JPS61104430A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS61104430A
JPS61104430A JP22482784A JP22482784A JPS61104430A JP S61104430 A JPS61104430 A JP S61104430A JP 22482784 A JP22482784 A JP 22482784A JP 22482784 A JP22482784 A JP 22482784A JP S61104430 A JPS61104430 A JP S61104430A
Authority
JP
Japan
Prior art keywords
plasma
film layer
protective film
magnetic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22482784A
Other languages
Japanese (ja)
Inventor
Fumio Komi
文夫 小海
Tsunemi Oiwa
大岩 恒美
Takashi Kubota
隆 久保田
Minoru Ichijo
稔 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP22482784A priority Critical patent/JPS61104430A/en
Publication of JPS61104430A publication Critical patent/JPS61104430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To decrease the coefft. of permeation of moisture and to improve corrosion resistance by forming a magnetic layer on a base body then exposing the magnetic layer to the plasma of the gaseous monomer of an org. compd. having a nitrile group and executing plasma polymn. thereby forming a plasma- polymerized protective film layer. CONSTITUTION:A polyester film is mounted to a vacuum deposition device and a cobalt-nickel alloy (8:2 by weight) is heated to evaporate in a vacuum to form a thin ferromagnetic metallic film layer consisting of the cobalt-nickel alloy on the polyester film. The film 1 on which the thin ferromagnetic material film layer is then set to the bottom surface of a substrate 3 disposed to the upper part in a plasma treating vessel and the gaseous monomer of acetonitrile is introduced into said vessel then the gaseous pressure is maintained under 0.03Torr and plasma polymn. is executed by an electrode to form the plasma- polymerized protective film layer by using the plasma treating device. The magnetic A laminated and formed successively with the thin ferromagnetic metallic film layer 8 and the plasma-polymerized protective film layer 9 on the polyester film 1 is thus manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体の製造方法に関し、さらに詳し
くは、耐食性に優れた磁気記録媒体の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a magnetic recording medium, and more particularly, to a method for manufacturing a magnetic recording medium with excellent corrosion resistance.

〔従来の技術〕[Conventional technology]

金属磁性材を記録素子として使用する磁気記録媒体は、
通常、金属もしくはそれらの合金などからなる強磁性金
属薄膜層を真空蒸着等によって基体上に被着するがある
いは強磁性金属粉末を結合剤樹脂とともに基体上に塗布
、乾燥してつくられ、高密度記録に適した特性を有する
が、反面、磁性層が空気中の酸素や水分によって酸化さ
れ易く、徐々に酸化を受けて最大磁束密度が劣化するな
どの難点がある。
Magnetic recording media that use metallic magnetic materials as recording elements are
Usually, a ferromagnetic metal thin film layer made of metals or their alloys is deposited on a substrate by vacuum evaporation, etc., but it is also made by coating ferromagnetic metal powder together with a binder resin on a substrate and drying it. Although it has characteristics suitable for recording, it has the disadvantage that the magnetic layer is easily oxidized by oxygen and moisture in the air, and the maximum magnetic flux density deteriorates as a result of gradual oxidation.

このため、従来から磁性層上に種々の保護膜層を設ける
などして耐食性を改善することが行われており、近年、
たとえば、オクタメチルシクロテトラシロキサンのモノ
マーガスをキャリアガスの窒素ガスとともに使用し、プ
ラズマ重合して、ケイ素系を機化合物のプラズマ重合保
護膜層を強磁性金属薄膜層上に設けること[飯島哲生、
花房廣明、電気通信学会論文誌、J67−C,Nol 
 (’84)]が提案されている。
For this reason, efforts have been made to improve corrosion resistance by providing various protective film layers on the magnetic layer, and in recent years,
For example, a monomer gas of octamethylcyclotetrasiloxane is used together with nitrogen gas as a carrier gas, and plasma polymerization is performed to form a silicon-based organic compound plasma polymerized protective film layer on a ferromagnetic metal thin film layer [Tetsuo Iijima,
Hiroaki Hanafusa, Transactions of the Institute of Electrical Communication Engineers, J67-C, Nol.
('84)] has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この種のケイ素系有機化合物のプラズマ重合
保護膜層は、酸素原子を多く含むために原子間の間隙が
多くなり、空気中の水分がこの保護膜層を容易に透過し
て、この透過した水分により磁性層が腐食されるという
難点があり、未だ耐食性は充分に改善されていない。
However, since this type of plasma-polymerized protective film layer made of silicon-based organic compounds contains many oxygen atoms, there are many gaps between atoms, and moisture in the air easily permeates through this protective film layer. The problem is that the magnetic layer is corroded by the moisture, and corrosion resistance has not yet been sufficiently improved.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、かかる現状に鑑み種々検討を行った結果な
されたもので、磁性層を、ニトリル基を有する有機化合
物のモノマーガス、あるいはこの種のモノマーガスと他
の有機化合物のモノマーガスとの混合ガスのプラズマ中
にさらして、プラズマ重合を行い、磁性層上にプラズマ
重合保護膜層を形成することによって、ニトリル基の存
在によりラジカルの生成を容易にしプラズマ重合保護膜
層の架橋密度を高くして、水分の透過係数を小さくし、
耐食性を充分に改善したものである。
This invention was made as a result of various studies in view of the current situation, and the magnetic layer is made of a monomer gas of an organic compound having a nitrile group, or a mixture of this type of monomer gas and a monomer gas of another organic compound. By exposing it to gas plasma and performing plasma polymerization to form a plasma polymerized protective film layer on the magnetic layer, the presence of nitrile groups facilitates the generation of radicals and increases the crosslinking density of the plasma polymerized protective film layer. to reduce the moisture permeability coefficient,
It has sufficiently improved corrosion resistance.

この発明において、磁性層上へのプラズマ重合保護膜層
の形成は、磁性層を、ニトリル基を有する有機化合物の
モノマーガス、あるいはこのニトリル基を有するを機化
合物のモノマーガスと他の有機化合物のモノマーガスと
の混合ガスのプラズマ中にさらして、プラズマ重合する
ことにより、磁性層上に被着して形成される。このプラ
ズマ重合保護膜層は、有機化合物のモノマーガス中にニ
トリル基を含むため、プラズマ重合時にラジカルが良好
に発生して架橋密度の高いプラズマ重合保護膜層が形成
され、水分子が透過する孔の生成が困難となり水分の透
過係数が小さくなるため、水分子の透過が効果的に抑制
されて、耐食性が充分に向上された磁気記録媒体が得ら
れる。
In this invention, the plasma polymerized protective film layer is formed on the magnetic layer by using a monomer gas of an organic compound having a nitrile group, or a monomer gas of an organic compound having a nitrile group and a mixture of another organic compound. It is formed by being deposited on the magnetic layer by exposing it to a plasma of a mixed gas with a monomer gas and performing plasma polymerization. This plasma-polymerized protective film layer contains nitrile groups in the monomer gas of the organic compound, so radicals are generated well during plasma polymerization, forming a plasma-polymerized protective film layer with high crosslinking density, and pores through which water molecules permeate. Since it becomes difficult to generate and the water permeability coefficient becomes small, the permeation of water molecules is effectively suppressed, and a magnetic recording medium with sufficiently improved corrosion resistance can be obtained.

このようなプラズマ重合に使用するニトリル基を有する
有機化合物のモノマーガスとしては、アセトニトリル、
プロピオニトリル、ブチロニトリルなどの脂肪族ニトリ
ル、マロンニトリル、アジポニトリル、グルタルニトリ
ルなどの脂肪族ジニトリル、ベンゾニトリル、トリニト
リルなどの芳香族ニトリルなどがか好適なものとして使
用される他、これらのモノマーガスと他の有機化合物の
モノマーガスとの混合ガスも好ましく使用され、これら
のモノマーガスは、高周波によりプラズマ重合が行われ
ると、高周波によりラジカルが生成され、この生成され
たラジカルが反応し重合して被膜となる。ここで、混合
して使用される他の有機化合物の七ツマ〜ガスとしては
、たとえば、プロパン、エチレン、プロピレンなどの炭
化水素系化合物のモノマーガス、C2F 4 、C3F
 gなどのフッ素系有機化合物のモノマーガスおよびテ
トラメチルシラン、オクタメチルシクロテトラシロキサ
ン、ヘキサメチルジシラザンなどのケイ素系有機化合物
のモノマーガス等が好ましく使用される。混合割合は、
これらの有機化合物のモノマーガス対ニトリル基を有す
る有機化合物のモノマーガスの容積比にして、0対1〜
1対3の範囲内となるようにするのが好ましく、ニトリ
ル基を有する有機化合物のモノマーガスが少なすぎると
所期の効果が得られない。このように、これらのモノマ
ーガスをプラズマ重合する際、アルゴンガスおよびヘリ
ウムガス等のキャリアガスを併存させるとモノマーガス
を単独でプラズマ重合する場合に比べて3〜5倍の速度
で析出されるため、これらのキャリアガスを併存させて
行うのが好ましい。
Monomer gases for organic compounds having nitrile groups used in such plasma polymerization include acetonitrile,
Suitable examples include aliphatic nitriles such as propionitrile and butyronitrile, aliphatic dinitriles such as malonitrile, adiponitrile, and glutaronitrile, and aromatic nitriles such as benzonitrile and trinitrile. Mixed gases with monomer gases of other organic compounds are also preferably used, and when these monomer gases are subjected to plasma polymerization by high frequency, radicals are generated by the high frequency, and the generated radicals react and polymerize to form a film. becomes. Here, examples of other organic compound gases used in combination include monomer gases of hydrocarbon compounds such as propane, ethylene, and propylene, C2F 4 , C3F
A monomer gas of a fluorine-based organic compound such as G and a monomer gas of a silicon-based organic compound such as tetramethylsilane, octamethylcyclotetrasiloxane, hexamethyldisilazane, etc. are preferably used. The mixing ratio is
The volume ratio of the monomer gas of these organic compounds to the monomer gas of the organic compound having a nitrile group is 0:1 to 1.
It is preferable that the ratio be within the range of 1:3; if the monomer gas of the organic compound having a nitrile group is too small, the desired effect cannot be obtained. In this way, when plasma polymerizing these monomer gases, if a carrier gas such as argon gas or helium gas is present, the monomer gases will be deposited at a rate 3 to 5 times faster than when plasma polymerizing them alone. It is preferable to use these carrier gases together.

これらのキャリアガスと併存させる際、その組成割合は
キャリアガス対前記モノマーガスの容積比にして1対1
〜20対1の範囲内で併存させるのが好ましく、キャリ
アガスが少なすぎると析出速度が低下し、多すぎるとモ
ノマーガスが少なくなってプラズマ重合反応に支障をき
たす。
When coexisting with these carrier gases, the composition ratio is 1:1 in volume ratio of the carrier gas to the monomer gas.
It is preferable that the carrier gas coexist in the range of 20 to 1. If the carrier gas is too small, the deposition rate will be reduced, and if it is too large, the monomer gas will be too small, which will interfere with the plasma polymerization reaction.

このようなプラズマ重合を行う場合のガス圧および高周
波の電力は、ガス圧が高くなるほどプラズマ重合保護膜
層の析出速度が速くなる反面上ツマーガスが比較的低い
架橋度でプラズマ重合されて硬い保護膜層が得られず、
また、ガス圧を低くして高周波電力を高くすると析出速
度が遅くなる反面高架橋化された比較的硬い保護膜層が
得られ、 る。ところが、ガス圧を低(して高周波電力
を高くしすぎると、モノマーガスが粉末化してしまいプ
ラズマ重合保護膜層が形成されないため、ガス圧を0.
003〜5トールの範囲内とし、高周波電力を0.03
〜I W/aaの範囲内とするのが好ましく、ガス圧を
o、oos〜0.1トールとし、高周波電力を0.05
〜0.5 W/calの範囲内とするのがより好ましい
。゛このようにしてプラズマ重合を行うことによって析
出形成されるプラズマ重合保護膜層は、ニトリル基の存
在によってラジカルが良好に生成されて架橋密度が高く
なり、水分子が透過する孔の生成が困難となって水分の
透過が極めて良好に防止され、耐食性が一段と向上され
る。このようなプラズマ重合保護膜層の膜厚は、20−
1000人の範囲内であることが好ましく、膜厚が薄す
ぎるとこの保護膜層による耐食性の効果が充分に発揮さ
れず、厚すぎるとスペーシングロスが太キ(なりすぎて
電磁変換特性に悪影響を及ぼす。
When performing such plasma polymerization, the gas pressure and high frequency power are such that the higher the gas pressure, the faster the deposition rate of the plasma-polymerized protective film layer, but on the other hand, the plasma polymerization of the plasma polymerized gas with a relatively low degree of crosslinking results in a hard protective film. Layer is not obtained,
Furthermore, when the gas pressure is lowered and the high frequency power is increased, the deposition rate becomes slower, but a highly crosslinked and relatively hard protective film layer can be obtained. However, if the gas pressure is too low (and the high frequency power is too high), the monomer gas will turn into powder and a plasma polymerized protective film layer will not be formed.
003 to 5 Torr, and the high frequency power is 0.03
It is preferable that the range is ˜I W/aa, the gas pressure is o, oos ˜0.1 Torr, and the high frequency power is 0.05 Torr.
It is more preferable to set it within the range of ~0.5 W/cal.゛In the plasma-polymerized protective film layer that is deposited and formed by performing plasma polymerization in this way, the presence of nitrile groups facilitates the generation of radicals, resulting in a high crosslinking density, making it difficult to create pores through which water molecules can pass. As a result, moisture permeation is extremely effectively prevented, and corrosion resistance is further improved. The thickness of such a plasma polymerized protective film layer is 20-
The thickness is preferably within the range of 1,000 people. If the film thickness is too thin, the corrosion resistance effect of this protective film layer will not be fully exhibited, and if it is too thick, the spacing loss will be too large (too much, which will have a negative effect on the electromagnetic conversion characteristics). effect.

金属磁性材を記録素子とする磁性層は、Fe粉末、Co
粉末、F e −N i粉末などの金属磁性粉末を、結
合剤成分および有機溶剤等とともに基体上に塗布、乾燥
するか、あるいは、CO5Fe、Ni、、Go−Ni−
Pなどの強磁性材を、真空蒸着、イオンブレーティング
、スパッタリング、メッキ等の手段によって基体上に被
着するなどの方法で形成される。
The magnetic layer that uses a metal magnetic material as a recording element is made of Fe powder, Co
A metal magnetic powder such as Fe-Ni powder or Fe-Ni powder is coated on a substrate together with a binder component and an organic solvent and dried, or CO5Fe, Ni, Go-Ni-
It is formed by depositing a ferromagnetic material such as P on a substrate by means such as vacuum evaporation, ion blating, sputtering, and plating.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 厚さ10μ、のポリエステルフィルムを真空蒸着装置に
装填し、5X10−5)−ルの真空下でコバルト−ニッ
ケル合金(重量比8:2)を加熱蒸発させてポリエステ
ルフィルム上に厚さ1000人のコバルト−ニッケル合
金からなる強磁性金属薄膜層を形成した。次いで、第1
図に示すプラズマ処理装置を使用し、強磁性金属薄膜層
を形成したポリエステルフィルム1を処理槽2内の上部
に配設した基板3の下面にセットし、処理槽2に取りつ
けたガス導入管4からアセトニトリルのモノマーガスを
4 secmの流量で導入してガス圧をo、03トール
とし、電極5の電力密度0.2W/cniでプラズマ重
合を行い、厚さ−が3oo人のプラズマ重合保護膜層を
形成した。しかる後、所定の巾に裁断して第2図に示す
ようなポリエステルフィルム1上に強磁性金属薄膜層8
およびプラズマ重合保護膜層9を順次に積層形成した磁
気テープAをつくった。なお、図中6は処理槽2内を減
圧するための排気系であり、7は電極5に高周波を印加
するための高周波電源である。
Example 1 A polyester film with a thickness of 10 μm was loaded into a vacuum evaporation apparatus, and a cobalt-nickel alloy (weight ratio 8:2) was heated and evaporated under a vacuum of 5×10 −5 ) to form a thickness of 10 μm on the polyester film. A ferromagnetic metal thin film layer consisting of a cobalt-nickel alloy of 1000% was formed. Then the first
Using the plasma processing apparatus shown in the figure, a polyester film 1 on which a ferromagnetic metal thin film layer is formed is set on the lower surface of a substrate 3 disposed at the upper part of a processing tank 2, and a gas introduction pipe 4 is attached to the processing tank 2. A monomer gas of acetonitrile was introduced at a flow rate of 4 secm, the gas pressure was set to 0.03 Torr, and plasma polymerization was performed at a power density of 0.2 W/cni of the electrode 5 to form a plasma-polymerized protective film with a thickness of 30 mm. formed a layer. Thereafter, it is cut to a predetermined width and a ferromagnetic metal thin film layer 8 is placed on the polyester film 1 as shown in FIG.
A magnetic tape A was prepared in which a plasma polymerized protective film layer 9 was sequentially laminated. In the figure, 6 is an exhaust system for reducing the pressure inside the processing tank 2, and 7 is a high frequency power source for applying high frequency to the electrode 5.

実施例2 実施例1の強磁性金属薄膜層の形成において、コバルト
−ニッケル合金に代えてコバルトを使用した以外は、実
施例1と同様にしてコバルトからなる強磁性金属薄II
!!i!層を形成し、磁気テープAをつくった。
Example 2 A ferromagnetic metal thin II made of cobalt was prepared in the same manner as in Example 1, except that cobalt was used instead of the cobalt-nickel alloy in forming the ferromagnetic metal thin film layer in Example 1.
! ! i! A layer was formed to produce magnetic tape A.

実施例3 実施例1におけるプラズマ重合保護膜層の形成において
、アセトニトリルのモノマーガスに代えて、マロンニト
リルのモノマーガスを同量使用した以外は実施例工と同
様にして、厚さが300人のプラズマ重合保護膜層を形
成し、磁気テープAをつくった。
Example 3 In the formation of the plasma polymerized protective film layer in Example 1, the same process as in Example 1 was performed except that the same amount of malonitrile monomer gas was used instead of acetonitrile monomer gas. A plasma polymerized protective film layer was formed to produce magnetic tape A.

実施例4 実施例1におけるプラズマ重合保護膜層の形成において
、アセトニトリルのモノマーガスに代えて、ベンゾニト
リルのモノマーガスを同量使用した以外は実施例1と同
様にして、厚さが300人のプラズマ重合保護膜層を形
成し、磁気テープAをつくった。
Example 4 The plasma polymerized protective film layer was formed in the same manner as in Example 1 except that the same amount of benzonitrile monomer gas was used instead of acetonitrile monomer gas in forming the plasma polymerized protective film layer in Example 1. A plasma polymerized protective film layer was formed to produce magnetic tape A.

実施例5 実施例1におけるプラズマ重合保護膜層の形成において
、アセトニトリルのモノマーガスの流量を4 sccm
から3.5sccmに変更するとともに、テトラメチル
シランのモノマーガスを0.5secmの流量で導入し
て全圧を0.04 )−ルとし、電力密度を0.4W/
aaとした以外は実施例1と同様にして、厚さが300
人のプラズマ重合保護膜層を形成し、磁気テープAをつ
くった。
Example 5 In forming the plasma polymerized protective film layer in Example 1, the flow rate of acetonitrile monomer gas was set at 4 sccm.
At the same time, the monomer gas of tetramethylsilane was introduced at a flow rate of 0.5 scm to make the total pressure 0.04)-L, and the power density was changed to 0.4 W/L.
The thickness was 300 mm in the same manner as in Example 1 except that it was set to aa.
A magnetic tape A was produced by forming a plasma-polymerized protective film layer.

実施例6 α−Fe磁性粉末       6003!i量部エス
レックCN(積木化学工業  80μ社製、塩化ビニル
−酢酸ビニ ル共重合体) パンデソクスT−5250(大  30μ日本インキ社
製、ウレタンエ ラストマー) コロネートL(日本ポリウレタ  10〃ン工業社製、
三官能性低分子 量イソシアネート化合物) メチルイソブチルケトン    400〃トルエン  
         400〃この組成物をボールミル中
で72時間混合分散して磁性塗料を調製し、この磁性塗
料を厚さ10μのポリエステルフィルム上に乾燥厚が4
μとなるように塗布、乾燥して磁性層を形成した。次い
で、この磁性層上に、実施例1と同様にして厚さが30
0人のプラズマ重合保護膜層を形成し、磁気テープAを
つくった。
Example 6 α-Fe magnetic powder 6003! i part S-LEC CN (manufactured by Block Chemical Industry Co., Ltd. 80 μ, vinyl chloride-vinyl acetate copolymer) Pandesox T-5250 (large 30 μ, manufactured by Nippon Ink Co., Ltd., urethane elastomer) Coronate L (manufactured by Nippon Polyurethane Co., Ltd.,
Trifunctional low molecular weight isocyanate compound) Methyl isobutyl ketone 400〃Toluene
400 This composition was mixed and dispersed in a ball mill for 72 hours to prepare a magnetic paint, and this magnetic paint was coated on a polyester film with a dry thickness of 4 μm.
A magnetic layer was formed by coating and drying so as to have a thickness of μ. Next, a layer with a thickness of 30 mm was applied on this magnetic layer in the same manner as in Example 1.
Magnetic tape A was produced by forming a plasma polymerized protective film layer.

比較例1 実施例工におけるプラズマ重合保護膜層の形成において
、アセトニトリルのモノマーガスに代えて、オクタメチ
ルシクロテトラシロキサンのモノマーガスを4 sec
mの流量で導入するとともに、窒素ガスをl sccm
の流量で導入して全圧を0.051−−ルとし、電力密
度を0.3W/−とした以外は、実施例1と同様にして
厚さが300人のプラズマ重合保護膜層を形成し、磁気
テープをつくった。
Comparative Example 1 In the formation of a plasma polymerized protective film layer in the example process, octamethylcyclotetrasiloxane monomer gas was used for 4 sec instead of acetonitrile monomer gas.
Nitrogen gas was introduced at a flow rate of m sccm and nitrogen gas was introduced at a flow rate of l sccm.
A plasma-polymerized protective film layer with a thickness of 300 mm was formed in the same manner as in Example 1, except that the total pressure was 0.051 L and the power density was 0.3 W/-. and created magnetic tape.

比較例2 実施例1において、プラズマ重合保護膜層の形成を省い
た以外は、実施例1と同様にして磁気テープをつ(った
Comparative Example 2 A magnetic tape was produced in the same manner as in Example 1 except that the formation of the plasma polymerized protective film layer was omitted.

各実施例および比較例で得られた磁気テープについて、
耐食層を試験した。耐食製試験は得られた磁気テープを
60℃、90%RHの条件下に7日間放置して最大磁束
密度を測定し、放置前の磁気テープの最大磁束密度を1
00%とし、これと比較した値でその劣化率を調べて行
った。
Regarding the magnetic tapes obtained in each example and comparative example,
The corrosion-resistant layer was tested. In the corrosion resistance test, the obtained magnetic tape was left under conditions of 60°C and 90% RH for 7 days and the maximum magnetic flux density was measured, and the maximum magnetic flux density of the magnetic tape before being left was 1.
00%, and the deterioration rate was investigated using the value compared with this value.

下表はその結果である。The table below shows the results.

〔発明の効果〕〔Effect of the invention〕

上表から明らかなように実施例1ないし6で得られた磁
気テープは、いずれも比較例1および2で得られた磁気
テープに比し、劣化率が小さく、このことからこの発明
の製造方法によれば、一段と耐食性に優れた磁気記録媒
体が得られるのがわかる。
As is clear from the table above, the magnetic tapes obtained in Examples 1 to 6 all had lower deterioration rates than the magnetic tapes obtained in Comparative Examples 1 and 2, and from this, the manufacturing method of the present invention It can be seen that a magnetic recording medium with even better corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の製造方法によりプラズマ重合保護
膜層を形成する際に使用するプラズマ処理装置の1例を
示す概略断面図、第2図はこの発明の製造方法によって
得られた磁気テープの部分拡大断面図である。 1・・・ポリエステルフィルム(基体)、8・・・強磁
性金属薄膜層、9・・・プラズマ重合保護膜層、A・・
・磁気テープ(磁気記録媒体)
FIG. 1 is a schematic cross-sectional view showing an example of a plasma processing apparatus used when forming a plasma polymerized protective film layer by the manufacturing method of the present invention, and FIG. 2 is a magnetic tape obtained by the manufacturing method of the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Polyester film (substrate), 8... Ferromagnetic metal thin film layer, 9... Plasma polymerization protective film layer, A...
・Magnetic tape (magnetic recording medium)

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に磁性層を形成し、次いで、この磁性層を、
ニトリル基を有する有機化合物のモノマーガスを含むモ
ノマーガスのプラズマ中にさらして、プラズマ重合を行
い、プラズマ重合保護膜層を形成することを特徴とする
磁気記録媒体の製造方法
1. Form a magnetic layer on the substrate, then apply this magnetic layer to
A method for manufacturing a magnetic recording medium, which comprises exposing the medium to a plasma of a monomer gas containing a monomer gas of an organic compound having a nitrile group to perform plasma polymerization to form a plasma polymerized protective film layer.
JP22482784A 1984-10-25 1984-10-25 Production of magnetic recording medium Pending JPS61104430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22482784A JPS61104430A (en) 1984-10-25 1984-10-25 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22482784A JPS61104430A (en) 1984-10-25 1984-10-25 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61104430A true JPS61104430A (en) 1986-05-22

Family

ID=16819813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22482784A Pending JPS61104430A (en) 1984-10-25 1984-10-25 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61104430A (en)

Similar Documents

Publication Publication Date Title
JPS61104430A (en) Production of magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS62167616A (en) Magnetic recording medium and its production
JPS6122432A (en) Production of magnetic recording medium
JPS61104425A (en) Magnetic recording medium
JPS60237639A (en) Production of magnetic recording medium
JPS6122434A (en) Magnetic recording medium and its production
JPS60237627A (en) Magnetic recording medium
JPS60237634A (en) Magnetic recording medium and its production
JPS6057537A (en) Production of magnetic recording medium
JPH0576097B2 (en)
JPS6177132A (en) Magnetic recording medium
JPS61122924A (en) Magnetic recording medium and its production
JPS6122420A (en) Magnetic recording medium
JPS6116027A (en) Magnetic recording medium and its production
JPS6057535A (en) Magnetic recording medium
JPS61214131A (en) Production of magnetic recording medium
JPS62157324A (en) Magnetic recording medium and its production
JPS6116029A (en) Magnetic recording medium and its production
JPS6231022A (en) Magnetic recording medium and its manufacture
JPS63157312A (en) Magnetic recording medium and its production
JPS61107525A (en) Magnetic recording medium
JPS6116030A (en) Production of magnetic recording medium
JPH0760523B2 (en) Method of manufacturing magnetic recording medium
JPS62167615A (en) Magnetic recording medium and its production