合または三重結合を有していたり、ま
た末端に金属元素を有する金属塩化合物であるがあるい
はOH基等の官能基を有しているほど生成しゃすいため
、これら不飽和結合、金属元素および官能基等を有する
ものがより好ましく使用される。
In this invention, the plasma polymerized protective film layer is formed on the ferromagnetic metal thin film layer in a treatment tank using a hydrocarbon compound,
It is formed by plasma polymerizing monomer gases such as fluorine-based organic compounds and silicon-based compounds using high frequency waves and depositing them on ferromagnetic gold. Examples of the 7-mer gases used to form include propane,
Monomer gas of hydrocarbon compounds such as ethylene and propylene, monomer gas of fluorine-based compounds such as C2p4 and C3FG, and monomer gas of silicon-based organic compounds such as tetramethylsilane, octamethylcyclotetrasiloxane, and hexamethyldisilazane. etc. are preferably used, and radicals are generated from the monomer gas of these organic compounds by high frequency, and the generated radicals react and polymerize to become the test material. This radical is more likely to be generated when these organic compounds have double bonds or triple bonds, are metal salt compounds with a metal element at the end, or have a functional group such as an OH group. , those having these unsaturated bonds, metal elements, functional groups, etc. are more preferably used.

またこれらのモノマーガスをプラズマ重合する際、アル
ゴンガス、ヘリウムガスおよび酸素ガス等のキャリアガ
スを併存させるとモノマーガスを単独でプラズマ重合す
る場合に比べて3〜5倍の速度で析出されるため、これ
らのキャリアガスを併存させて行うのが好ましい。これ
らのキャリアガスと併存させる際、その組成割合はキャ
リアガス対前記有機化合物のモノマーガスの比にして1
対1〜20対1の範囲内で併存させるのが好ましく、キ
ャリアガスが少なすぎると析出速度が低下し、多ずぎる
とモノマーガスが少なくなってプラズマ重合反応に支障
をきたす。なお、炭化水素系化合物のモノマーガスを使
用するときは、酸素ガスをキャリアガスとして使用する
と酸化反応が生じるため、酸素ガスをキャリアガスとし
て使用するのは好ましくない。
Also, when plasma polymerizing these monomer gases, if a carrier gas such as argon gas, helium gas, or oxygen gas is present, the monomer gases will be deposited at a rate 3 to 5 times faster than when plasma polymerizing them alone. It is preferable to use these carrier gases together. When coexisting with these carrier gases, the composition ratio of the carrier gas to the monomer gas of the organic compound is 1.
It is preferable to coexist in a ratio of 1:1 to 20:1; if the carrier gas is too small, the deposition rate will decrease, and if it is too large, the monomer gas will be too small, which will interfere with the plasma polymerization reaction. Note that when using a monomer gas of a hydrocarbon compound, it is not preferable to use oxygen gas as a carrier gas because an oxidation reaction will occur if oxygen gas is used as a carrier gas.

プラズマ重合を行う場合のガス圧および高周波の出力は
、ガス圧が高くなるほど析出速度が速くなる反面モノマ
ーガスが比較的低分子量でプラズマ重合されて硬い保護
膜層が得られず、またガス圧を低くして高周波出力を高
くすると析出速度が遅くなる反面高分子化された比較的
硬い保護膜層が得られるが、ガス圧を低くして高周波出
力を高くしずぎると、モノマーガスが粉末化してしまい
プラズマ重合保護膜層が形成されないため、ガス圧を0
.03〜5トールの範囲内とし、高周波出力を0.03
〜I W/cIilの範囲内とするのが好ましく、ガス
圧を0.05〜1トールとし、高周波出力を0.05〜
0.3W/cnTの範囲内とするのがより好ましい。こ
のようにしてプラズマ重合によって析出形成される有機
化合物のプラズマ重合保護l!i!層は緻密で摩擦係数
も小さく、従ってこの有機化合物のプラズマ重合保護膜
1−が形成されると耐摩耗性が向上する。このような有
機化合物のプラズマ重合保護膜層の膜厚は、20〜10
00人の範囲内であることが好ましく、膜厚が薄ずぎる
とこの保護膜層による耐久性の効果が充分に発揮されず
、厚すぎる、と、スペーシングロスが大きくなりすぎて
電磁変換特性に悪影響を及ぼず。
When performing plasma polymerization, the higher the gas pressure and the higher the high frequency output, the higher the deposition rate, but on the other hand, the monomer gas is plasma polymerized with a relatively low molecular weight, making it difficult to obtain a hard protective film layer. If the gas pressure is lowered and the high frequency output is increased, the deposition rate will be slower, but at the same time a relatively hard protective film layer made of polymer will be obtained. However, if the gas pressure is lowered and the high frequency output is kept high, the monomer gas will turn into powder. If the plasma polymerized protective film layer is not formed, the gas pressure should be reduced to 0.
.. Within the range of 0.03 to 5 torr, and the high frequency output is 0.03
It is preferable to set the gas pressure in the range of ~I W/cIil, the gas pressure to be 0.05 to 1 Torr, and the high frequency output to be 0.05 to 1 Torr.
More preferably, it is within the range of 0.3 W/cnT. Plasma polymerization protection of organic compounds precipitated by plasma polymerization in this way! i! The layer is dense and has a small coefficient of friction, so when the plasma polymerized protective film 1- of this organic compound is formed, the wear resistance is improved. The film thickness of such a plasma polymerized protective film layer of an organic compound is 20 to 10
If the film thickness is too thin, the durability effect of this protective film layer will not be fully exhibited, and if it is too thick, the spacing loss will be too large and the electromagnetic conversion characteristics will deteriorate. No adverse effects.

このようにして形成されたプラズマ重合保護膜層の表面
の酸化はプラズマ重合保護膜層を、高周波電極または交
流電極もしくは直流電極で発生させた酸素ガスのプラズ
マ中にさらすなどして処理槽内でプラズマ化した酸素ガ
スをプラズマ重合保護膜層に接触させることによって行
われ、このようにプラズマ化した酸素ガスをプラズマ重
合保護膜層に接触させると、プラズマ化した酸素ガスが
高エネルギーを有しているためプラズマ重合保護膜層の
表面が良好に酸化され、表面から緻密な被膜が成長して
プラズマ重合保護膜の酸化物からなる緻密な酸化膜層が
良好に形成される。このようニジて形成される酸化膜層
の層厚は3人より薄くすると、プラズマ重合保護膜層の
硬度が充分に向上されず耐摩耗性が充分に改善されない
ため、3Å以上にするのが好ましく、プラズマ重合保護
膜層全部青酸化してもよい。またプラズマ化した酸素ガ
スを金属薄膜層の表面に接触させる場合、処理槽内にお
ける酸素ガスのガス圧は、高周波電極で酸素ガスのプラ
ズマを発生させる場合、■×IO−”l−−ルより低く
すると放電−Uず、3トールより高くすると基体として
使用されるプラスチックフィルムへ悪影響を及ばずため
lXl0−5〜31・−ルの範囲内にするのが好ましく
、交流電極および直流電極で酸素ガスのプラズマを発生
させる場合は、3xlO’)−ルより低くすると放電せ
ず、5トールより高くするとプラスチックフィルムへ悪
影響を及ぼすため3 、X 10−5〜5トールの範囲
内にするのが好ましい。なお、このプラズマ重合保護膜
層の酸化は、炭化水素系化合物およびフッ素系有機化合
物のモノマーガスを用いて形成されたプラズマ重合保護
膜層に対して行うと、プラズマ重合保護膜層が分解した
りするため好ましくない。
The surface of the plasma-polymerized protective film layer thus formed is oxidized by exposing the plasma-polymerized protective film layer to oxygen gas plasma generated by a high-frequency electrode, an AC electrode, or a DC electrode in a treatment tank. This is done by bringing plasma-formed oxygen gas into contact with the plasma-polymerized protective film layer, and when the plasma-formed oxygen gas is brought into contact with the plasma-polymerized protective film layer, the plasma-formed oxygen gas has high energy. Therefore, the surface of the plasma-polymerized protective film layer is oxidized well, and a dense film grows from the surface, so that a dense oxide film layer made of the oxide of the plasma-polymerized protective film is well formed. If the thickness of the oxide film layer formed in this way is made thinner than 3 Å, the hardness of the plasma polymerized protective film layer will not be sufficiently improved and the wear resistance will not be sufficiently improved, so it is preferable to make it 3 Å or more. , the entire plasma polymerized protective film layer may be blue oxidized. In addition, when plasma-formed oxygen gas is brought into contact with the surface of the metal thin film layer, the gas pressure of the oxygen gas in the processing tank is lower than If it is lower than 3 torr, it will not cause a discharge, and if it is higher than 3 torr, it will not have an adverse effect on the plastic film used as the substrate, so it is preferable to keep it within the range of lXl0-5 to 31 torr. When generating a plasma of 3.times.10-5 Torr, it is preferable to keep the value within the range of 3.times.10-5 to 5 Torr, since if it is lower than 3.times.10-Torr, no discharge will occur, and if it is higher than 5 Torr, it will have an adverse effect on the plastic film. Note that if this oxidation of the plasma polymerized protective film layer is performed on a plasma polymerized protective film layer formed using a monomer gas of a hydrocarbon compound and a fluorine-based organic compound, the plasma polymerized protective film layer may be decomposed or It is not desirable because

また、プラズマ重合保護膜層の表面の窒化は、プラズマ
重合保護膜層を、高周波電極または交流電極もしくは直
流電極で発生させた窒素ガスのプラズマ中にさらすなど
して処理槽内でプラズマ化した窒素ガスをプラズマ重合
保護膜層に接触させることによって行われ、このように
プラズマ化した窒素ガスをプラズマ重合保護膜層に接触
させると、前記の酸化の場合と同様にプラズマ化した窒
素ガスが高エネルギーを有しているためプラズマ重合保
護膜層の表面が良好に窒化され、表面から緻密な被膜が
成長してプラズマ重合保護膜の窒化物からなる窒化膜層
が表面に良好に形成される。
In addition, nitriding the surface of the plasma polymerized protective film layer can be performed by exposing the plasma polymerized protective film layer to nitrogen gas plasma generated by a high frequency electrode, an AC electrode, or a DC electrode. This is done by bringing gas into contact with the plasma polymerized protective film layer, and when nitrogen gas that has been turned into plasma in this way is brought into contact with the plasma polymerized protective film layer, the nitrogen gas that has been turned into plasma becomes high energy, similar to the case of the oxidation described above. Since the plasma-polymerized protective film has a nitride, the surface of the plasma-polymerized protective film is well nitrided, a dense film grows from the surface, and a nitride film layer made of the nitride of the plasma-polymerized protective film is well formed on the surface.

このようにして形成される窒化膜層の層厚は、前記酸化
膜層と同様に3人より薄くすると、プラズマ重合保護膜
層の硬度が充分に向上されず耐摩耗性が充分に改善され
ないため、3Å以上にするのが好ましく、プラズマ重合
保護膜層全部を窒化してもよい。またプラズマ化した窒
素ガスをプラズマ重合保護膜層の表面に接触させるに際
し、処理槽内において使用する窒素ガスのガス圧は、前
記酸化する際の酸素ガスの場合と同様に、高周波電極で
窒素ガスのプラズマを発生させる場合、■×10 ’ 
l−−ルより低くすると放電せず、3トールより高くす
ると基体とし°ζ使用されるプラスチ・ツクフィルムへ
悪影響を及ばずためlXl0’〜31・−ルの範囲内に
するのが好ましく、交流電極および直流電極で窒素ガス
のプラズマを発生させる場合は、3X10−5)−ルよ
り低くすると放電せず、5トールより高くするとプラス
チ・ツクフィルムへ悪影響を及ぼすためaxio(〜5
トールの範囲内にするのが好ましい。
If the thickness of the nitride film layer formed in this way is made thinner than 3 layers, as with the oxide film layer, the hardness of the plasma polymerized protective film layer will not be sufficiently improved and the wear resistance will not be sufficiently improved. , 3 Å or more, and the entire plasma polymerized protective film layer may be nitrided. In addition, when bringing the plasma-formed nitrogen gas into contact with the surface of the plasma-polymerized protective film layer, the gas pressure of the nitrogen gas used in the treatment tank is controlled by a high-frequency electrode, similar to the case of oxygen gas during oxidation. When generating a plasma of ■×10'
If it is lower than 1 Torr, no discharge will occur, and if it is higher than 3 Torr, it will not have an adverse effect on the plastic film used as the base. When generating nitrogen gas plasma with electrodes and DC electrodes, if the temperature is lower than 3X10-5 Torr, no discharge will occur, and if the temperature is higher than 5 Torr, it will have a negative effect on the plastic film.
It is preferable to keep it within the range of toll.

強磁性金属薄膜層の形成材料としてば、Co、Fe、N
i、、Co−Ni合金、Co−Cr合金、Co−P合金
、Co−N1−P合金などの強磁性材が使用され、これ
らの強磁性相からなる強磁性金属薄膜層は、真空蒸着、
イオンブレーティング、スパッタリング、メッキ等の手
段によって基体上に被着形成される。
Examples of materials for forming the ferromagnetic metal thin film layer include Co, Fe, and N.
Ferromagnetic materials such as Co-Ni alloy, Co-Cr alloy, Co-P alloy, and Co-N1-P alloy are used, and the ferromagnetic metal thin film layer consisting of these ferromagnetic phases can be formed by vacuum deposition,
It is deposited on the substrate by means such as ion blasting, sputtering, and plating.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 厚さ10μのポリエステルフィルムを真空蒸着装置に装
填し、lX10°5トールの真空下でコバルトを加熱蒸
発させてポリエステルフィルム上に厚さ1000人のコ
バルトからなる強磁性金属薄膜層を形成した。次いで、
第1図に示すプラズマ処理装置を使用し、強磁性金属薄
11央層を形成したポリエステルフィルムlを処理槽2
内の上部に配設した基板3の下面にセットし、処理槽2
に取りつりたガス導入管4からテトラメチルシランのモ
ノマーガスを50sccn+の流量で導入し、ガス圧を
0.51−−ルとして電極5で13.56M1lzの高
周波を150W印加して1分間プラズマ重合を行いプラ
ズマ重合保護膜層を形成した。次いで、同じ装置でガス
導入管4から窒素ガスを導入し、窒素ガス圧0.1トー
ルで電極5により高周波を100WEII加し、処理時
間を種々に変えてプラズマ重合保護11煩付表面を窒化
した。このときのプラズマ重合保護膜層の1愕厚は30
0人であった。しかる後、所定の中に裁断して第2図に
示すようなポリエステルフィルム1上に強磁性金属薄膜
層8、プラズマ重合保護膜層9およびプラズマ重合保護
膜の酸化膜層lOを順次に積層形成した多数の磁気テー
プ八をつくった。なお、図中6は処理槽2内を減圧する
ための排気系であり、7は電極5に高周波を印加するた
めの高周波電源である。
Example 1 A polyester film with a thickness of 10 μm was loaded into a vacuum evaporation device, and cobalt was heated and evaporated under a vacuum of 1×10° and 5 torr to form a ferromagnetic metal thin film layer of cobalt with a thickness of 1000 μm on the polyester film. did. Then,
Using the plasma processing apparatus shown in FIG.
Set it on the bottom surface of the substrate 3 placed in the upper part of the
Tetramethylsilane monomer gas was introduced at a flow rate of 50 scn+ from the gas introduction pipe 4 attached to the gas inlet, and the gas pressure was set to 0.51-rel, and 150 W of high frequency of 13.56 M1lz was applied at the electrode 5 for plasma polymerization for 1 minute. A plasma polymerized protective film layer was formed. Next, using the same device, nitrogen gas was introduced from the gas introduction pipe 4, and 100 WEII of high frequency waves were applied by the electrode 5 at a nitrogen gas pressure of 0.1 Torr, and the plasma polymerization protection 11 troubled surface was nitrided by varying the treatment time. . The thickness of the plasma polymerized protective film layer at this time is 30
There were 0 people. Thereafter, a ferromagnetic metal thin film layer 8, a plasma polymerized protective film layer 9, and an oxide film layer 10 of the plasma polymerized protective film are sequentially laminated on the polyester film 1 which is cut into a predetermined size as shown in FIG. He made a large number of magnetic tapes. In the figure, 6 is an exhaust system for reducing the pressure inside the processing tank 2, and 7 is a high frequency power source for applying high frequency to the electrode 5.

このようにして得られた多数の磁気テープについて摺動
試験機を用いて摺動試験を行い、磁気テープの強磁性金
属薄膜層表面に傷がつくまでの摺動回数を測定した。第
3図はその結果をグラフで表したもので、このグラフか
ら明らかなように、プラズマ重合保護膜層の表面を窒化
すると、その処理時間が長(なるに従って摺動回数が多
くなっており耐摩耗性が改善ぎれることがわかる。また
摺動回数は処理時間がへ分間に至るまで急激に増加して
おり、窒化処理時間は5分以上行うのが好ましいことが
わかる。
A sliding test was performed on a large number of the magnetic tapes thus obtained using a sliding testing machine, and the number of sliding movements until the surface of the ferromagnetic metal thin film layer of the magnetic tape was scratched was measured. Figure 3 shows the results in a graph.As is clear from this graph, when the surface of the plasma-polymerized protective film layer is nitrided, the treatment time becomes longer (as the number of sliding increases, the durability increases. It can be seen that the abrasion resistance is improved too much. Also, the number of times of sliding increases rapidly until the treatment time reaches 1 minute, indicating that it is preferable to carry out the nitriding treatment for 5 minutes or more.

実施例2 実施例1におけるプラズマ重合保護膜層の形成において
、テトラメヂルシランのモノマーガスに代えて、ヘキサ
メチルジシラザンのモノマーガスを同量使用し、窒化処
理において、5分間窒化した以外は実施例1と同様にし
てプラズマ重合保護膜層を形成し、磁気テープをつくっ
た。このときのプラズマ重合保護膜層の層厚は250人
で、プラズマ重合保護膜層表面の窒化膜層の層厚は20
人であった。
Example 2 In the formation of the plasma-polymerized protective film layer in Example 1, the same amount of hexamethyldisilazane monomer gas was used in place of the tetramedylsilane monomer gas, and the same amount of hexamethyldisilazane monomer gas was used in the nitriding treatment, except that nitriding was performed for 5 minutes. A plasma polymerized protective film layer was formed in the same manner as in Example 1 to produce a magnetic tape. At this time, the thickness of the plasma polymerized protective film layer was 250, and the thickness of the nitride film layer on the surface of the plasma polymerized protective film was 200.
It was a person.

実施例3 実施例2において、プラズマ重合保護膜層の窒化を酸化
に変更し、ガス導入管4から酸素ガスを導入して酸素ガ
ス圧を0.1トールにし、電極5で高周波を100W印
加し1分間酸化した以外は、実施例2と同様にしてプラ
ズマ重合保護M層を形成し、磁気テープをつくった。こ
のときのプラズマ重合保護I9!!層の層厚は250人
で、プラズマ重合保護膜層表面の酸化膜層の層厚は20
人であった。
Example 3 In Example 2, the nitridation of the plasma polymerized protective film layer was changed to oxidation, oxygen gas was introduced from the gas introduction pipe 4 to set the oxygen gas pressure to 0.1 Torr, and high frequency power of 100 W was applied using the electrode 5. A plasma polymerized protective M layer was formed in the same manner as in Example 2, except that oxidation was performed for 1 minute, and a magnetic tape was produced. Plasma polymerization protection at this time I9! ! The thickness of the layer is 250, and the thickness of the oxide film layer on the surface of the plasma polymerized protective film is 20.
It was a person.

実施例4 実施例2におけるプラズマ重合保護115!屓の形成に
おいて、ヘキサメチルジシラザンの七ノマーガスニ代え
て、プロパンのモノマーガスを同量使用した以外は実施
例2と同様にしてプラズマ重合保護膜層を形成し、磁気
テープをつくった。このときのプラズマ重合保護膜層の
層厚は250人で、プラズマ重合保護膜層表面の窒化膜
層の層厚は2()人であった。
Example 4 Plasma polymerization protection in Example 2 115! A plasma-polymerized protective film layer was formed in the same manner as in Example 2, except that the same amount of propane monomer gas was used in place of the hexamethyldisilazane heptanomer gas in the formation of the layer, and a magnetic tape was produced. The thickness of the plasma-polymerized protective film layer at this time was 250 mm, and the thickness of the nitride film layer on the surface of the plasma-polymerized protective film layer was 2 () mm.

比較例1 実施例1において、プラズマ重合保護膜層の窒化処理を
省いた以外は実施例1と同様にして磁気テープをつくっ
た。
Comparative Example 1 A magnetic tape was produced in the same manner as in Example 1 except that the nitriding treatment of the plasma polymerized protective film layer was omitted.

比較例2 実施例2において、プラズマ重合保護膜層の窒化処理を
省いた以外は実施例2と同様にして磁気テープをつくっ
た。
Comparative Example 2 A magnetic tape was produced in the same manner as in Example 2, except that the nitriding treatment of the plasma polymerized protective film layer was omitted.

比較例3 実施例4において、プラズマ重合保護膜層の窒化処理を
省いた以外は実施例4と同様にして磁気テープをつくっ
た。
Comparative Example 3 A magnetic tape was produced in the same manner as in Example 4, except that the nitriding treatment of the plasma polymerized protective film layer was omitted.

比較例4 実施例1において、プラズマ重合保護膜層の形成および
プラズマ重合保護膜層の窒化処理を省いた以外は実施例
1と同様にして磁気テープをつくった。
Comparative Example 4 A magnetic tape was produced in the same manner as in Example 1 except that the formation of the plasma polymerized protective film layer and the nitriding treatment of the plasma polymerized protective film layer were omitted.

各実施例および比較例で得られた磁気テープについて、
摩擦係数を測定し、耐久性を試験した。
Regarding the magnetic tapes obtained in each example and comparative example,
The friction coefficient was measured and durability was tested.

耐久性試験は摺動試験機を用いて得られた磁気テープを
摺動試験し、強磁性金属薄膜層表面に傷がつくまでの摺
動回数を測定して行った。
The durability test was carried out by subjecting the obtained magnetic tape to a sliding test using a sliding testing machine and measuring the number of sliding movements until the surface of the ferromagnetic metal thin film layer was scratched.

下表はその結果である。The table below shows the results.

上表から明らかなように、この発明で得られた磁気テー
プ(実施例2ないし4)は、いずれも比較例1ないし4
で得られた磁気テープに比し、摩擦係数が小さくて摺動
回数が多く、このことからこの発明によって得られる磁
気記録媒体は、耐久性が一段と改善されていることがわ
かる。
As is clear from the above table, the magnetic tapes obtained in this invention (Examples 2 to 4) are all the same as Comparative Examples 1 to 4.
Compared to the magnetic tape obtained by the present invention, the coefficient of friction is smaller and the number of times of sliding is greater, which indicates that the magnetic recording medium obtained by the present invention has further improved durability.

【図面の簡単な説明】 第1図はプラズマ重合保護膜層を形成しかつプラズマ重
合保護膜層を酸化または窒化する際に使用するプラズマ
処理装置の1例を示す概略断面図、第2歯はこの発明に
よって得られた磁気テープの部分拡大断面図、第3図は
この発明で得られた磁気テープの窒化処理時間と摺動回
数との関係図である。 1・・・ポリエステルフィルム(基体)、8・・・強磁
性金属薄膜層、9・・・プラズマ重合保護膜層、IO・
・・酸化1!ii層(窒化膜層)、A・・・磁気テープ
(磁気記録媒体) 特許出願人 日立マクセル株式会社 第1図 第3I2I 窒化処理時間(分)
[Brief Description of the Drawings] Fig. 1 is a schematic cross-sectional view showing an example of a plasma processing apparatus used for forming a plasma polymerized protective film layer and oxidizing or nitriding the plasma polymerized protective film layer. FIG. 3 is a partially enlarged sectional view of the magnetic tape obtained according to the present invention, and is a diagram showing the relationship between the nitriding treatment time and the number of times of sliding of the magnetic tape obtained according to the present invention. DESCRIPTION OF SYMBOLS 1... Polyester film (substrate), 8... Ferromagnetic metal thin film layer, 9... Plasma polymerization protective film layer, IO.
...Oxidation 1! ii layer (nitride film layer), A...Magnetic tape (magnetic recording medium) Patent applicant Hitachi Maxell Ltd. Figure 1 Figure 3I2I Nitriding treatment time (minutes)

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に金属もしくはそれらの合金力1らなる強磁
性金属薄膜層を形成し、この強磁性金属薄膜層上に有機
化合物のプラズマ重合保護膜層を形成し、このプラズマ
重合保護膜■の少なくとも表面を酸化または窒化してな
る磁気記録媒体
1. Form a ferromagnetic metal thin film layer made of a metal or an alloy thereof on a substrate, form a plasma polymerized protective film layer of an organic compound on this ferromagnetic metal thin film layer, and form a plasma polymerized protective film layer of this plasma polymerized protective film. A magnetic recording medium with at least the surface oxidized or nitrided
JP19712383A 1983-10-20 1983-10-20 Magnetic recording medium Pending JPS6089820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19712383A JPS6089820A (en) 1983-10-20 1983-10-20 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19712383A JPS6089820A (en) 1983-10-20 1983-10-20 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6089820A true JPS6089820A (en) 1985-05-20

Family

ID=16369116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19712383A Pending JPS6089820A (en) 1983-10-20 1983-10-20 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6089820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647317A (en) * 1986-05-09 1989-01-11 Tdk Corp Magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647317A (en) * 1986-05-09 1989-01-11 Tdk Corp Magnetic recording medium

Similar Documents

Publication Publication Date Title
JPS6089820A (en) Magnetic recording medium
JPS6234324A (en) Magnetic recording medium
JPS6218970B2 (en)
JPS6057535A (en) Magnetic recording medium
JPS6089817A (en) Magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS6057534A (en) Magnetic recording medium
JPS6057533A (en) Magnetic recording medium
JPS6116030A (en) Production of magnetic recording medium
JPS61216123A (en) Production of magnetic recording medium
JPS6089816A (en) Magnetic recording medium and its production
JPS6057536A (en) Magnetic recording medium
JPS6063724A (en) Manufacture of magnetic recording medium
JPS62167616A (en) Magnetic recording medium and its production
JPS60237639A (en) Production of magnetic recording medium
JPS6089819A (en) Magnetic recording medium and its production
JPS60237640A (en) Production of magnetic recording medium
JPS60145532A (en) Manufacture of magnetic recording medium
JPS6122433A (en) Production of magnetic recording medium
JPS61211821A (en) Magnetic recording medium
JPS6122426A (en) Magnetic recording medium
JPS60101722A (en) Production of magnetic recording medium
JPS60121521A (en) Magnetic recording medium
JPS61216124A (en) Production of magnetic recording medium
JPS61104425A (en) Magnetic recording medium