JPS61122924A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPS61122924A
JPS61122924A JP24316884A JP24316884A JPS61122924A JP S61122924 A JPS61122924 A JP S61122924A JP 24316884 A JP24316884 A JP 24316884A JP 24316884 A JP24316884 A JP 24316884A JP S61122924 A JPS61122924 A JP S61122924A
Authority
JP
Japan
Prior art keywords
silicon
plasma
film layer
protective film
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24316884A
Other languages
Japanese (ja)
Inventor
Minoru Ichijo
稔 一條
Tsunemi Oiwa
大岩 恒美
Fumio Komi
文夫 小海
Takashi Kubota
隆 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP24316884A priority Critical patent/JPS61122924A/en
Priority to EP19850114737 priority patent/EP0182367B1/en
Priority to DE8585114737T priority patent/DE3577246D1/en
Priority to US06/800,144 priority patent/US4737415A/en
Publication of JPS61122924A publication Critical patent/JPS61122924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a durable recording medium having a protective layer which is dense and tough and has a small coefft. of friction by providing a plasma-polymerized protective layer consisting of a silicon org. compd. contg. at least Si and O on a magnetic layer while controlling the atomic number ratio of Si and O to a specific range. CONSTITUTION:A thin ferromagnetic metallic film layer 10 is formed on a base body 1 consisting of a polyeser film or the like and thereafter a mixture composed of the silicon org. compd. such as tetramethyl silane and gaseous O2 is introduced through a gas introducing pipe 6 or the silicon org. compd. contg. Si and O is introduced into a plasma treating vessel 2 while the base body 1 with the thin magnetic film 5 faced on the outside is moved along a cylindrical can 4 from a roll 3 in said vessel toward a take-up roll 5 to form the plasma-polymerized protective layer 11 on the film 10 by an electrode 7. The O atomic number ratio with respect to the Si atomic number of the film 11 is controlled within a 0.7-1.3 times range. The protective layer 11 having 0.7-1.3 times O/Si by the atomic number ratio and N/Si in a 0.3-0.7 times range is provided by using the org. compd. contg. Si, O and N. The magnetic recording medium having the excellent runnability, durability, etc. is thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野および発明の目的〕この発明は、磁
気記録媒体およびその製造方法に関し、耐久性と走行性
に優れた磁気記録媒体を提供することを目的とする。
[Detailed description of the invention] [Industrial field of application and purpose of the invention] The present invention relates to a magnetic recording medium and a method for manufacturing the same, and an object of the present invention is to provide a magnetic recording medium with excellent durability and runnability. .

〔従来の技術〕[Conventional technology]

一般に、磁性粉末を結合剤成分とともに基体フィルム上
に被着させるか、或いは強磁性金属またはそれらの合金
などを真空蒸着等によって基体フィルム上に被着してつ
くられる磁気記録媒体は。
Generally, magnetic recording media are made by depositing magnetic powder together with a binder component on a base film, or by depositing ferromagnetic metals or their alloys on a base film by vacuum deposition or the like.

記録再生時に磁気ヘッド等と激しく摺接するため磁性層
が摩耗され易く、特に真空蒸着等によって形成される強
磁性金属薄膜型の磁気記録媒体は。
The magnetic layer is likely to be worn out due to violent sliding contact with a magnetic head during recording and reproduction, especially in ferromagnetic metal thin film type magnetic recording media formed by vacuum deposition.

高密度記録特性に優れる反面、磁気ヘッドとの摩擦係数
が大きくて摩耗や損傷を受は易く、テープ走行時におけ
る走行ムラが多いなどの戴点がある。
Although it has excellent high-density recording characteristics, it has drawbacks such as a high coefficient of friction with the magnetic head, making it susceptible to wear and damage, and uneven running when the tape runs.

このため、ai磁性層上種々の保護膜層を設けて耐久性
および走行性を改善することが行おれている。近年、た
とえば、オクタメチルシクロテトラシロキサンの七ツマ
ーガスをプラズマ重合して。
For this reason, various protective film layers are provided on the AI magnetic layer to improve durability and runnability. In recent years, for example, octamethylcyclotetrasiloxane has been subjected to plasma polymerization.

ケイ素系有機化合物のプラズマ重合保護膜層を磁性層上
に形成すること〔飯島哲生 花房廣明 電子通信学会論
文誌、 J67−C,No1(1984))が提案され
ている。ところがこの種のオクタメチルシクロテトラシ
ロキサンのモノマーガスを用いてプラズマ重合を行うと
、その酸素含有量が多いため気相中で反応して七ツマー
ガスが粉末化したり、またオクタメチルシクロテトラシ
ロキサンが分解して510M!膜ができるなどして、充
分に緻密で強靭かつ摩擦係数の小さなケイ素系有機化合
物のプラズマ重合保護膜層が得られず、未だ充分に耐久
性および走行性を改善することができない。
It has been proposed to form a plasma-polymerized protective film layer of a silicon-based organic compound on a magnetic layer [Tetsuo Iijima, Hiroaki Hanabusa, Journal of the Institute of Electronics and Communication Engineers, J67-C, No. 1 (1984)]. However, when plasma polymerization is performed using this type of monomer gas of octamethylcyclotetrasiloxane, because of its high oxygen content, it reacts in the gas phase and turns into powder, and octamethylcyclotetrasiloxane decomposes. 510M! Due to the formation of a film, it is not possible to obtain a plasma polymerized protective film layer of a silicon-based organic compound that is sufficiently dense, strong, and has a small coefficient of friction, and it is still not possible to sufficiently improve durability and runnability.

〔問題点を解決するための手段〕[Means for solving problems]

この発明はこのような現状に鑑みなごれたもので、磁性
層上に少くともケイ素と酸素を含むケイ素系有機化合物
のプラズマ重合保護膜層を設け。
The present invention was developed in view of the current situation, and a plasma polymerized protective film layer of a silicon-based organic compound containing at least silicon and oxygen is provided on the magnetic layer.

そのプラズマ重合保護膜層中のケイ素原子量に対する酸
素原子量が原子数比で0.7〜1.3倍の範囲に規制さ
れていることを特徴とするものである、また本発明は、
少くともケイ素系有機化合物のモノマーガス単独もしく
は、ケイ素系有機化合物モノマーガスと酸素ガスの混合
ガスのプラズマ中に、基体上に形成した磁性層をさらし
プラズマ重合を行なって、少くとも酸素を含むケイ素系
有機化合物のプラズマ重合保護膜層を形成せしめ、その
プラズマ重合保lF!膜層中のケイ素原子量に対する酸
素原子量が原子数比で0.7〜1.3倍の範囲に規制さ
れていることを特徴とするものである。
The present invention is characterized in that the amount of oxygen atoms relative to the amount of silicon atoms in the plasma polymerized protective film layer is regulated within a range of 0.7 to 1.3 times in terms of atomic ratio.
The magnetic layer formed on the substrate is exposed to a plasma of at least a silicon-based organic compound monomer gas alone or a mixed gas of a silicon-based organic compound monomer gas and oxygen gas, and plasma polymerization is performed to form silicon containing at least oxygen. A plasma polymerized protective film layer of organic compounds is formed, and the plasma polymerization is maintained. It is characterized in that the atomic ratio of the oxygen atomic weight to the silicon atomic weight in the film layer is regulated within a range of 0.7 to 1.3 times.

さらに本発明は、磁性層上に少くともケイ素と酸素と窒
素を含むケイ素系有機化合物のプラズマ重合保護EIi
層を設け、そのプラズマ重合保護膜層中のケイ素原子量
に対する酸素原子量ならびに窒syK子量が原子数比で
0.7〜1.3倍ならびに0,3〜0.7倍のJIII
+に規制されていることを特徴とするものである。
Furthermore, the present invention provides plasma polymerization protection EIi of a silicon-based organic compound containing at least silicon, oxygen, and nitrogen on the magnetic layer.
A JIII layer in which the oxygen atomic weight and nitrogen syK molecular weight are 0.7 to 1.3 times and 0.3 to 0.7 times the silicon atomic weight in the plasma polymerized protective film layer in terms of atomic ratio.
It is characterized by being regulated by +.

さらにまた本発明は、少くともケイ素と窒素を含むケイ
素系有機化合物の七ツマーガス単独もしくハ、ケイ素系
有機化合物モノマーガスと酸素ガスとの混合ガスのプラ
ズマ中に、基体上に形成した磁性層をさらしプラズマ重
合を行なって、少なくともrI!素ならびに窒素を含む
ケイ素系有機化合物のプラズマ重合保護膜層を形成せし
め、そのプラズマ重合像11[111層中のケイ素原子
量に対する酸S原子量ならびに窒l/I#原子量が原子
数比でそれぞれ0.7〜1.3倍ならびに0.3〜0.
7倍の範囲に規制されていることを特徴とするものであ
る。
Furthermore, the present invention provides a magnetic layer formed on a substrate in a plasma of a monomer gas of a silicon-based organic compound containing at least silicon and nitrogen or a mixed gas of a silicon-based organic compound monomer gas and oxygen gas. is exposed and subjected to plasma polymerization to obtain at least rI! A plasma-polymerized protective film layer of a silicon-based organic compound containing element and nitrogen is formed, and the atomic ratio of the acid S atomic weight and the nitrogen l/I# atomic weight to the silicon atomic weight in the plasma-polymerized image 11 [111] is 0. 7-1.3 times and 0.3-0.
It is characterized by being regulated within a seven-fold range.

この発明において磁性層上にプラズマ重合保護膜層を被
着形成する除行われるプラズマ重合はケイ素原子、ケイ
素原子と窒素原子、ケイ素原子と窒素原子と炭素原子、
またはケイ素原子と窒素原子と炭素原子と水素原子を含
むケイ素系有機化合物のモノマーガスに、このモノマー
ガスに対する容積比が10〜30容量%の微量の酸素ガ
スをキャリアガスとして混合し、この混合ガスを、高周
波によりプラズマ重合させることによって行われる。
In the present invention, the plasma polymerization performed during the formation of a plasma polymerized protective film layer on the magnetic layer includes silicon atoms, silicon atoms and nitrogen atoms, silicon atoms, nitrogen atoms and carbon atoms,
Alternatively, a monomer gas of a silicon-based organic compound containing silicon atoms, nitrogen atoms, carbon atoms, and hydrogen atoms is mixed with a trace amount of oxygen gas at a volume ratio of 10 to 30% by volume to this monomer gas as a carrier gas, and this mixed gas is carried out by plasma polymerization using high frequency waves.

キャリアガスとしてごく微量の酸素ガスを併用している
ため、オクタメチルシクロテトラシロキサンのモノマー
ガスを用いてプラズマ重合を行う場合のように、この種
の七ツマーガス中に含有する多量の原素によりモノマー
ガスが気相中で反応して粉末化したり、SiO被膜がで
きたりすることもなく、ケイ素原子に対しては原子数比
で0.7倍から1.3倍の酸素原子と0.3倍から0.
7倍の窒素原子、または0,7倍から1.3倍の酸素原
子と0.3倍から0.7倍の窒素原子と1.5倍から3
.5倍の炭素原子を含む緻密で強靭なケイ素系有機化合
物のプラズマ重合保fi!fil1層が形成され、耐久
性および走行性が充分向上される。また、プラズマ重合
保護膜層に含有される微量のaSS子より磁性層との接
着性が向上され、耐久性がさらに一段と向上される。さ
らに前述のモノマーガスに酸素ガスを混合することによ
り、酸素原子含有率の調整が容易に行なわれる。
Since a very small amount of oxygen gas is also used as a carrier gas, as in the case of plasma polymerization using monomer gas of octamethylcyclotetrasiloxane, the monomer is The gas does not react in the gas phase and turn into powder or form a SiO film, and the atomic ratio of silicon atoms to oxygen atoms is 0.7 to 1.3 times. From 0.
7 times nitrogen atoms, or 0.7 times to 1.3 times oxygen atoms and 0.3 times to 0.7 times nitrogen atoms and 1.5 times to 3 times
.. Plasma polymerization of dense and tough silicon-based organic compounds containing 5 times as many carbon atoms! A fil1 layer is formed, and durability and runnability are sufficiently improved. Furthermore, the small amount of aSS particles contained in the plasma polymerized protective film layer improves the adhesion with the magnetic layer, further improving the durability. Further, by mixing oxygen gas with the monomer gas mentioned above, the oxygen atom content can be easily adjusted.

このようなケイ素系有機化合物のプラズマ重合保1!膜
層を形成するのに使用するケイ素系有機化合物のモノマ
ーガスとしては、たとえば、テトラメチルシラン、ビニ
ルトリメチルシラン、トリメチルシリルアセチレン等の
ケイ素系有機化合物のモノマーガスが好ましく使用され
る。これらのケイ素系有機化合物の七ツマーガスは高周
波によりラジカルが生成され、この生成されたラジカル
が反応し重合して被膜となる。
Plasma polymerization of such silicon-based organic compounds 1! As the silicon-based organic compound monomer gas used to form the film layer, for example, silicon-based organic compound monomer gas such as tetramethylsilane, vinyltrimethylsilane, trimethylsilylacetylene, etc. is preferably used. Radicals are generated from these silicon-based organic compound gases by high frequency, and the generated radicals react and polymerize to form a film.

また、これらのケイ素系有機化合物の七ツマーガスをプ
ラズマ重合する際、キャリアガスとして混合して使用す
る酸素ガスは、これらのケイ素系有機化合物のモノマー
ガスに対して、容積比で10〜30容量%の範囲内で使
用するのが好ましい。多すぎると気相中でケイ素系有機
化合物のモノマーガスが反応して粉末化したり、ケイ素
系有機化合物が分解してSiO被膜が形成され、緻密で
強靭なケイ素系有機化合物のプラズマ重合保護膜層が得
られない。このように酸素ガスをケイ素系有機化合物の
モノマーガスに対して、容積比で10〜30容量%の範
囲内で混合し、これを用いてプラズマ重合を行うと、ケ
イ14原子に対して原子数比で0.7倍から1.3倍の
酸素原子を含む緻密で強靭なケイ素系有機化合物のプラ
ズマ重合保護膜層が形成され、このプラズマ重合保護膜
層中に含まれる微量の酸素原子によって磁性層との接着
性も向上されて、耐摩耗性および走行性が一段と向上さ
れる6 プラズマ重合を行う場合の、前記ケイ素系有機化合物の
七ツマーガスと酸素ガスとの混合ガスのガス圧および高
周波の出力は、ガス圧が高くなるほど被着速度が速くな
る反面、モノマーガスが比較的低分子量でプラズマ重合
されて硬い保護膜層が得られず、ガス圧を低くして高周
波出力を高くすると被着速度が遅くなる反面高分子化さ
れた比較的硬い保護膜層が得られるが、ガス圧を低くし
て高周波出力を高くしすぎると、モノマーガスが粉末化
してしまいプラズマ重合保護膜層が形成されない。その
ため、ガス圧を0.005〜0.30トールの範囲内と
し、高周波出力を0.1〜2.OW/c+Jの範囲内と
するのが好ましく、ガス圧を0.01〜0.1トールと
し、高周波出力を0.3〜1.OW/Cl1lの範囲と
するのがより好ましい。
In addition, when plasma polymerizing the monomer gas of these silicon-based organic compounds, the oxygen gas mixed and used as a carrier gas is 10 to 30% by volume of the monomer gas of these silicon-based organic compounds. It is preferable to use it within the range of . If the amount is too high, the monomer gas of the silicon-based organic compound will react in the gas phase and turn into powder, or the silicon-based organic compound will decompose and form a SiO film, resulting in a dense and tough plasma polymerized protective film layer of the silicon-based organic compound. is not obtained. In this way, when oxygen gas is mixed in a volume ratio of 10 to 30% by volume with respect to the monomer gas of a silicon-based organic compound, and plasma polymerization is performed using this, the number of atoms is A plasma-polymerized protective film layer of a dense and tough silicon-based organic compound containing 0.7 to 1.3 times as many oxygen atoms is formed, and the minute amount of oxygen atoms contained in this plasma-polymerized protective film layer makes it magnetic. The adhesion with the layer is also improved, and the abrasion resistance and runnability are further improved. 6 When performing plasma polymerization, the gas pressure of the mixed gas of the silicon-based organic compound 7-mer gas and oxygen gas and the high frequency The higher the gas pressure, the faster the deposition speed, but the monomer gas has a relatively low molecular weight and is plasma polymerized, making it difficult to obtain a hard protective film layer. Although the speed is slow, a relatively hard protective film layer made of polymer can be obtained, but if the gas pressure is low and the high frequency output is too high, the monomer gas will turn into powder and a plasma polymerized protective film layer will not be formed. . Therefore, the gas pressure is set in the range of 0.005 to 0.30 Torr, and the high frequency output is set in the range of 0.1 to 2. It is preferable that the range is OW/c+J, the gas pressure is 0.01 to 0.1 Torr, and the high frequency output is 0.3 to 1. More preferably, the range is OW/Cl1l.

このような、プラズマ重合によって被着形成されろケイ
素系有機化合物のプラズマ重合保護膜層の膜厚は20〜
L000人の範囲内であることが好ましく、膜厚が薄す
ぎるとこの保護膜層による耐久性および走行性の効果が
充分に発揮されず。
The film thickness of such a plasma-polymerized protective film layer of a silicon-based organic compound deposited by plasma polymerization is 20 to 20 cm.
The thickness is preferably within the range of L000. If the film thickness is too thin, the durability and runnability effects of this protective film layer will not be sufficiently exhibited.

厚すぎるとスペーシングロスが大きくなりすぎて!磁変
換特性に悪影響を及ぼす。
If it is too thick, the spacing loss will be too large! Adversely affects magnetic conversion characteristics.

基体上に形成される磁性層は、γ−F e z Os粉
末+FazO−粉末、Go含有?Fe=Ot粉末−Co
含有F e s Oa粉末、FsPB末、CO粉末、F
e−Ni粉末などの磁性粉末を結合剤成分および有機溶
剤等とともに基体上に塗布、乾燥するか、或いは、Go
、Ni、Fs−Go−Ni。
The magnetic layer formed on the substrate contains γ-FezOs powder + FazO- powder, Go-containing? Fe=Ot powder-Co
Contains Fe s Oa powder, FsPB powder, CO powder, F
Magnetic powder such as e-Ni powder is coated on a substrate together with a binder component and an organic solvent and dried, or Go
, Ni, Fs-Go-Ni.

Co−Cr、Go−P、Go−Ni−Pなどの強磁性材
を真空蒸着、イオンブレーティング、スパッタリング、
メッキ等の手段によって基体上に被着するなどの方法で
形成される。
Ferromagnetic materials such as Co-Cr, Go-P, Go-Ni-P are deposited by vacuum evaporation, ion blasting, sputtering,
It is formed by depositing it on the substrate by means such as plating.

また、磁気記録媒体としては、ポリエステルフィルムな
どの合成樹脂フィルムを基体とする磁気テープ、円盤や
ドラムを基体とする磁気ディスクや磁気ドラムなど、磁
気ヘッドと摺接する構造の種々の形態を包含する。
Further, the magnetic recording medium includes various types of structures that come into sliding contact with a magnetic head, such as a magnetic tape having a synthetic resin film such as a polyester film as a base, a magnetic disk or a magnetic drum having a disk or drum as a base.

〔実施例〕〔Example〕

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

実施例1 厚さ10μmのポリエステルフィルムを真空蒸着装置に
装填し、5XIO−’)−−ルの真空下でコバルトを加
熱蒸発させて、ポリエステルフィルム上に厚さ1000
人のコバルトからなる強磁性金属薄膜層を形成した。
Example 1 A polyester film with a thickness of 10 μm was loaded into a vacuum evaporation apparatus, and cobalt was heated and evaporated under a vacuum of 5
A ferromagnetic metal thin film layer made of cobalt was formed.

次いで、第1図に示すプラズマ処理装置を使用し、この
強磁性金属薄膜層を形成したポリエステルフィルム1を
処理槽2内で原反ロール3から円筒状キャン4の周側面
に沿って1m/分の速度で移動させ、巻き取りロール5
に巻き取るようにセットした。同時にガス導入管6から
テトラメチルシランのモノマーガスを50sccmの流
量で導入し、ガス圧0.024トールで電極7により1
3.56M Hzの高周波を出力tsowで印加し、プ
ラズマ重合保護膜層を形成した。
Next, using the plasma processing apparatus shown in FIG. 1, the polyester film 1 with the ferromagnetic metal thin film layer formed thereon is passed from the raw roll 3 to the circumferential side of the cylindrical can 4 at 1 m/min in the processing tank 2. The winding roll 5 is moved at a speed of
I set it so that it would be wound up. At the same time, monomer gas of tetramethylsilane was introduced from the gas introduction pipe 6 at a flow rate of 50 sccm, and the electrode 7 was used at a gas pressure of 0.024 Torr.
A high frequency of 3.56 MHz was applied at an output of tsow to form a plasma polymerized protective film layer.

しかる後、所定の巾に裁断して、第2図に示すようなポ
リエステルフィルムl上に、強磁性金属薄膜層10およ
びプラズマ重合保護膜IIl[11を順次に積層形成し
た磁気テープAをつくった。このときのプラズマ重合保
護膜層の厚みは220人であった。また、プラズマ重合
保護膜層中における成分元素の原子数の割合をオージェ
電子分光計によって調べた結果、ケイ素原子数対炭f3
原子数対酸素原子数は、1対2.81対1゜11であっ
た。なお図中8は処理槽l内を減圧するための排気系で
あり、9はil!極7に高周波を印加するための高周波
電源である。
Thereafter, it was cut to a predetermined width to produce a magnetic tape A in which a ferromagnetic metal thin film layer 10 and a plasma polymerized protective film II [11] were sequentially laminated on a polyester film L as shown in FIG. . The thickness of the plasma polymerized protective film layer at this time was 220. In addition, as a result of examining the ratio of the number of atoms of component elements in the plasma polymerized protective film layer using an Auger electron spectrometer, we found that the number of silicon atoms versus carbon f3
The number of atoms to the number of oxygen atoms was 1:2.81:1°11. In the figure, 8 is an exhaust system for reducing the pressure inside the processing tank l, and 9 is an exhaust system for reducing the pressure inside the processing tank l. This is a high frequency power source for applying high frequency to the pole 7.

実施例2 実施例1におけるプラズマ重合保護lIg!aの形成に
おいて、テトラメチルシランのモノマーガスに代えて、
ビニルトリメチルシランのモノマーガスを同量使用した
以外は実施例1と同様にして磁気テープAをつくった、
このときのプラズマ重合保護膜層の厚みは230人であ
った。また、プラズマ重合保護膜層中における成分元素
の原子数の割合をオージェ電子分光計によって調べた結
果、ケイ素原子数対炭素原子数対酸素原子数は、1対3
.06対1.07であった。
Example 2 Plasma polymerization protection lIg in Example 1! In the formation of a, instead of the monomer gas of tetramethylsilane,
Magnetic tape A was prepared in the same manner as in Example 1 except that the same amount of vinyltrimethylsilane monomer gas was used.
The thickness of the plasma polymerized protective film layer at this time was 230 layers. In addition, as a result of examining the ratio of the number of atoms of component elements in the plasma polymerized protective film layer using an Auger electron spectrometer, the number of silicon atoms to the number of carbon atoms to the number of oxygen atoms was 1 to 3.
.. The ratio was 06 to 1.07.

実施例3 実施例1におけるプラズマ重合保ml!$7!tの形成
において、酸素ガスの導入量を12sec+mから6 
secmに変更し、ガス圧を0.022 トールとした
以外は実施例1と同様にして磁気テープAをつくった。
Example 3 Plasma polymerization retention ml in Example 1! $7! In forming t, the amount of oxygen gas introduced was changed from 12 sec+m to 6 sec+m.
Magnetic tape A was produced in the same manner as in Example 1 except that the gas pressure was changed to 0.022 torr and the gas pressure was changed to 0.022 torr.

このどきのプラズマ重合保護膜層の厚みは200人であ
った。また1重合保護膜層中における成分元素の原子数
の割合をオージェ電子分光計によって調た結果、ケイ素
原子数対炭素原子数対酸素原子数は、1対3.42対0
.67であった。
The thickness of the plasma polymerized protective film layer at this time was 200 mm. In addition, as a result of checking the ratio of the number of atoms of the component elements in one polymeric protective film layer using an Auger electron spectrometer, the number of silicon atoms to the number of carbon atoms to the number of oxygen atoms was 1:3.42:0.
.. It was 67.

実施例4 実施例[におけるプラズマ重合体N膜層の形成において
、酸素ガスの導入量を12sccmから20secm・
 に変更し2.ガス圧を0.026 トールとした以外
は実施例Iと同様にして磁気テープAをつくった。この
ときのプラズマ重合保護膜層中の厚みは230人であ・
つた6また。プラズマ重合保!!!暦中における成分元
素原子数の割合をオージェ電子分光計によって調べた結
果、ケイ素原子数対炭素原子数対酸素原子数は、1対2
.21対l、31だった。
Example 4 In the formation of the plasma polymer N film layer in Example [, the amount of oxygen gas introduced was changed from 12 sccm to 20 sec.
Change to 2. Magnetic tape A was prepared in the same manner as in Example I except that the gas pressure was 0.026 Torr. The thickness of the plasma polymerized protective film layer at this time was 230.
Ivy 6 again. Plasma polymerization protection! ! ! As a result of examining the ratio of the number of component element atoms in the calendar using an Auger electron spectrometer, the number of silicon atoms to the number of carbon atoms to the number of oxygen atoms is 1 to 2.
.. It was 21 to l, 31.

実施例5 α−F+!磁性粉末        600重量部エス
レツクCN(積木化学工業8Q  n社製、1話化ビニ
ルー酢酸ビニ ル共重合体) バンデツクスT−5250(大   30重量部日本イ
ンキ社製、ウレタン エラストマー) コロネートしく日本ポリウレタ    10〃ン工業社
製、三官能性低分子 量イソシアネート化合物) メチルイソブチルケトン      400  srト
ルエン             400〃この組成物
をボールミル中で72時間混合分散して磁性塗料を厚さ
10μmポ1ノエステルフイルム上に乾燥厚が4μmと
なるよう番;塗布、乾燥し。
Example 5 α-F+! Magnetic powder 600 parts by weight Eslec CN (manufactured by Block Chemical Industry Co., Ltd. 8Qn, monophonic vinyl-vinyl acetate copolymer) Bandex T-5250 (large 30 parts by weight, manufactured by Nippon Ink Co., Ltd., urethane elastomer) Coronate Japan Polyurethane 10 parts (manufactured by Kogyo Co., Ltd., trifunctional low molecular weight isocyanate compound) Methyl isobutyl ketone 400 sr toluene 400 This composition was mixed and dispersed in a ball mill for 72 hours, and the magnetic paint was coated on a 10 μm thick polyester film with a dry thickness of 4 μm. Apply and dry.

て磁性層を形成した。次−1で、これ番こ実施1列l同
様にしてプラズマ重合保護膜層を形成し磁気テープAを
つくった。
A magnetic layer was formed. In Step 1-1, a plasma polymerized protective film layer was formed in the same manner as in Example 1 to prepare magnetic tape A.

比較例1 実施例1におけるプラズマ重合保護膜層の形成において
、テトラメチルシランシこ代えてオクタメチルシクロテ
トラシキサンを50secm使用し、酸素ガスの添加を
省いてガス圧を0.02トールとした以外は実施例1と
同様にして磁気テープをつくった。このときのプラズマ
重合保護膜層の厚みは300人であった。また、プラズ
マ重合保護膜層中における成分光S原子数の割合をオー
ジェ電子分光計によって調べた結果、ケイ素原子数対炭
素原子数対酸素原子数は、1対1,75対1.81であ
った6比較例2 実施例1におけるプラズマ重合保護膜層の形成において
、酸素ガスの添加を省き、ガス圧を0.02トールとし
・た以外は実施例1と同様にして磁気テープをつくった
。このときのプラズマ重合保護膜層の厚みは230人で
あった。
Comparative Example 1 In the formation of the plasma polymerized protective film layer in Example 1, 50 seconds of octamethylcyclotetraxane was used instead of tetramethylsilane, the addition of oxygen gas was omitted, and the gas pressure was set to 0.02 Torr. A magnetic tape was produced in the same manner as in Example 1 except for this. The thickness of the plasma polymerized protective film layer at this time was 300. In addition, as a result of examining the ratio of the number of component light S atoms in the plasma polymerized protective film layer using an Auger electron spectrometer, the ratio of silicon atoms to carbon atoms to oxygen atoms was 1:1, and 75:1.81. Comparative Example 2 A magnetic tape was produced in the same manner as in Example 1, except that in the formation of the plasma polymerized protective film layer in Example 1, the addition of oxygen gas was omitted and the gas pressure was set to 0.02 Torr. The thickness of the plasma polymerized protective film layer at this time was 230 layers.

比較例3 実施例2におけるプラズマ重合保護膜層の形成において
、酸素ガスの添加を省き、ガス圧を0.02トールとし
た以外は実施例2と同様にして磁気テープをつくった。
Comparative Example 3 A magnetic tape was produced in the same manner as in Example 2, except that in the formation of the plasma polymerized protective film layer in Example 2, the addition of oxygen gas was omitted and the gas pressure was set to 0.02 Torr.

このときのプラズマ重合保護膜層の厚みは240人であ
った。
The thickness of the plasma polymerized protective film layer at this time was 240.

比較例4 実施例jにおいて、プラズマ重合保護膜層の形成を省い
た以外は実施例1と同様にして磁気テープをつくった・ 各実施例1〜5および比較例1〜4で得られた磁気テー
プについて耐久性、および走行性を試験した。耐久性は
、得られた磁気テープに対しVH8型VTRによるスチ
ル試験を行ない、プラズマ重合保護膜層に傷がつくまで
の回数を測定することにより試験した。走行性はVH3
型VTR走行時の巻き取り側テープ張力を測定し、磁気
テープと磁気ヘッドとの摩擦の程度を調にろことにより
試験した。結果を表1に示す。
Comparative Example 4 In Example J, a magnetic tape was produced in the same manner as in Example 1 except that the formation of the plasma polymerized protective film layer was omitted. Magnetic tape obtained in each of Examples 1 to 5 and Comparative Examples 1 to 4 The tape was tested for durability and runnability. Durability was tested by subjecting the obtained magnetic tape to a still test using a VH8 type VTR and measuring the number of times until the plasma polymerized protective film layer was scratched. Running performance is VH3
The tape tension on the take-up side during running on a type VTR was measured, and the degree of friction between the magnetic tape and the magnetic head was tested. The results are shown in Table 1.

表1 実施例6 厚さ10μmのポリエステルフィルムを真空蒸着装置に
装填し、5X10−’h−ルの真空下でコバル1−を加
熱蒸発させて、ポリエステルフィルム上に厚さ1000
人のコバルトからなる強磁性金属薄膜層を形成した。
Table 1 Example 6 A polyester film with a thickness of 10 μm was loaded into a vacuum evaporation apparatus, and Kobal 1- was heated and evaporated under a vacuum of 5×10-'hr to form a 1000-μm-thick polyester film on the polyester film.
A ferromagnetic metal thin film layer made of cobalt was formed.

次いで第1図に示すプラズマ処理装置を使用し。Next, a plasma processing apparatus shown in FIG. 1 was used.

この強磁性全ff1J膜層を形成したポリエステルフィ
ルム1を処R1462内で原反ロール3から円筒状キャ
ン4の周側面に沿って1m/分の速度で移動させ1巻き
取りロール5に巻き取るようにセットした。同時にガス
導入管6からヘキサメチルジシラザンのモノマーガスを
50sccmの流量で導入し、   ′またキャリアガ
スとして酸素ガスを12secm導入して、ガス圧0.
024トールで[極7により13.56MHzの高周波
を出力tsowで印加し、プラズマ重合保護膜層を形成
した。
The polyester film 1 on which the ferromagnetic full FF1J film layer is formed is moved from the raw roll 3 along the circumferential side of the cylindrical can 4 at a speed of 1 m/min in a process R1462, and is wound onto a take-up roll 5. I set it to At the same time, a monomer gas of hexamethyldisilazane was introduced from the gas introduction pipe 6 at a flow rate of 50 sccm, and oxygen gas was introduced as a carrier gas at a rate of 12 seconds, so that the gas pressure was 0.
A high frequency of 13.56 MHz was applied from the pole 7 at an output of tsow at 0.024 torr to form a plasma polymerized protective film layer.

しかる後、所定の巾に裁断して、磁気テープAをつくっ
た。このときのプラズマ重合保護膜層の厚みは300人
であった。また、プラズマ重合保護膜層中における成分
元素の原子数の割合をオージェ電子分光計によって調べ
た結果、ケイ素原子数対炭素原子数対窒素原子数対酸s
yK子数は、■対2.54対0.47対1.06であっ
た。
Thereafter, it was cut to a predetermined width to produce magnetic tape A. The thickness of the plasma polymerized protective film layer at this time was 300. In addition, as a result of examining the ratio of the number of atoms of component elements in the plasma polymerized protective film layer using an Auger electron spectrometer, we found that the number of silicon atoms, the number of carbon atoms, the number of nitrogen atoms, and the acid s
The number of yK offspring was ■ vs. 2.54 vs. 0.47 vs. 1.06.

実施例7 実施例6におけるプラズマ重合保護膜の形成において、
ヘキサメチルジシザンの七ツマーガスに代えて、テトラ
メチルジシラザンのモノマーガス登同量使用した以外は
実施例1と同様にして磁気テープ八をつくった6このと
きのプラズマ重合保護膜層の厚みは270人であった4
また。プラズマ重合保護膜1中にえける成分元素の原子
数の割合を寸−ジエ電子分光計によって調べた結果、ケ
イ素原子数対炭素原子数対窒素原子数対酸素原子数は、
1対1.67対0.54対1.21であった。
Example 7 In the formation of the plasma polymerized protective film in Example 6,
Magnetic tape 8 was prepared in the same manner as in Example 1 except that the same amount of monomer gas of tetramethyldisilazane was used in place of the monomer gas of hexamethyldisilazane. 6 The thickness of the plasma polymerized protective film layer at this time was There were 270 people4
Also. As a result of examining the ratio of the number of atoms of the component elements in the plasma polymerized protective film 1 using a dimension-die electron spectrometer, the number of silicon atoms versus the number of carbon atoms versus the number of nitrogen atoms versus the number of oxygen atoms is as follows.
The ratio was 1:1.67:0.54:1.21.

実施例8 実施例6におけるプラズマ重合像′RIII層の形成に
おいて、酸素ガスの導入量を12 sc、cmからls
ccmに変更し、ガス圧をQ、022 トールとした以
外は。
Example 8 In forming the plasma polymerized image 'RIII layer in Example 6, the amount of oxygen gas introduced was changed from 12 sc, cm to ls
Except that it was changed to ccm and the gas pressure was set to Q, 022 Torr.

実施(ft1霊と同様にして磁気テープAをつくった。Implementation (Magnetic tape A was made in the same way as ft1 spirit.

このときのプラズマ重合保護膜層の厚みは300人であ
った。また、プラズマ重合保護膜層中における成分元素
の原子数の割合をオージェ電子分光計によって調べた結
果、ケイ素原子数対炭素原子数対窒素原子数対酸素原子
数は、1対3.21対0.61対0.77であった。
The thickness of the plasma polymerized protective film layer at this time was 300. In addition, as a result of examining the ratio of the number of atoms of component elements in the plasma polymerized protective film layer using an Auger electron spectrometer, the number of silicon atoms to the number of carbon atoms to the number of nitrogen atoms to the number of oxygen atoms was 1:3.21:0. The ratio was .61 to .77.

実施例9 実*fff6におけるプラズマ重合保護膜層の形成にお
いて、酸素ガスの導入量を12scc+wから20sc
cmに変更し、ガス圧を0.026トールとした以外は
、実施例1と同様にして磁気テープAをつくった。この
ときのプラズマ重合像S膜層の厚みは280人であった
。また、プラズマ重合保護膜層中における成分元素の原
子数の割合をオージェ電子分光計によって調べた結果、
ケイ素原子数対炭素原子数対窒素原子数対酸素原子数は
、l対2,06対0.32対1.29だった。
Example 9 In the formation of a plasma polymerized protective film layer in actual *fff6, the amount of oxygen gas introduced was changed from 12 sc + w to 20 sc
Magnetic tape A was produced in the same manner as in Example 1, except that the gas pressure was changed to cm and the gas pressure was set to 0.026 torr. The thickness of the plasma polymerized image S film layer at this time was 280. In addition, as a result of examining the ratio of the number of atoms of component elements in the plasma polymerized protective film layer using an Auger electron spectrometer,
The number of silicon atoms versus the number of carbon atoms versus the number of nitrogen atoms versus the number of oxygen atoms was l versus 2.06 versus 0.32 versus 1.29.

実施例IO α−Fe磁性粉末        600重量部エスレ
ツクCN (種水化学工業   80〃社製、塩化ビニ
ル−酢酸ビニ ル共重合体) バンデツクスT−5250(大   30  ft日本
インキ社製、ウレタン エラストマー) コロネートしく日本ポリウレタ    to  nン工
業社製、三官能性低分子 量イソシアネート化合物) メチルイソブチルケトン      400  nトル
エン             400重量部この組成
物をボールミル中で72時間混合分散して磁性塗料を厚
さ10μmポリエヌテルフイルム上に乾燥厚が4μmと
なるように塗布、乾燥して磁性層を形成した。次いで、
これに実施例1と同様にしてプラズマ重合保護膜層゛を
形成し磁気テープAをつくった。
Example IO α-Fe magnetic powder 600 parts by weight Eslec CN (manufactured by Tanemizu Kagaku Kogyo 80, vinyl chloride-vinyl acetate copolymer) Bandex T-5250 (large 30 ft, manufactured by Nippon Ink Co., Ltd., urethane elastomer) Coronate Trifunctional low molecular weight isocyanate compound (manufactured by Nippon Polyurethane Industry Co., Ltd.) Methyl isobutyl ketone (400 n) Toluene (400 parts by weight) This composition was mixed and dispersed in a ball mill for 72 hours, and the magnetic paint was coated on a 10 μm thick polyester film. A magnetic layer was formed by coating and drying to a dry thickness of 4 μm. Then,
A plasma polymerized protective film layer was formed on this in the same manner as in Example 1 to produce magnetic tape A.

比較例5 実施例6におけるプラズマ重合保護膜層の形成において
、テトラメチルシランに代えてオクタメチルシクロテト
ラシキサンを50secm使用し、酸素ガスの添加を省
いてガス圧を0.02 トールとした以外は実施g41
と同様にして磁気テープをつくった。このときのプラズ
マ重合保護膜層の厚みは300人であった。また、プラ
ズマ重合保tfiFeA層中における成分元素の原子数
の割合をオージェ電子分光計によって調べた結果、ケイ
素原子数対炭14 H子& 対m IRH子数ハ、 1
 対1 、75 対t 、 s 1 テアッた。
Comparative Example 5 In the formation of the plasma polymerized protective film layer in Example 6, 50 seconds of octamethylcyclotetraxane was used instead of tetramethylsilane, addition of oxygen gas was omitted, and the gas pressure was set to 0.02 Torr. is implemented g41
I made magnetic tape in the same way. The thickness of the plasma polymerized protective film layer at this time was 300. In addition, as a result of examining the ratio of the number of atoms of the component elements in the plasma-polymerized tfiFeA layer using an Auger electron spectrometer, the number of silicon atoms vs. the number of carbon atoms vs. the number of IRH atoms, 1
vs. 1, 75 vs. t, s 1 tear.

比較例6 実施例6におけるプラズマ重合保護膜層の形成において
、酸素ガスの添加を省き、ガス圧を0.02トールとし
た以外は実施例1と同様にして磁気テープをつくった。
Comparative Example 6 A magnetic tape was produced in the same manner as in Example 1, except that in the formation of the plasma polymerized protective film layer in Example 6, the addition of oxygen gas was omitted and the gas pressure was set to 0.02 Torr.

このときのプラズマ重合保護膜層の厚みは300人であ
った、 比較例7 実施例7におけるプラズマ重合体m 119j Mの形
成において、酸素ガスの添加を省き、ガス圧を0.02
トールとした以外は実施例2と同様にして磁気テープを
つくった。このときのプラズマ重合保護膜層の厚みは2
80人であった。
The thickness of the plasma polymerized protective film layer at this time was 300. Comparative Example 7 In the formation of the plasma polymer m 119j M in Example 7, the addition of oxygen gas was omitted and the gas pressure was set to 0.02.
A magnetic tape was produced in the same manner as in Example 2 except that the tape was made taller. The thickness of the plasma polymerized protective film layer at this time is 2
There were 80 people.

比較例8 実施例6において、プラズマ重合保護膜層の形成を省い
た以外は実施例1と同様にして磁気テープをつくった・ 各実施例6〜10および比較例5〜8で得られた磁気テ
ープについて耐久性、および走行性を試験し1.その結
果を次の表2に示す。なお、耐久性ならびにテープ張力
は前述のものと同じ試験条件で行った。
Comparative Example 8 A magnetic tape was produced in the same manner as in Example 1 except that the formation of the plasma polymerized protective film layer was omitted in Example 6. Magnetic tape obtained in each of Examples 6 to 10 and Comparative Examples 5 to 8 The tape was tested for durability and runnability.1. The results are shown in Table 2 below. Note that the durability and tape tension were tested under the same test conditions as those described above.

表2 〔発明の結果1 前記表から明らかなように、この発明で得られた磁気テ
ープ(実施例1〜10)は、いずれも比較例Iないし8
で得られた磁気テープに比し、耐久性に優れ、また、走
行時のテープ張力が小さく走行性が良い。従ってこの発
明により得られる磁気記録媒体は、耐久性および走行性
が一段と向上していることがわかる。
Table 2 [Results of the Invention 1 As is clear from the table above, the magnetic tapes (Examples 1 to 10) obtained by the present invention were all compared to Comparative Examples I to 8.
Compared to magnetic tapes obtained in Therefore, it can be seen that the magnetic recording medium obtained according to the present invention has further improved durability and runnability.

【図面の簡単な説明】 第1図はプラズマ重合保護膜層を形成する際に使用する
プラズマ処理装置の一例を示す概略断面図、第2図はこ
の発明によって得られた磁気テープの部分拡大断面図で
ある。 1 ・・・ポリエステルフィルム(基体)、10・・・
・・強JM注金属偽り膜層(磁性層>、11・・・・・
プラズマ重合鉛趙膜層、A・・・・・・磁気テープ(磁
気記録媒体)。
[Brief Description of the Drawings] Fig. 1 is a schematic sectional view showing an example of a plasma processing apparatus used in forming a plasma polymerized protective film layer, and Fig. 2 is a partially enlarged sectional view of a magnetic tape obtained by the present invention. It is a diagram. 1... Polyester film (substrate), 10...
・・Strong JM note metal false film layer (magnetic layer>, 11...
Plasma polymerized lead Zhao film layer, A...Magnetic tape (magnetic recording medium).

Claims (4)

【特許請求の範囲】[Claims] (1)基体上に磁性層を形成し、この磁性層上に少なく
ともケイ素と酸素を含むケイ素系有機化合物のプラズマ
重合保護膜層を設け、そのプラズマ重合保護膜層中のケ
イ素原子量に対する酸素原子量が原子数比で0.7〜1
.3倍の範囲に規制されていることを特徴とする磁気記
録媒体。
(1) A magnetic layer is formed on a substrate, and a plasma-polymerized protective film layer of a silicon-based organic compound containing at least silicon and oxygen is provided on the magnetic layer, and the amount of oxygen atoms relative to the amount of silicon atoms in the plasma-polymerized protective film layer is Atomic ratio 0.7-1
.. A magnetic recording medium characterized in that it is regulated within a three-fold range.
(2)少くともケイ素系有機化合物のモノマーガス単独
もしくは、ケイ素系有機化合物モノマーガスと酸素ガス
との混合ガスのプラズマ中に、基体上に形成した磁性層
をさらしプラズマ重合を行なつて、少くとも酸素を含む
ケイ素系有機化合物のプラズマ重合保護内層を形成せし
め、そのプラズマ重合保護膜層中のケイ素原子量に対す
る酸素原子量が原子数比で0.7〜1.3倍の範囲に規
制されていることを特徴とする磁気記録媒体の製造方法
(2) The magnetic layer formed on the substrate is exposed to plasma of at least a silicon-based organic compound monomer gas alone or a mixed gas of a silicon-based organic compound monomer gas and oxygen gas to perform plasma polymerization. Both forms a plasma polymerized protective inner layer of a silicon-based organic compound containing oxygen, and the atomic ratio of oxygen atoms to the silicon atomic amount in the plasma polymerized protective film layer is regulated within a range of 0.7 to 1.3 times. A method of manufacturing a magnetic recording medium, characterized in that:
(3)基体上に磁性層を形成し、この磁性層上に少なく
ともケイ素と酸素と窒素を含むケイ素系有機化合物のプ
ラズマ重合保護膜層を設け、そのプラズマ重合保護膜層
中のケイ素原子量に対する酸素原子量ならびに窒素原子
量が原子数比で0.7〜1.3倍ならびに0.3〜0.
7倍の範囲に規制されていることを特徴とする磁気記録
媒体。
(3) A magnetic layer is formed on the substrate, and a plasma polymerized protective film layer of a silicon-based organic compound containing at least silicon, oxygen, and nitrogen is provided on the magnetic layer, and the oxygen content is based on the silicon atomic weight in the plasma polymerized protective film layer. The atomic weight and nitrogen atomic weight are 0.7 to 1.3 times and 0.3 to 0.
A magnetic recording medium characterized by being regulated within a seven-fold range.
(4)少くともケイ素と窒素を含むケイ素系有機化合物
のモノマーガス単独もしくは、ケイ素系有機化合物モノ
マーガスと酸素ガスとの混合ガスのプラズマ中に、基体
上に形成した磁性層をさらしてプラズマ重合を行なつて
、少なくとも酸素ならびに窒素を含むケイ素系有機化合
物のプラズマ重合保護膜層を形成せしめ、そのプラズマ
重合保護膜層中のケイ素原子量に対する酸素原子量なら
びに窒素原子量が原子数比で0.7〜1.3倍ならびに
0.3〜0.7倍の範囲に規制されていることを特徴と
する磁気記録媒体の製造方法。
(4) Plasma polymerization by exposing the magnetic layer formed on the substrate to a plasma of a silicon-based organic compound monomer gas containing at least silicon and nitrogen or a mixed gas of a silicon-based organic compound monomer gas and oxygen gas. to form a plasma-polymerized protective film layer of a silicon-based organic compound containing at least oxygen and nitrogen, and the atomic ratio of the oxygen atomic weight and nitrogen atomic weight to the silicon atomic weight in the plasma-polymerized protective film layer is 0.7 to 0.7. A method for manufacturing a magnetic recording medium, characterized in that the magnetic recording medium is regulated within a range of 1.3 times and 0.3 to 0.7 times.
JP24316884A 1984-11-20 1984-11-20 Magnetic recording medium and its production Pending JPS61122924A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24316884A JPS61122924A (en) 1984-11-20 1984-11-20 Magnetic recording medium and its production
EP19850114737 EP0182367B1 (en) 1984-11-20 1985-11-19 Magnetic recording medium and production of the same
DE8585114737T DE3577246D1 (en) 1984-11-20 1985-11-19 MAGNETIC RECORDING CARRIER AND PRODUCTION THEREOF.
US06/800,144 US4737415A (en) 1984-11-20 1985-11-20 Magnetic recording medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24316884A JPS61122924A (en) 1984-11-20 1984-11-20 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPS61122924A true JPS61122924A (en) 1986-06-10

Family

ID=17099821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24316884A Pending JPS61122924A (en) 1984-11-20 1984-11-20 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPS61122924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098000A (en) * 1987-08-04 1992-03-24 U.S. Philips Corporation Device for adjusting the azimuth position of a capstan in a magnetic tape apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098000A (en) * 1987-08-04 1992-03-24 U.S. Philips Corporation Device for adjusting the azimuth position of a capstan in a magnetic tape apparatus

Similar Documents

Publication Publication Date Title
US4599266A (en) Magnetic recording medium
US5589263A (en) Magnetic recording medium having a ferromagnetic metal thin film, a dry etched layer, a carbonaceous film, and a lubricant film
JPS61122924A (en) Magnetic recording medium and its production
JPS6116028A (en) Magnetic recording medium and its production
JPS60237634A (en) Magnetic recording medium and its production
JPS62279521A (en) Production of magnetic recording medium
JPS6122426A (en) Magnetic recording medium
JPS60237627A (en) Magnetic recording medium
JPS6122420A (en) Magnetic recording medium
JPS6258416A (en) Magnetic recording medium and its production
JPS62167616A (en) Magnetic recording medium and its production
JPS60237640A (en) Production of magnetic recording medium
JPH0630133B2 (en) Magnetic recording medium and manufacturing method thereof
JPS6057537A (en) Production of magnetic recording medium
JPS61104430A (en) Production of magnetic recording medium
JPS6116027A (en) Magnetic recording medium and its production
JPS6122434A (en) Magnetic recording medium and its production
JPH0576097B2 (en)
JPS6122432A (en) Production of magnetic recording medium
JPH0760523B2 (en) Method of manufacturing magnetic recording medium
JPS60237639A (en) Production of magnetic recording medium
JPS6258417A (en) Magnetic recording medium and its production
JPS6177132A (en) Magnetic recording medium
JPS6122430A (en) Production of magnetic recording medium
JPS6122427A (en) Magnetic recording medium