JPS6057537A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS6057537A
JPS6057537A JP16622283A JP16622283A JPS6057537A JP S6057537 A JPS6057537 A JP S6057537A JP 16622283 A JP16622283 A JP 16622283A JP 16622283 A JP16622283 A JP 16622283A JP S6057537 A JPS6057537 A JP S6057537A
Authority
JP
Japan
Prior art keywords
silicon
film layer
protective film
plasma
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16622283A
Other languages
Japanese (ja)
Inventor
Fumio Komi
文夫 小海
Tsunemi Oiwa
大岩 恒美
Yasunori Kanazawa
金沢 安矩
Kunio Wakai
若居 邦夫
Hiroshi Yamamoto
博司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP16622283A priority Critical patent/JPS6057537A/en
Publication of JPS6057537A publication Critical patent/JPS6057537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To improve durability and corrosion resistance by exposing a magnetic layer into the plasma of a gaseous mixture composed of the gaseous monomers of silicon atom, carbon atom, hydrogen atom or said atoms and specific two kinds of org. silicon compds. to form a protective film layer. CONSTITUTION:A magnetic layer is exposed into the plasma of a gaseous mixture composed of the 1st gaseous monomer of an org. silicon compd. consisting of silicon atom, carbon atom, hydrogen atom or said atoms and nitrogen atom and the 2nd gaseous monomer of an org. silicon compd. contg. silicon atom and oxygen atom and having an unsatd. bond to perform plasma polymn. in the case of forming the protective film layer. The 1st gaseous monomer is preferably, for example, tetramethylsilane, etc. and the 2nd gaseous monomer is preferably, for example, vinyltrimethoxysilane, etc. The compsn. ratio of the 1st and 2nd gaseous monomers is made preferably in a range of 4:1-20:1. The gaseous pressure in the case of performing polymn. is made within 0.03-3Torr range and the high-frequency output is made preferably within 0.03-0.5W/cm<2>. The thickness of the protective film layer is preferably within 30-1,000Angstrom .

Description

【発明の詳細な説明】 この発明は磁気記録媒体の製造方法に関し、さらに詳し
くはプラズマ重合保護膜層を有する耐久性および耐食性
に優れた磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium, and more particularly to a method for manufacturing a magnetic recording medium having a plasma polymerized protective film layer and having excellent durability and corrosion resistance.

一般に、磁性粉末を結合剤成分とともに基体フィルム上
に結着させるか、或いは強磁性金属またはそれらの合金
などを真空蒸着等によって基体フィルム上に被着してつ
くられる磁気記録媒体は、記録再生時に磁気ヘッド等と
激しく摺接するため磁性層が摩耗され易く、特に真空蒸
着等によって形成される強磁性金属薄膜型磁気記録媒体
は、高密度記録特性に優れる反面、磁気ヘッドとの摩擦
係数が大きくて摩耗や損傷を受け易く、また空気中で除
々に酸化を受けて最大磁束密度などの磁気特性が劣化す
るなどの難点がある。
In general, magnetic recording media are made by binding magnetic powder together with a binder component onto a base film, or by depositing ferromagnetic metals or their alloys on a base film by vacuum deposition, etc. The magnetic layer is easily worn out due to violent sliding contact with the magnetic head, etc. In particular, ferromagnetic metal thin film magnetic recording media formed by vacuum deposition etc. have excellent high-density recording characteristics, but have a large coefficient of friction with the magnetic head. It is susceptible to wear and damage, and it also suffers from gradual oxidation in the air, resulting in deterioration of magnetic properties such as maximum magnetic flux density.

このため、磁性層上に種々の保護膜層を設けて耐久性お
よび耐食性を改善することが行われており、近年、有機
化合物のプラズマ重合保護膜層を磁性層上に形成するこ
とが提案されている。ところが、従来のこの種の有機化
合物のプラズマ重合f^護膜層を磁性層上に形成する方
法ではプラズマ重合保護膜層の被着速度が比較的遅く、
未だ充分に耐久性および、耐食性に優れた磁気記録媒体
を効率よく製造することができない。
For this reason, various protective film layers are provided on the magnetic layer to improve durability and corrosion resistance, and in recent years, it has been proposed to form a plasma polymerized protective film layer of an organic compound on the magnetic layer. ing. However, in the conventional method of forming a plasma-polymerized protective film layer of this type of organic compound on a magnetic layer, the deposition rate of the plasma-polymerized protective film layer is relatively slow;
It is still not possible to efficiently produce magnetic recording media with sufficient durability and corrosion resistance.

この発明者らばかがる現状に謳み、鋭意研究を重ねた結
果、基体上に磁性層を形成し、次いで、この磁性層上に
有機化合物のプラズマ重合保護膜層を形成するにあたっ
て、ケイ素原子、炭素原子および水素原子もしくはこれ
らと窒素原子からなるケイ素系有機化合物のモノマーガ
スと、ケイ素原子および酸素原子を含みかつ不飽和結合
を有するケイ素系有機化合物のモノマーガスとの混合ガ
スのプラズマr4vlこ、磁性層をさらしてプラズマ重
合を行うと、プラズマ重合保護膜層が速い被着速度で被
着されて緻密で硬いケイ素系有機化合物からなるプラズ
マ重合保護膜層が磁性層上に強固に被着形成され、耐摩
耗性が大きく改善されて耐久性が向上されるとともに耐
食性も充分に改善されることを見いだし、この発明をな
すに至った。
As a result of extensive research, the inventors have been proud of the current state of affairs and have found that silicon atoms are , a plasma r4vl of a mixed gas of a monomer gas of a silicon-based organic compound consisting of carbon atoms and hydrogen atoms or these and nitrogen atoms, and a monomer gas of a silicon-based organic compound containing silicon atoms and oxygen atoms and having an unsaturated bond. When the magnetic layer is exposed and subjected to plasma polymerization, the plasma polymerized protective film layer is deposited at a fast deposition rate, and the plasma polymerized protective film layer made of a dense and hard silicon-based organic compound is firmly adhered to the magnetic layer. The present inventors have discovered that the abrasion resistance is greatly improved, the durability is improved, and the corrosion resistance is also sufficiently improved.

この発明において磁性層上へのプラズマ重合保護膜層の
形成は、反応槽内で、ケイ素原子、炭素原子および水素
原子もしくはこれらと窒素原子からなるケイ素系有機化
合物モノマーガスとケイ素原子および酸素原子を含みか
つ不飽和結合を有するケイ素系有機化合物のモノマーガ
スとを、高周波によりプラズマ重合させて磁性層の表面
に被着形成スることによって形成される。このプラズマ
重合保護膜層を形成するのに使用するケイ素原子、炭素
原子および水素原子もしくはこれらと窒素原子からなる
ケイ素系有機化合物のモノマーガスとしては、たとえば
、テトラメチルシラン、ヘキサメチルジシラザン、ビニ
ルトリメチルシラン、トリメチルシリルアセチレン等が
好ましく使用され、ケイ素原子および酸素原子を含めか
つ不飽和結合を有するケイ素系有機化合物のモノマーガ
スとしては、たとえば、ビニルトリメトキシシラン、ア
リルオキシトリメチルシラン等が好ましく使用される。
In the present invention, the plasma polymerized protective film layer is formed on the magnetic layer by combining silicon atoms, carbon atoms, and hydrogen atoms, or a silicon-based organic compound monomer gas consisting of silicon atoms, carbon atoms, and hydrogen atoms, or these and nitrogen atoms, and silicon atoms and oxygen atoms. It is formed by plasma polymerizing a monomer gas of a silicon-based organic compound having an unsaturated bond and an unsaturated bond on the surface of the magnetic layer. Monomer gases of silicon-based organic compounds consisting of silicon atoms, carbon atoms, hydrogen atoms, or these and nitrogen atoms used to form this plasma-polymerized protective film layer include, for example, tetramethylsilane, hexamethyldisilazane, vinyl Trimethylsilane, trimethylsilylacetylene, etc. are preferably used, and as the monomer gas of a silicon-based organic compound containing a silicon atom and an oxygen atom and having an unsaturated bond, for example, vinyltrimethoxysilane, allyloxytrimethylsilane, etc. are preferably used. Ru.

これらの化合物のモノマーガスは、高周波によりラジカ
ルが生成され、この生成されたラジカルが反応し重合し
て被膜となる。このプラズマ重合を行う際、上記したよ
うにケイ素原子、炭素原子および水素原子もしくはこれ
らと窒素原子からなるケイ茸系有機化合物のモノマーガ
スとともにケイ素原子および酸素原子を含みかつ不飽和
結合を有するケイ素系有機化合物のモノマーガスを添加
して使用すると、この添加したモノマーガスの作用によ
って被着速度が速くなって緻密で硬いプラズマ重合保護
膜層が得られ、耐久性および耐食性が充分に向上される
。またこれらのモノマーガスをプラズマ重合する際、さ
らにアルゴンガスおよびヘリウムガス等のキャリアガス
を併存させると七ツマーガスを単独でプラズマ重合する
場合に比べて3〜5倍(7)7度で被着されるため、ご
れらのキャリアガスを併存させて行うのが好ましい。こ
の際キャリアガスには酸素ガスを混合してもよい。ケイ
素原子、炭素原子および水素原子もしくはこれらと窒素
原子からなるケイ素系有機化合物のモノマーガスに、ケ
イ素原子および酸素原子を含めかつ不飽和結合を有する
ケイ素系有機化合物のモノマーガスを添加してプラズマ
重合を行う際の組成割合は、ケイ素原子、炭素原子およ
び水素原子もしくはこれらと窒素原子からなるケイ素系
有機化合物のモノマーガス対ケイ素原子および酸素原子
を含みかつ不飽和結合を有するケイ素系有機化合物の七
ツマーガスの比にして4対1から20対1の範囲内にす
るのが好ましく、添加する不飽和結合を有するケイ素系
有機化合物のモノマーガスが少なすぎると被着速度がそ
れほど速くならず、多ずぎると緻密で硬いプラズマ重合
保護膜層が得られない。またこれらのケイ素系有機化合
物のモノマーガスにキャリアガスを併存させる際、その
組成割合はキャリアガス対前記ケイ素系有機化合物のモ
ノマーガスの比にして4対1の割合で併存させるのが好
ましく、キャリアガスが少なすぎると被着速度が低下し
、多ずぎるとモノマーガスが少なくなってプラズマ重合
反応に支障をきたす。
In the monomer gas of these compounds, radicals are generated by high frequency, and the generated radicals react and polymerize to form a film. When performing this plasma polymerization, as mentioned above, silicon-based organic compounds containing silicon atoms, carbon atoms, hydrogen atoms, or these and nitrogen atoms, and silicon-based organic compounds containing silicon atoms and oxygen atoms and having unsaturated bonds are used. When a monomer gas of an organic compound is added and used, the deposition speed is increased by the action of the added monomer gas, a dense and hard plasma polymerized protective film layer is obtained, and the durability and corrosion resistance are sufficiently improved. In addition, when plasma polymerizing these monomer gases, if a carrier gas such as argon gas or helium gas is co-existed, the deposition rate will be 3 to 5 times (7) 7 degrees compared to when plasma polymerizing monomer gas alone. Therefore, it is preferable to carry out this process in the presence of a carrier gas. At this time, oxygen gas may be mixed with the carrier gas. Plasma polymerization is performed by adding a monomer gas of a silicon-based organic compound containing silicon atoms and oxygen atoms and having an unsaturated bond to a monomer gas of a silicon-based organic compound consisting of silicon atoms, carbon atoms, and hydrogen atoms, or these and nitrogen atoms. The composition ratio when performing this is a monomer gas of a silicon-based organic compound consisting of silicon atoms, carbon atoms, and hydrogen atoms, or these and nitrogen atoms, to a monomer gas of a silicon-based organic compound containing silicon atoms and oxygen atoms and having an unsaturated bond. It is preferable to keep the monomer gas ratio within the range of 4:1 to 20:1. If the monomer gas of the silicon-based organic compound having an unsaturated bond is too small, the deposition rate will not be so fast and the If it is too dense, a dense and hard plasma polymerized protective film layer cannot be obtained. Further, when a carrier gas is made to coexist with the monomer gas of these silicon-based organic compounds, the composition ratio thereof is preferably 4:1 in terms of the ratio of the carrier gas to the monomer gas of the silicon-based organic compound. If the amount of gas is too small, the deposition rate will decrease, and if it is too large, the amount of monomer gas will decrease, which will interfere with the plasma polymerization reaction.

プラズマ重合を行う場合のガス圧および高周波の出力は
、ガス圧が高くなるほど被着速度が速くなる反面モノマ
ーガスが比較的低分子量でプラズマ重合されて硬い保護
膜層が得られず、ガス圧を低くして高周波出力を高くす
ると被着速度が遅くなる反面高分子化された比較的硬い
保護膜層が得られるが、ガス圧を低くして高周波出力を
高くしすぎると、モノマーガスが粉末化してしまいプラ
ズマ重合保護膜層が形成されないため、ガス圧を0.0
3〜3トールの範囲内とし、高周波出力を0.03〜0
 、5 W / ctAlの範囲内とするのが好ましく
、ガス圧を0.1〜1トールとし、高周波出力を0.0
5〜0.3W/cIlの範囲内とするのがより好ましい
。このようにしてプラズマ重合によって被着形成される
ケイ素系有機化合物のプラズマ重合保護膜層は、緻密で
V、擦係数も小さく、従ってこのケイ素系有機化合物の
プラズマ重合保護膜層が形成されると耐摩耗性および耐
食性が一段と向上する。このようなケイ素系有機化合物
のプラズマ重合保護膜層の膜厚は、30〜1000人の
範囲内であることが好ましく、膜厚が薄ずぎるとこの保
護膜層による耐久性および耐食性の効果が充分に発揮さ
れず、厚ずぎるとスペーシングロスが大きくなりすぎて
電磁変換特性に悪影響を及ぼす。
When performing plasma polymerization, the gas pressure and high frequency output are such that the higher the gas pressure, the faster the deposition speed, but on the other hand, the monomer gas has a relatively low molecular weight and is plasma polymerized, making it difficult to obtain a hard protective film layer. If the gas pressure is lowered and the radio frequency output is increased, the deposition speed will be slower, but a relatively hard protective film layer made of polymer will be obtained. However, if the gas pressure is lowered and the radio frequency output is too high, the monomer gas will turn into powder. Because the plasma polymerized protective film layer is not formed due to
Within the range of 3 to 3 torr, and the high frequency output is 0.03 to 0.
, 5 W/ctAl, the gas pressure is 0.1-1 Torr, and the high frequency output is 0.0
More preferably, it is within the range of 5 to 0.3 W/cIl. The silicon-based organic compound plasma-polymerized protective film layer deposited by plasma polymerization in this manner is dense, has a low V, and has a small friction coefficient. Wear resistance and corrosion resistance are further improved. The thickness of such a plasma polymerized protective film layer of a silicon-based organic compound is preferably within the range of 30 to 1000. If the film thickness is too thin, the durability and corrosion resistance effects of this protective film layer may be insufficient. If the thickness is too large and the spacing loss is too large, the electromagnetic conversion characteristics will be adversely affected.

基体上への磁性層の形成は、7−Fe2O3粉末、Fe
3O4粉末、CO含有7−Fe2’03粉末、CO含有
Fe3O4粉末、Fe粉末、CO粉末、Fe−Ni粉末
などの磁性粉末を結合剤成分および有機溶剤等とともに
基体上に塗布、乾燥するか、あるいは、CoXNi−F
e、、Co−Ni、Co−Cr、、Co−P、Co−N
1−Pなどの強磁性材を真空蒸着、イオンブレーティン
グ、スパッタリング、メッキ等の手段によって基体上に
被着するなどの方法で形成される。
The magnetic layer is formed on the substrate using 7-Fe2O3 powder, Fe
Magnetic powder such as 3O4 powder, CO-containing 7-Fe2'03 powder, CO-containing Fe3O4 powder, Fe powder, CO powder, Fe-Ni powder, etc. is applied onto a substrate together with a binder component and an organic solvent, and then dried, or , CoXNi-F
e, , Co-Ni, Co-Cr, , Co-P, Co-N
It is formed by depositing a ferromagnetic material such as 1-P on a substrate by means such as vacuum evaporation, ion blasting, sputtering, or plating.

このような方法で製造される磁気記録媒体としては、ポ
リエステルフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、円盤やドラムを基体とする磁気ディスク
や磁気ドラムなど、磁気ヘッドと摺接する構造の種々の
形態を包含する。
Magnetic recording media manufactured by this method include a variety of structures that come into sliding contact with a magnetic head, such as magnetic tapes based on synthetic resin films such as polyester films, magnetic disks and magnetic drums based on disks or drums, etc. It includes the form of

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 厚さ10t!のポリエステルフィルムを真空蒸着装置に
装填し、5X10−51〜−ルの真空下でコバルトを加
熱蒸発させてポリエステルフィルム上に厚さ1000人
のコバルトからなる強磁性金属薄膜層を形成した。次い
で、第1図に示すプラズマ重合装置を使用し、この強磁
性金属薄膜層を形成したポリエステルフィルム1を反応
槽2内で原反ロール3から円筒状キャン4の周側面にそ
って移動させ、巻き取りロール5に巻き取るようにセッ
トした。そしてガス導入管6がらテトラメチルシランの
モノマーガスを200secmの流量で導入し、また添
加ガスとしてビニルトリメトキシシラン40secmを
導入し、ガス圧0.10 トールで13.56MHzの
高周波を出力100Wで印加して1分間プラズマ重合を
行い、プラズマ重合保護膜層を形成した。しかる後、所
定の巾に裁断して、第2図に示す、ようなポリエステル
フィルム1上に強磁性金属薄膜層10およびプラズマ重
合保護膜層11を順次に積層形成した磁気テープAをつ
くった。このときのプラズマ重合保護膜層の厚みは25
0人であった。なお、図中8は反応槽1内を減圧するた
めの排気系であり、9は電極7に高周波を印加するため
の交流電源である。
Example 1 Thickness 10t! The polyester film was loaded into a vacuum evaporation apparatus, and the cobalt was heated and evaporated under a vacuum of 5×10 −51 to 10 μm to form a ferromagnetic metal thin film layer of cobalt with a thickness of 1000 μm on the polyester film. Next, using the plasma polymerization apparatus shown in FIG. 1, the polyester film 1 on which the ferromagnetic metal thin film layer was formed was moved from the raw roll 3 to the circumferential side of the cylindrical can 4 in the reaction tank 2. It was set to be wound up on the winding roll 5. Then, monomer gas of tetramethylsilane was introduced through the gas introduction pipe 6 at a flow rate of 200 sec, and vinyltrimethoxysilane was introduced as an additive gas at 40 sec, and a high frequency of 13.56 MHz was applied at a gas pressure of 0.10 Torr and an output of 100 W. Plasma polymerization was performed for 1 minute to form a plasma polymerized protective film layer. Thereafter, the tape was cut to a predetermined width to produce a magnetic tape A in which a ferromagnetic metal thin film layer 10 and a plasma polymerized protective film layer 11 were sequentially laminated on a polyester film 1 as shown in FIG. The thickness of the plasma polymerized protective film layer at this time was 25
There were 0 people. In the figure, 8 is an exhaust system for reducing the pressure inside the reaction tank 1, and 9 is an AC power source for applying high frequency to the electrode 7.

実施例2 実施例1におけるプラズマ重合保護膜層の形成において
、テトラメチルシランに代えてヘキサメチルジシラザン
を同量使用し、添加ガスとしてビニルトリメトキシシラ
ンに代えてアリルオキシトリメチルシランを25sec
m使用した以外は実施例1と同様にして磁気テープをつ
くった。このときのプラズマ重合保護膜層の厚みは30
0人であった。
Example 2 In the formation of the plasma polymerized protective film layer in Example 1, the same amount of hexamethyldisilazane was used instead of tetramethylsilane, and allyloxytrimethylsilane was used for 25 seconds instead of vinyltrimethoxysilane as an additive gas.
A magnetic tape was produced in the same manner as in Example 1 except that m was used. The thickness of the plasma polymerized protective film layer at this time was 30
There were 0 people.

実施例3 α−Fe磁性粉末 600重量部 エスレソクCN(漬水化学工業 80μ社製、塩化ビニ
ル−酢酸ビニ ル共重合体) パ7テソ’) スT 5250 (大 3o〃日本イン
キ社懸、ウレタンエ ラストマー) コロネートしく日本ポリウレタ 1o〃ン工業社製、三
官能性低分子 量ンソシアネート化合物) メチルイソブチルケトン 4oo〃 トルエン 4oon この組成物をボールミル中で72時間混合分散して磁性
塗料を調製し、この磁性塗料を厚さ10μのポリエステ
ルフィルム上に乾燥厚が4μとなるように塗布、乾燥し
て磁性層を形成した。次いて、これに実施例1と同様に
してプラズマ重合保護膜層を形成し磁気テープをつくっ
た。
Example 3 α-Fe magnetic powder 600 parts by weight Esresoku CN (manufactured by Tsukisui Kagaku Kogyo 80μ Co., Ltd., vinyl chloride-vinyl acetate copolymer) Pa7 Teso') S T 5250 (Dai 3o, manufactured by Nippon Ink Co., Ltd., urethane elastomer) ) Trifunctional low molecular weight unsocyanate compound manufactured by Nippon Polyurethane Industry Co., Ltd.) Methyl isobutyl ketone 4oo Toluene 4oon This composition was mixed and dispersed in a ball mill for 72 hours to prepare a magnetic paint. A magnetic layer was formed by coating on a polyester film having a thickness of 10 μm to a dry thickness of 4 μm and drying. Next, a plasma polymerized protective film layer was formed thereon in the same manner as in Example 1 to produce a magnetic tape.

比較例1 実施例1におけるプラズマ重合保護膜層の形成において
、ビニルトリメトキシシランの添加を省き、ガス圧を0
.101−−ルから0.08 トールに変更した以外は
実施例1と同様にして磁気テープをつくった。このとき
のプラズマ重合保護膜層の厚みは80人と推定される。
Comparative Example 1 In the formation of the plasma polymerized protective film layer in Example 1, the addition of vinyltrimethoxysilane was omitted and the gas pressure was reduced to 0.
.. A magnetic tape was produced in the same manner as in Example 1 except that the thickness was changed from 101 to 0.08 torr. The thickness of the plasma polymerized protective film layer at this time is estimated to be 80 people.

比較例2 実施例2におけるプラズマ重合保護膜層の形成において
、アリルオキシトリメチルシランの添加を省き、ガス圧
を0.101−−ルから0.08 トールに変更した以
外は実施例1と同様にして磁気テープをつくった。ごの
ときのプラズマ重合保護膜層の厚みは90人と111定
される。
Comparative Example 2 In the formation of the plasma polymerized protective film layer in Example 2, the same procedure as Example 1 was carried out except that the addition of allyloxytrimethylsilane was omitted and the gas pressure was changed from 0.101 torr to 0.08 torr. and made magnetic tape. The thickness of the plasma polymerized protective film layer in this case is determined to be 90 and 111.

比較例3 実施例1において、プラズマ重合保護膜層の形成を省い
た以外は実施例1と同様にして磁気テープをつくった。
Comparative Example 3 A magnetic tape was produced in the same manner as in Example 1 except that the formation of the plasma polymerized protective film layer was omitted.

各実施例および各比較例において、プラズマ重合保護膜
層の被着速度を測定し、また各実施例および各比較例で
得られた磁性テープについて耐久性および耐食性を試験
した。耐久性試験は、得られた磁気テープをサファイ°
ア針で摺動試験し、プラズマ重合保護膜層に傷がつくま
での回数を測定して行い、また、耐食性試験は、得られ
た磁気テープを60°C190%RHの条件下に7日間
放置して最大磁束密度を測定し、放置前の磁気テープの
最大磁束密度を100%としてこれと比較した値でその
劣化率を81′IiI姿で行った。
In each Example and each Comparative Example, the deposition rate of the plasma polymerized protective film layer was measured, and the magnetic tape obtained in each Example and each Comparative Example was tested for durability and corrosion resistance. Durability tests were carried out on sapphire magnetic tapes
A sliding test was performed with a needle to measure the number of times it took for the plasma polymerized protective film layer to be scratched.A corrosion resistance test was performed by leaving the obtained magnetic tape at 60°C and 190% RH for 7 days. The maximum magnetic flux density was measured, and the deterioration rate was determined based on the value compared with the maximum magnetic flux density of the magnetic tape before being left as 100%.

下表はその結果である。The table below shows the results.

」1表から明らかなように、この発明の製造方法で得ら
れた磁気テープ(実施例1〜3)は、いずれもケイ素原
子および酸素原子を含みかつ不飽和結合を有するケイ素
系有機化合物を添加ガスとして使用せずに(7られた磁
気テープ(比較例1および2)および従来の磁気テープ
(比較例3)に比し、プラズマ重合保護膜層の被着速度
が速く、劣化率が小さくて耐久性がよく、このことがら
この発明の製造方法によれば、プラズマ重合保護膜層の
被着速度が速(、耐久性および耐食性に優れた磁気記録
媒体が効率よく得られることがわかる。
As is clear from Table 1, the magnetic tapes (Examples 1 to 3) obtained by the production method of the present invention all contained silicon-based organic compounds containing silicon atoms and oxygen atoms and having unsaturated bonds. Compared to magnetic tapes (Comparative Examples 1 and 2) and conventional magnetic tapes (Comparative Example 3), the deposition speed of the plasma polymerized protective film layer is faster and the deterioration rate is smaller. It can be seen that according to the manufacturing method of the present invention, a magnetic recording medium with excellent durability and corrosion resistance can be efficiently obtained with a fast deposition rate of the plasma polymerized protective film layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラズマ重合保護膜層を形成する際に使用する
プラズマ重合装置の1例を示す概略断面図、第2図はこ
の発明によって得られた磁気テープの部分拡大断面図で
ある。 1・・・ポリエステルフィルム(基体)、1o・・・強
磁性全屈薄膜層(磁性層)、11・・・プラズマ重合保
護膜層、Δ・・・磁気テープ(磁気記録媒体)特許出願
人 日立マクセル株式会社
FIG. 1 is a schematic sectional view showing an example of a plasma polymerization apparatus used in forming a plasma polymerized protective film layer, and FIG. 2 is a partially enlarged sectional view of a magnetic tape obtained by the present invention. DESCRIPTION OF SYMBOLS 1...Polyester film (substrate), 1o...Ferromagnetic total refraction thin film layer (magnetic layer), 11...Plasma polymerized protective film layer, Δ...Magnetic tape (magnetic recording medium) Patent applicant Hitachi Maxell Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に磁性層を形成し、次いで、この磁性層を、
ケイ素原子、炭素原子および水素原子もしくはこれらと
窒素原子からなるケイ素系有機化合物のモノマーガスと
、ケイ素原子および酸素原子を含みかつ不飽和結合を有
するケイ素系有機化合物のモノマーガスとの混合ガスの
プラズマ中にさらしてケイ素系有機化合物のプラズマ重
合保護膜層を磁性層上に形成することを特徴とする磁気
記録媒体の製造方法
1. Form a magnetic layer on the substrate, then apply this magnetic layer to
Plasma of a mixed gas of a monomer gas of a silicon-based organic compound consisting of silicon atoms, carbon atoms, and hydrogen atoms, or these and nitrogen atoms, and a monomer gas of a silicon-based organic compound containing silicon atoms and oxygen atoms and having an unsaturated bond. A method for producing a magnetic recording medium, which comprises exposing a magnetic layer to a plasma-polymerized protective layer of a silicon-based organic compound on a magnetic layer.
JP16622283A 1983-09-08 1983-09-08 Production of magnetic recording medium Pending JPS6057537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16622283A JPS6057537A (en) 1983-09-08 1983-09-08 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16622283A JPS6057537A (en) 1983-09-08 1983-09-08 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6057537A true JPS6057537A (en) 1985-04-03

Family

ID=15827372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16622283A Pending JPS6057537A (en) 1983-09-08 1983-09-08 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6057537A (en)

Similar Documents

Publication Publication Date Title
JPS6057537A (en) Production of magnetic recording medium
JPS6057536A (en) Magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS62279521A (en) Production of magnetic recording medium
JPS62167616A (en) Magnetic recording medium and its production
JPS60237634A (en) Magnetic recording medium and its production
JPS60237640A (en) Production of magnetic recording medium
JPS6258416A (en) Magnetic recording medium and its production
JPS60237639A (en) Production of magnetic recording medium
JPS6258417A (en) Magnetic recording medium and its production
JPS60237627A (en) Magnetic recording medium
JPS6344318A (en) Production of magnetic recording medium
JPS6122432A (en) Production of magnetic recording medium
JPS6116030A (en) Production of magnetic recording medium
JPS61104430A (en) Production of magnetic recording medium
JPS62273624A (en) Magnetic recording medium and its production
JPS6344315A (en) Magnetic recording medium
JPS61122924A (en) Magnetic recording medium and its production
JPS63157312A (en) Magnetic recording medium and its production
JPS6366727A (en) Production of magnetic recording medium
JPS6231022A (en) Magnetic recording medium and its manufacture
JPS6116029A (en) Magnetic recording medium and its production
JPS6122430A (en) Production of magnetic recording medium
JPS6122426A (en) Magnetic recording medium
JPS6122434A (en) Magnetic recording medium and its production