JPS60237640A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS60237640A
JPS60237640A JP9397284A JP9397284A JPS60237640A JP S60237640 A JPS60237640 A JP S60237640A JP 9397284 A JP9397284 A JP 9397284A JP 9397284 A JP9397284 A JP 9397284A JP S60237640 A JPS60237640 A JP S60237640A
Authority
JP
Japan
Prior art keywords
plasma
magnetic
protective film
film layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9397284A
Other languages
Japanese (ja)
Inventor
Fumio Komi
文夫 小海
Tsunemi Oiwa
大岩 恒美
Takashi Kubota
隆 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP9397284A priority Critical patent/JPS60237640A/en
Publication of JPS60237640A publication Critical patent/JPS60237640A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic recording medium having excellent corrosion resistance and durability by forming a metal-contg. hydrocarbon base protective film having no hydrophilic property by plasma polymn. on a magnetic layer on a substrate in a gaseous monomer of a hydrocarbon organo metallic compd. CONSTITUTION:A carrier gas such as Ar or He is mixed at the same volume or above with the gaseous monomer of the hydrocarbon base org. compd. such as Sn(CH3)4 or Ge(CH3)4 in order to increase the rate of the plasma polymn. Such gaseous mixture is fed into a treating vessel 2 of a plasma treating device to form the metal contg. hydrocarbon base plasma-polymerized film 9 without contg. elements such as O and N having hydrophilicity on the magnetic film 8 formed on the substrate 1 of polyester, etc. which is set to face downward on the substrate 3 in the upper part in the vessel 2 and on which the thin ferromagnetic metallic film 8 is provided. The film 9 is thereby provided with high adhesive force to the layer 8 and good corrosion resistance even in high-humidity environment. The magnetic recording medium having excellent durability is obtd.

Description

【発明の詳細な説明】 〔技術分野および目的〕 この発明は記録素子として金属磁性材を使用する磁気記
録媒体の製造方法に関し、その目的とする止ころは、耐
食性に優れた前記の磁気記録媒体の製造方法を提供する
ことにある。
[Detailed Description of the Invention] [Technical Field and Objectives] The present invention relates to a method for manufacturing a magnetic recording medium using a metal magnetic material as a recording element, and the objective of the invention is to produce a magnetic recording medium with excellent corrosion resistance. The purpose of this invention is to provide a method for manufacturing the same.

〔背景技術〕[Background technology]

金属磁性材を記録素子として使用する磁気記録媒体は、
通常、金属もしくはそれらの合金などからなる強磁性金
属薄膜層を真空苺着等によって基体上に被着するか、あ
るいは強磁性金属粉末を結合剤樹脂とともに基体上に塗
布、乾燥してつくられ、高密度記録に適した特性を有す
るが、反面金属磁性材を記録素子とする磁性層が空気中
の酸素によって酸化され易く、徐々に酸化を受けて最大
磁束密度が劣化するなどの難点がある。
Magnetic recording media that use metallic magnetic materials as recording elements are
Usually, it is made by depositing a ferromagnetic metal thin film layer made of metals or their alloys on a substrate by vacuum adhesion, or by applying ferromagnetic metal powder together with a binder resin onto the substrate and drying. Although it has characteristics suitable for high-density recording, it has the disadvantage that the magnetic layer, which uses a metallic magnetic material as a recording element, is easily oxidized by oxygen in the air, and as a result of gradual oxidation, the maximum magnetic flux density deteriorates.

このため、従来から金属磁性材を記録素子とする磁性層
上に種々の保護膜層を設けるなどして耐食性を改善する
ことが行われており、近年、たとえば、オクタメチルシ
クロテトラシロキサンのモノマーガスをキャリアガスの
窒素ガスとともに使用し、プラズマ重合して、ケイ素系
有機化合物のプラズマ重合保護膜層を強磁性金属薄膜層
上に設けること〔飯島哲生、花房廣明、電気通信学会論
文誌、J67−=C,、Nol (’ 84))が提案
されている。
For this reason, corrosion resistance has traditionally been improved by providing various protective film layers on magnetic layers that use metal magnetic materials as recording elements. is used with nitrogen gas as a carrier gas to perform plasma polymerization to provide a plasma-polymerized protective film layer of a silicon-based organic compound on a ferromagnetic metal thin film layer [Tetsuo Iijima, Hiroaki Hanabusa, Transactions of the Institute of Electrical Communication Engineers, J67- =C,, Nol ('84)) has been proposed.

ところが、この種のケイ素系有機化合物のプラズマ重合
保護膜層は、親水性を示す窒素原子および酸素原子を多
く含み、保護膜層自体の架橋密度が低いため、空気中の
水分がこの保護膜層を容易に透過し、この透過した水分
により金属磁性材を記録素子とする磁性層が腐食される
という難点があり、未だ耐食性は充分に改善されていな
い。
However, this type of plasma-polymerized protective film layer made of silicon-based organic compounds contains many nitrogen and oxygen atoms that exhibit hydrophilic properties, and the crosslinking density of the protective film itself is low, so moisture in the air can be absorbed into this protective film layer. The problem is that the permeated moisture corrodes the magnetic layer, which uses a metal magnetic material as a recording element, and its corrosion resistance has not yet been sufficiently improved.

〔発明の概要〕[Summary of the invention]

この発明は、かかる現状に鑑み種々検討を行った結果、
炭化水素系有機金属化合物のモノマーガスを用いてプラ
ズマ重合を行い、金属磁性材を記録素子とする磁性層上
に金属を含む炭化水素系化合物からなるプラズマ重合保
護膜層を形成すると、この種のプラズマ重合保護膜層は
、親水性を示す窒゛素原子や酸素原子を含まず、架橋密
度が高いため、空気中の水分を透過せず、耐食性が充分
に改善されることを見いだしてなされたもので、金属磁
性材を記録素子とする磁性層を、炭化水素系有機金属化
合物のモノマーガス中にさらしてプラズマ重合を行い、
金属を含む炭化水素系化合物からなるプラズマ重合保護
膜層を前記磁性層上に形成することを特徴とするもので
ある。
This invention was developed as a result of various studies in view of the current situation.
When plasma polymerization is performed using monomer gas of a hydrocarbon-based organometallic compound to form a plasma polymerized protective film layer made of a metal-containing hydrocarbon-based compound on a magnetic layer that uses a metal magnetic material as a recording element, this type of It was discovered that the plasma polymerized protective film layer does not contain nitrogen atoms or oxygen atoms, which exhibit hydrophilic properties, and has a high crosslinking density, so it does not allow moisture in the air to pass through, and its corrosion resistance is sufficiently improved. In this method, a magnetic layer containing a metal magnetic material as a recording element is exposed to a monomer gas of a hydrocarbon-based organometallic compound to perform plasma polymerization.
This method is characterized in that a plasma polymerized protective film layer made of a hydrocarbon compound containing metal is formed on the magnetic layer.

この発明において、金属磁性材を記録素子とする磁性層
を炭化水素系有機金属化合物のモノマーガス中にさらし
てプラズマ重合が行われると、親水性を示す窒素原子や
酸素原子を含まないプラズマ重合保護膜層が形成され、
さらにプラズマ重合保護膜層中に含まれる金属が触媒的
な作用をしてプラズマ重合が促進され、極めて架橋密度
の高いプラズマ重合保護膜層が形成され4゜またプラズ
マ重合保護膜層沖に含まれる金属によって金属磁性材を
記録素子とする磁性層との親和性も良好となり、磁性層
に対する接着性も改善される。その結果、親水性を示す
窒素原子や@素原子を含まず、緻密で架橋密度が高い、
金属を含む炭化水素化合物からなるプラズマ重合保護膜
層が、金属磁性材を記録素子とする磁性層上に強固に被
着形成され、空気中の水分がプラズマ重合保護膜層な透
過することもなく、耐食性が充分に向上された磁気記録
媒体が得られる。
In this invention, when plasma polymerization is performed by exposing a magnetic layer containing a metal magnetic material as a recording element to a monomer gas of a hydrocarbon-based organometallic compound, plasma polymerization protection that does not contain nitrogen atoms or oxygen atoms exhibiting hydrophilic properties is achieved. A membrane layer is formed,
Furthermore, the metal contained in the plasma polymerized protective film layer acts as a catalyst to promote plasma polymerization, forming a plasma polymerized protective film layer with extremely high crosslinking density. The metal also provides good compatibility with the magnetic layer in which the metal magnetic material is used as a recording element, and also improves adhesion to the magnetic layer. As a result, it does not contain nitrogen atoms or @ elements that exhibit hydrophilic properties, and has a dense and high crosslinking density.
A plasma-polymerized protective film layer made of a hydrocarbon compound containing metal is firmly adhered to the magnetic layer whose recording element is a metal magnetic material, and moisture in the air does not permeate through the plasma-polymerized protective film layer. , a magnetic recording medium with sufficiently improved corrosion resistance can be obtained.

このようなプラズマ重合に使用される炭化水素系有機金
属化合物のモノマーガスとしては、テトラメチルスズ、
テトラメチルゲルマニウム、ジエチル水銀、ブクジエン
鉄トリカルボニル、ペンタエトキシタンタル等のモノマ
ーガスが好適なものとして使用され、これらの炭化水素
系有機金属化合物の七ツマーガスは、高周波によりプラ
ズマ重合が行われると、高周波によりラジカルが生成さ
れ、この生成されたラジカルが反応し重合して被膜とな
る。これらのモノマーガスをプラズマ重合する際、アル
ゴンガスおよびヘリウムカ゛ス等のキャリアガスを併存
させると七ツマーガスを単独でプラズマ重合する場合に
比べて3〜5倍の速度で析出されるため、これらのキャ
リアガスを併存させて行うのが好ましい。これらのキャ
リアガスと併存させる際、その組成割合はキャリアガス
対前記炭化水素系有機金属化合物の七ノマーカ゛スの容
積比にして1対1〜20対1の範囲内で併存させるのが
好ましく、キャリアガスが少なすき゛ると析出速度が低
下し、多すぎるとモノマーガスが少なくなってプラズマ
重合反応に支障をきたす。
Monomer gases for hydrocarbon-based organometallic compounds used in such plasma polymerization include tetramethyltin,
Monomer gases such as tetramethylgermanium, diethylmercury, ferrotricarbonyl, pentaethoxytantalum, etc. are preferably used, and monomer gases of these hydrocarbon-based organometallic compounds can be used for plasma polymerization using radiofrequency waves. Radicals are generated, and the generated radicals react and polymerize to form a film. When plasma polymerizing these monomer gases, if a carrier gas such as argon gas or helium gas is present, the deposition rate will be 3 to 5 times faster than when plasma polymerizing monomer gases alone. It is preferable to carry out this process in the presence of a gas. When coexisting with these carrier gases, it is preferable that the composition ratio is within a range of 1:1 to 20:1 based on the volume ratio of the carrier gas to the 7-unit volume of the hydrocarbon-based organometallic compound. If the amount is too small, the precipitation rate will decrease, and if it is too large, the amount of monomer gas will decrease, which will interfere with the plasma polymerization reaction.

このようなプラズマ重合を行う場合の力゛ス圧および高
周波の電力は、ガス圧が高くなる&fどプラズマ重合保
護膜層の析出速度が速くなる反面モノマーガスが比較的
低分子量でプラズマ重合されて硬い保護膜層が得られず
、またガス圧を低くして高周波電力を高くすると析出速
度が遅くなる反面高分子化された比較的硬い保護膜層が
得られるが、ガス圧を低くして高周波電力を高くしすぎ
ると、モノマーガスが粉末化してしまいプラズマ重合保
護膜層が形成されないため、ガス圧を0.03〜5トー
ルの範囲内とし、高周波電力を0.03〜IW/−の範
囲内とするのが好ましく、ガス圧を0.05〜1トール
とし、高周波電力を0.05〜0.5 W/cdの範囲
内とするのがより好ましい。このようにしてプラズマ重
合を行うことによって析出形成される金属を含んだ炭化
水素系化合物からなるプラズマ重合保護膜層は、架II
度が高く、かつ緻密で摩擦係数も小さく、また親水性を
示す窒素原子や酸素原子を含まないため、水分の透過が
極めて良好に防止され、耐食性が一段と向上される。こ
のような金属を含む炭化水素系化合物のプラズマ重合保
護膜層の膜厚は、20〜1000人の範囲内で゛あるこ
とが好ましく、膜厚が薄すぎるとこの保護膜層による耐
食性の効果が充分に発揮されず、厚すぎるとスペーシン
グロスが大きくなりすぎて電磁変換特性に悪影響を及ぼ
す。
When carrying out such plasma polymerization, the force pressure and high-frequency power used are such that the higher the gas pressure, the faster the deposition rate of the plasma-polymerized protective film layer, but the monomer gas is plasma-polymerized with a relatively low molecular weight. A hard protective film layer cannot be obtained, and if the gas pressure is low and the high frequency power is high, the deposition rate will be slow, but on the other hand, a relatively hard polymerized protective film layer can be obtained. If the power is too high, the monomer gas will turn into powder and a plasma polymerized protective film layer will not be formed. Therefore, the gas pressure should be in the range of 0.03 to 5 Torr, and the high frequency power should be in the range of 0.03 to IW/-. More preferably, the gas pressure is within the range of 0.05 to 1 Torr, and the high frequency power is within the range of 0.05 to 0.5 W/cd. The plasma polymerized protective film layer made of a metal-containing hydrocarbon compound precipitated by performing plasma polymerization in this way is
It has a high degree of hardness, is dense, has a small coefficient of friction, and does not contain nitrogen or oxygen atoms that exhibit hydrophilic properties, so it extremely effectively prevents moisture from permeating and further improves corrosion resistance. The thickness of the plasma-polymerized protective film layer of a hydrocarbon compound containing such a metal is preferably within the range of 20 to 1000. If the film thickness is too thin, the corrosion resistance effect of this protective film layer will be lost. If the thickness is too thick and the spacing loss is too large, the electromagnetic conversion characteristics will be adversely affected.

金属磁性材を記録素子とする磁性層は、Fe粉末、Co
粉末、Fe−Ni粉末などの金属磁性粉末を、結合剤成
分および有機溶剤等とともに基体上に塗布、乾燥するか
、あるいは、GO%Fe%Ni、Co−Ni合金、Co
−Cr合金、Co−P % Co N iPなどの強磁
性材を、真空蒸着、イオンブレーティング、スパッタリ
ング、メッキ等の手段によって基体上に被着するなどの
方法で形成される。
The magnetic layer that uses a metal magnetic material as a recording element is made of Fe powder, Co
Metal magnetic powder such as Fe-Ni powder or Fe-Ni powder is coated on the substrate together with a binder component and an organic solvent and dried, or GO%Fe%Ni, Co-Ni alloy, Co
It is formed by depositing a ferromagnetic material such as -Cr alloy or Co-P%CoNiP on a substrate by means such as vacuum evaporation, ion blasting, sputtering, or plating.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 厚さ10μのポリエステルフィルムを真空蒸着装置に装
填し、5X10−5トールの真空下でコバルト−ニッケ
ル合金(重量比8:2)を加熱蒸発させてポリエステル
フィルム上に厚さ1000人のコバルト−ニッケル合金
からなる強磁性金属薄膜層を形成した。次いで、第1図
に示すプラズマ処理装置を使用し、強磁性金属薄膜層を
形成したポリエステルフィルム1を処理槽2内の上部に
配設した基板3の下面にセットし、処理槽2に取りつけ
たガス導入管4からテトラメチルスズのモノマーガスを
4 secmの流量で導入してガス圧を0.03トール
とし、電極5の電力密度0.2W/c+Jでプラズマ重
合を行い、厚さが300人のスズを含む炭化水素系化合
物からなるプラズマ重合保護膜層を形成した。しかる後
、所定の巾に裁断して第2図に示すようなポリエステル
フィルムl上に強磁性金属薄膜層8および金属を含む炭
化水素系化合物からなるプラズマ重合保護膜層9を順次
に積層形成した磁気テープAをつくった。なお、図中6
は処理槽2内を減圧するための排気系であり、7は電極
5に高周波を印加するための高周波電源である。
Example 1 A polyester film with a thickness of 10 μm was loaded into a vacuum evaporation apparatus, and a cobalt-nickel alloy (weight ratio 8:2) was heated and evaporated under a vacuum of 5×10 −5 Torr to form a 100 μm thick polyester film on the polyester film. A ferromagnetic metal thin film layer made of a cobalt-nickel alloy was formed. Next, using the plasma processing apparatus shown in FIG. 1, the polyester film 1 on which the ferromagnetic metal thin film layer was formed was set on the lower surface of the substrate 3 disposed at the upper part of the processing tank 2, and attached to the processing tank 2. Tetramethyltin monomer gas was introduced from the gas introduction pipe 4 at a flow rate of 4 sec, the gas pressure was set to 0.03 Torr, and plasma polymerization was performed at a power density of 0.2 W/c+J of the electrode 5. A plasma polymerized protective film layer made of a hydrocarbon compound containing tin was formed. After that, it was cut to a predetermined width and a ferromagnetic metal thin film layer 8 and a plasma polymerized protective film layer 9 made of a hydrocarbon compound containing metal were sequentially laminated on the polyester film l as shown in FIG. I made magnetic tape A. In addition, 6 in the figure
7 is an exhaust system for reducing the pressure inside the processing tank 2, and 7 is a high frequency power source for applying high frequency to the electrode 5.

実施例2 実施例1の強磁性金属薄膜層の形成において、コバルト
−ニッケル合金に代えてコバルトを使用した以外は、実
施例1と同様にしてコバルトからなる強磁性金属薄膜層
を形成し、磁気テープAをつくった。
Example 2 A ferromagnetic metal thin film layer made of cobalt was formed in the same manner as in Example 1, except that cobalt was used instead of the cobalt-nickel alloy in the formation of the ferromagnetic metal thin film layer in Example 1. I made tape A.

実施例3 実施例1におけるプラズマ重合保護膜層の形成において
、テトラメチルスズのモノマーガスに代えて、テトラメ
チルゲルマニウムのモノマーガスを同量使用した以外は
実施例1と同様にして、厚さが300人のゲルマニウム
を含む炭化水素系化合物からなるプラズマ重合保護膜層
を形成し、磁気テープAをつくった。
Example 3 In the formation of the plasma-polymerized protective film layer in Example 1, the same procedure as in Example 1 was performed except that the same amount of tetramethylgermanium monomer gas was used instead of the tetramethyltin monomer gas. A plasma polymerized protective film layer made of a hydrocarbon compound containing 300% germanium was formed to produce magnetic tape A.

実施例4 実施例1におけるプラズマ重合保護膜層の形成において
、テトラメチルスズのモノマーガスに代えて、ジエチル
水銀の七ツマーガスを同量使用した以外は実施例1と同
様にして、厚さが300人の水銀を含む炭化水素系化合
物からなるプラズマ重合保護膜層を形成し、磁気テープ
Aをつくった。
Example 4 In the formation of the plasma polymerized protective film layer in Example 1, the same procedure as in Example 1 was carried out except that the same amount of diethyl mercury monomer gas was used instead of the tetramethyltin monomer gas, and the thickness was 300 mm. A plasma-polymerized protective film layer made of a hydrocarbon compound containing human mercury was formed to produce magnetic tape A.

実施例5 実施例1におけるプラズマ重合保護M91層の形成にお
いて、テトラメチルスズの七ツマーガスに代えて、ブタ
ジェン鉄トリカルボニルのモノマーガスを同量使用した
以外は実施例1と同様にして、厚さが300人の鉄を含
む炭化水素系化合物からなるプラズマ重合保護膜層を形
成し、磁気テープ八をつくった。
Example 5 In the formation of the plasma polymerized protective M91 layer in Example 1, the thickness was 300 people formed a plasma-polymerized protective film layer made of iron-containing hydrocarbon compounds and created magnetic tape 8.

実施例6 実施例1におけるプラズマ重合保護膜層の形成において
、テトラメチルスズの七ツマーガスに代えて、ペンタエ
トキシタンタルのモノマーガスを同量使用した以外は実
施例1と同様にして、厚さが300人のタンタルを含む
炭化水素系化合物からなるプラズマ重合保護膜層を形成
し、磁気テ−プAをつくった。
Example 6 In forming the plasma-polymerized protective film layer in Example 1, the thickness was changed in the same manner as in Example 1, except that the same amount of pentaethoxytantalum monomer gas was used instead of the tetramethyltin-sulfur gas. A plasma polymerized protective film layer made of a hydrocarbon compound containing 300 tantalum was formed to produce magnetic tape A.

実施例7 α−Fe磁性粉末 600重量部 エスレソクCN(積木化学工業 80μ社製、塩化ビニ
ル−酢酸ビニ ル共重合体) パンデソクスT−5250(大 30μ日本インキ社製
、ウレタンエ ラストマー) コロネートL(日本ポリウレタ 10〃ン工業社製、三
官能性低分子 量イソシアネート化合物) メチルイソブチルケトン 400〃 トルエン 400〃 この組成物をホールミル中で72時間混合分散して磁性
塗料を調製し、この磁性塗料を厚さ10μのポリエステ
ルフィルム上に乾燥厚が4μとなるように塗布、乾燥し
て磁性層を形成した。次いで、この磁性層上に、実施例
1と同様にして厚さが300人でスズを含む炭化水素系
化合物からなるプラズマ重合保護膜層を形成し、磁気テ
ープAをつくった。
Example 7 α-Fe magnetic powder 600 parts by weight Esresoku CN (manufactured by Block Chemical Industry Co., Ltd. 80 μ, vinyl chloride-vinyl acetate copolymer) Pandesoku T-5250 (large 30 μ, manufactured by Nippon Ink Co., Ltd., urethane elastomer) Coronate L (Japan Polyurethane) 10〃 Trifunctional low molecular weight isocyanate compound manufactured by Ingyo Co., Ltd.) Methyl isobutyl ketone 400〃 Toluene 400〃 This composition was mixed and dispersed in a hole mill for 72 hours to prepare a magnetic paint. A magnetic layer was formed by coating on a polyester film to a dry thickness of 4 μm and drying. Next, on this magnetic layer, a plasma polymerized protective film layer having a thickness of 300 mm and made of a hydrocarbon compound containing tin was formed in the same manner as in Example 1, thereby producing magnetic tape A.

比較例1 実施例1におけるプラズマ重合保護膜層の形成において
、テトラメチルスズのモノマーガスに代えて、オクタメ
チルシクロテトラシロキサンのモノマーガスを45cc
I11の流量で導入するとともに、窒素ガスをl se
cmの流量で導入して全圧を0.05 トールとし、電
力密一度を0 、3 W / cotとした以外は、実
施例1と同様にして厚さが300人のケイ素系有機化合
物からなるプラズマ重合保護膜層を形成し、磁気テープ
をつくった。
Comparative Example 1 In the formation of the plasma polymerized protective film layer in Example 1, 45 cc of octamethylcyclotetrasiloxane monomer gas was used instead of tetramethyltin monomer gas.
At the same time, nitrogen gas was introduced at a flow rate of I11.
A silicon-based organic compound having a thickness of 300 cm was prepared in the same manner as in Example 1, except that the total pressure was 0.05 Torr and the power density was 0.3 W/cot. A plasma polymerized protective film layer was formed and a magnetic tape was made.

比較例2 実施例1において、プラズマ重合保護膜層の形成を省い
た以外は、実施例1と同様にして磁気テープをつくった
Comparative Example 2 A magnetic tape was produced in the same manner as in Example 1, except that the formation of the plasma polymerized protective film layer was omitted.

各実施例および比較例で得られた磁気テープについて、
耐食性を試験した。耐食性試験は得られた磁気テープを
60℃、90%RHの条件下に7日間放置して最大磁束
密度を測定し、放置前の磁気テープの最大磁束密度を1
00%とし、これと比較した値でその劣化率を調べて行
った。
Regarding the magnetic tapes obtained in each example and comparative example,
Tested for corrosion resistance. In the corrosion resistance test, the obtained magnetic tape was left under conditions of 60°C and 90% RH for 7 days, and the maximum magnetic flux density was measured.
00%, and the deterioration rate was investigated using the value compared with this value.

下表はその結果である。The table below shows the results.

表 〔発明の効果〕 上表から明らかなように、実施例1ないし7で得られた
磁気テープは、いずれも比較例1および2で得られた磁
気チーブに比し、劣化率が小さく、このことからこの発
明の製造方法によれば、一段と耐食性に優れた磁気記録
媒体が得られるのがわかる。
Table [Effects of the Invention] As is clear from the above table, the magnetic tapes obtained in Examples 1 to 7 all had lower deterioration rates than the magnetic tapes obtained in Comparative Examples 1 and 2. This shows that according to the manufacturing method of the present invention, a magnetic recording medium with even better corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の製造方法により金属を含有する炭化
水素系化合物からなるプラズマ重合保護膜層を形成する
際に使用するプラズマ処理装置の1例を示す概略断面図
、第2図はこの発明の製造方法によって得られた磁気テ
ープの部分拡大断面図である。 1・・・ポリエステルフィルム(基体)、8・・・強磁
性金属薄l!iii層、9・・・プラズマ重合保護膜層
、A・・・磁気テープ(磁気記録媒体) 特許出願人 日立マクセル株式会社 代理人 高岡−春j−1艷、、t !l!;(′−゛。 1)−j 二ニミ3・
FIG. 1 is a schematic cross-sectional view showing an example of a plasma processing apparatus used in forming a plasma polymerized protective film layer made of a metal-containing hydrocarbon compound by the manufacturing method of the present invention, and FIG. FIG. 2 is a partially enlarged sectional view of a magnetic tape obtained by the manufacturing method of FIG. 1... Polyester film (substrate), 8... Ferromagnetic metal thin l! Layer iii, 9... Plasma polymerized protective film layer, A... Magnetic tape (magnetic recording medium) Patent applicant Hitachi Maxell Co., Ltd. Agent Takaoka-Haru j-1,,t! l! ;('-゛. 1)-j Niimi 3・

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に金属磁性材を記録素子とする磁性層を形成
し、次いで、この磁性層を、炭化水素系有機金属化合物
のモノマーガス中にさらしてプラズマ重合を行い、金属
を含む炭化水素系化合物からなるプラズマ重合保護膜層
を磁性層上に形成することを特徴とする磁気記録媒体の
製造方法
1. A magnetic layer having a metal magnetic material as a recording element is formed on a substrate, and then this magnetic layer is exposed to a monomer gas of a hydrocarbon-based organometallic compound to perform plasma polymerization to form a hydrocarbon-based material containing a metal. A method for manufacturing a magnetic recording medium, comprising forming a plasma polymerized protective film layer made of a compound on a magnetic layer.
JP9397284A 1984-05-10 1984-05-10 Production of magnetic recording medium Pending JPS60237640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9397284A JPS60237640A (en) 1984-05-10 1984-05-10 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9397284A JPS60237640A (en) 1984-05-10 1984-05-10 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS60237640A true JPS60237640A (en) 1985-11-26

Family

ID=14097316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9397284A Pending JPS60237640A (en) 1984-05-10 1984-05-10 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60237640A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319125A (en) * 1989-06-16 1991-01-28 Matsushita Electric Ind Co Ltd Magnetic recording medium
US5494742A (en) * 1993-01-14 1996-02-27 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium having improved running time and corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319125A (en) * 1989-06-16 1991-01-28 Matsushita Electric Ind Co Ltd Magnetic recording medium
US5494742A (en) * 1993-01-14 1996-02-27 Matsushita Electric Industrial Co., Ltd. Magnetic recording medium having improved running time and corrosion resistance

Similar Documents

Publication Publication Date Title
US4737415A (en) Magnetic recording medium and production thereof
JPH0479044B2 (en)
JPS60237640A (en) Production of magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS62167616A (en) Magnetic recording medium and its production
JPS6122432A (en) Production of magnetic recording medium
JPS61104430A (en) Production of magnetic recording medium
JPS61104425A (en) Magnetic recording medium
JPS60237639A (en) Production of magnetic recording medium
JPS6231022A (en) Magnetic recording medium and its manufacture
JPS6122420A (en) Magnetic recording medium
JPH0576097B2 (en)
JPS60237634A (en) Magnetic recording medium and its production
JPS6122426A (en) Magnetic recording medium
JPS6057537A (en) Production of magnetic recording medium
JPS61214138A (en) Production of magnetic recording medium
JPS61214130A (en) Magnetic recording medium
JPS6258417A (en) Magnetic recording medium and its production
JPS60237627A (en) Magnetic recording medium
JPS6344315A (en) Magnetic recording medium
JPS6116029A (en) Magnetic recording medium and its production
JPS61214137A (en) Production of magnetic recording medium
JPS61278025A (en) Magnetic recording medium and its production
JPS6231024A (en) Production of magnetic recording medium
JPS6361418A (en) Magnetic recording medium and its production