JPS61104425A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS61104425A
JPS61104425A JP22482884A JP22482884A JPS61104425A JP S61104425 A JPS61104425 A JP S61104425A JP 22482884 A JP22482884 A JP 22482884A JP 22482884 A JP22482884 A JP 22482884A JP S61104425 A JPS61104425 A JP S61104425A
Authority
JP
Japan
Prior art keywords
plasma
film layer
protective film
gas
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22482884A
Other languages
Japanese (ja)
Inventor
Fumio Komi
文夫 小海
Tsunemi Oiwa
大岩 恒美
Takashi Kubota
隆 久保田
Minoru Ichijo
稔 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP22482884A priority Critical patent/JPS61104425A/en
Publication of JPS61104425A publication Critical patent/JPS61104425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To increase the crosslinking density of a plasma-polymerized protective film layer and to improve the corrosion resistance thereof by forming a magnetic layer on a base body and providing the plasma-polymerized protective film layer contg. chlorine on said magnetic layer. CONSTITUTION:A polyester film is mounted to a vacuum deposition device and a cobalt-nickel alloy (8:2wt.) is heated to evaporate in a vacuum to form a thin ferromagnetic metallic film layer consisting of the cobalt-nickel alloy on the polyester film. The polyester film 1 formed with the thin ferromagnetic metallic film layer is set to the bottom surface of a substrate 3 disposed to the upper part in a plasma treating vessel 2 and a gaseous monomer of vinylidene chloride is introduced into the vessel 2 through a gas introducing pipe 4 attached to the vessel 2 then the gaseous pressure is maintained under 0.03Torr and the plasma polymn. is executed with an electrode 5 by using the plasma treating device, by which the plasma-polymerized protective film layer is formed. The film is thereafter cut to a prescribed width and the magnetic tape A laminated and formed successively with the thin ferromagnetic metallic film layer 8 and the plasma-polymerized protective film layer 9 on the polyester film 1 is thus manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体に関し、さらに詳しくは、耐食
性に優れた磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium with excellent corrosion resistance.

〔従来の技術〕[Conventional technology]

金属磁性材を記録素子として使用する磁気記録媒体は、
通常、金属もしくはそれらの合金などからなる強磁性金
属薄膜層を真空蒸着等によって基体上に被着するかある
いは強磁性金属粉末を結合剤樹脂とともに基体上に塗布
、乾燥してつくられ、高密度記録に適した特性を有する
が、反面、磁性層が空気中の酸素や水分によって酸化さ
れ易く、徐々に酸化を受けて最大磁束密度が劣化するな
どの難点がある。
Magnetic recording media that use metallic magnetic materials as recording elements are
Usually, it is made by depositing a ferromagnetic metal thin film layer made of metals or their alloys on a substrate by vacuum deposition, or by coating ferromagnetic metal powder with a binder resin on the substrate and drying. Although it has characteristics suitable for recording, it has the disadvantage that the magnetic layer is easily oxidized by oxygen and moisture in the air, and the maximum magnetic flux density deteriorates as a result of gradual oxidation.

このため、従来から磁性層上に種々の保護膜層を設ける
などして耐食性を改善することが行われており、近年、
たとえば、オクタメチルシクロテトラシロキサンの七ツ
マーガスをキャリアガスの窒素ガスとともに使用し、プ
ラズマ重合して、ケイ素系有機化合物のプラズマ重合保
護膜層を強磁性金属薄膜層上に設けること[飯島哲生、
花房廣明、電気通信学会論文誌、J67−C,Nol 
(’84)]が提案されている。  。
For this reason, efforts have been made to improve corrosion resistance by providing various protective film layers on the magnetic layer, and in recent years,
For example, a plasma-polymerized protective film layer of a silicon-based organic compound is formed on a ferromagnetic metal thin film layer by using a 7-mer gas of octamethylcyclotetrasiloxane together with nitrogen gas as a carrier gas [Tetsuo Iijima,
Hiroaki Hanafusa, Transactions of the Institute of Electrical Communication Engineers, J67-C, Nol.
('84)] has been proposed. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この種のケイ素系有機化合物のプラズマ重合
保護膜層は、酸素原子を多く含むために原子間の間隙が
多くなり、空気中の水分がこの保護膜層を容易に透過し
て、この透過した水分により磁性層が腐食されるという
難点があり、未だ耐食性は充分に改善されていない。
However, since this type of plasma-polymerized protective film layer made of silicon-based organic compounds contains many oxygen atoms, there are many gaps between atoms, and moisture in the air easily permeates through this protective film layer. The problem is that the magnetic layer is corroded by the moisture, and corrosion resistance has not yet been sufficiently improved.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、かかる現状に鑑み種々検討を行った結果な
されたもので、磁性層上に塩素を含有するプラズマ重合
保護膜層を形成することによって1.塩素の立体障害に
より原子間の間隙を塞いで、プラズマ重合保護膜層の水
分の透過を効果的に抑制するとともに、塩素により水素
引抜き反応を促がし、ラジカルの生成を容易にして、プ
ラズマ重合保護膜層の架橋密度を高くし、耐食性を充分
に改善したものである。
This invention was made as a result of various studies in view of the current situation, and consists of 1. forming a plasma polymerized protective layer containing chlorine on the magnetic layer; The steric hindrance of chlorine closes the gaps between atoms, effectively suppressing the permeation of moisture through the plasma polymerization protective film layer, and chlorine also promotes the hydrogen abstraction reaction, facilitating the generation of radicals, and promoting plasma polymerization. The crosslinking density of the protective film layer is increased to sufficiently improve corrosion resistance.

この発明において、磁性層上に形成される塩素を含有す
るプラズマ重合保護膜層は、塩素を含有する有機化合物
のモノマーガス、あるいは塩素を含有する有機化合物の
モノマーガスと他の有機化合物の七ツマーガスとの混合
ガス、もしくは塩素ガスと他の有機化合物のモノマーガ
スとの混合ガ′スなどのモノマーガスのプラズマ中に、
磁性層をさらして、プラズマ重合することにより形成さ
れる。このプラズマ重合保護膜層は、塩素という大きな
置換基を有するため、この置換基の立体障害により原子
間の間隙が閉塞されて水分子の透過が困難となり、また
塩素の存在により水素の引抜き反応が促進されて、プラ
ズマ重合の際のラジカルの生成が容易になり、プラズマ
重合保護膜層の架橋密度が向上されて、耐食性が充分に
向上された磁気記録媒体が得られる。このようにして、
形成されるプラズマ重合保護膜層中における塩素の含有
量は、プラズマ重合保護膜層を構成する全構成原子に対
して0.1〜10モル%の範囲内であることが好ましく
、少なすぎては所期の効果が得られず、多すぎると架橋
密度が低6すぎて耐食性が向上されない。
In this invention, the chlorine-containing plasma polymerized protective film layer formed on the magnetic layer is formed using a chlorine-containing monomer gas of an organic compound, or a chlorine-containing monomer gas of an organic compound monomer gas and another organic compound. In a monomer gas plasma, such as a mixed gas with chlorine gas or a mixed gas with a monomer gas of another organic compound,
It is formed by exposing the magnetic layer and subjecting it to plasma polymerization. This plasma-polymerized protective film layer has a large substituent called chlorine, so the steric hindrance of this substituent closes the gaps between atoms, making it difficult for water molecules to pass through, and the presence of chlorine prevents the hydrogen abstraction reaction. This facilitates the generation of radicals during plasma polymerization, improves the crosslinking density of the plasma polymerized protective film layer, and provides a magnetic recording medium with sufficiently improved corrosion resistance. In this way,
The content of chlorine in the plasma-polymerized protective film layer to be formed is preferably within the range of 0.1 to 10 mol% based on all constituent atoms constituting the plasma-polymerized protective film layer, and should not be too small. The desired effect cannot be obtained, and if the amount is too large, the crosslinking density will be too low and corrosion resistance will not be improved.

このようなプラズマ重合に使用する塩素を含有する有機
化合物の七ツマーガスとしては、たとえば、塩化ビニリ
デン、塩化エチリデン、塩化エチレン、塩化ビニル等が
好適なものとして使用され、この他これらの塩素を含有
する有機化合物のモノマーガスと他の有機化合物のモノ
マーガスの混合ガス、さらに塩素ガスと他の有機化合物
のモノマーガスとの混合ガスが好適に使用される。ここ
で、混合して使用される他の有機化合物の七ツマーガス
としては、たとえば、プロパン、エチレン、プロピレン
などの炭化水素系化合物のモノマーガス、C2F 4 
、C3F 6などのフッ素系有機化合物のモノマーガス
およびテトラメチルシラン、オクタメチルシクロテトラ
シロキサン、ヘキサメチルジシラザンなどのケイ素系有
機化合物のモノマーガス等が好ましく使用される。混合
割合は、塩素を含有する有機化合物のモノマーガスと混
合する場合、これらの有機化合物の七ツマーガス対塩素
を含有する有機化合物のモノマーガスにして、容積比で
θ対1〜1対3の範囲内となるようにするのが好ましく
、塩素を含有する有機化合物のモノマーガスが少なすぎ
ると所期の効果が得られない、また塩素ガスと混合する
場合、これらの有機化合物のモノマーガス対塩素ガスに
して、容積比で10対1〜3対1の範囲内となるように
するのが好ましく、塩素ガスが少なすぎると所期の効果
が得られず、多すぎるとプラズマ重合反応が支障をきた
し、プラズマ重合保護膜層が形成されにくくなる。
Examples of preferable gases for organic compounds containing chlorine used in such plasma polymerization include vinylidene chloride, ethylidene chloride, ethylene chloride, and vinyl chloride. A mixed gas of a monomer gas of an organic compound and a monomer gas of another organic compound, and a mixed gas of chlorine gas and a monomer gas of another organic compound are preferably used. Here, examples of other organic compound gases used in combination include monomer gases of hydrocarbon compounds such as propane, ethylene, and propylene, and C2F4.
, C3F6, and silicon-based organic compounds such as tetramethylsilane, octamethylcyclotetrasiloxane, hexamethyldisilazane, etc. are preferably used. When mixing with the monomer gas of an organic compound containing chlorine, the mixing ratio is in the range of θ to 1 to 1 to 3 in terms of volume ratio of 7 molar gas of these organic compounds to monomer gas of the organic compound containing chlorine. If the monomer gas of the organic compound containing chlorine is too small, the desired effect cannot be obtained, and when mixing with chlorine gas, the monomer gas of these organic compounds vs. It is preferable that the volume ratio be within the range of 10:1 to 3:1; too little chlorine gas will not produce the desired effect, and too much chlorine gas will interfere with the plasma polymerization reaction. , it becomes difficult to form a plasma polymerized protective film layer.

これらの塩素を含有する有機化合物の七ツマーガス、あ
るいは塩素を含有する有機化合物のモノマーガスと他の
有機化合物のモノマーガスとの混合ガス、もしくは塩素
ガスと池の有機化合物のモノマーガスとの混合ガスなど
の七ツマーガスは、高周波によりプラズマ重合が行われ
ると、高周波によりラジカルが生成され、この生成され
たラジカルが反応し重合して被膜となる。このように、
これらのモノマーガスをプラズマ重合する際、アルゴン
ガスおよびヘリウムガス等のキャリアガスを併存させる
とモノマーガスを単独でプラズマ重合する場合に比べて
3〜5倍の一速度で析出されるため、これらのキャリア
ガスを併存させて行うのが好ましい。これらのキャリア
ガスと併存させる際、その組成割合はキャリアガス対前
記モノマーガスの容積比にして1対1〜20対1の範囲
内で併存させるのが好ましく、キャリアガスが少なすぎ
ると析出速度が低下し、多すぎるとモノマーガスが少な
くなってプラズマ重合反応に支障をきたす。
A mixed gas of these chlorine-containing organic compounds, a mixed gas of a chlorine-containing monomer gas and a monomer gas of another organic compound, or a mixed gas of chlorine gas and a monomer gas of an organic compound in a pond. When plasma polymerization is carried out using high frequency waves, radicals are generated by the high frequency waves, and the generated radicals react and polymerize to form a film. in this way,
When plasma polymerizing these monomer gases, if a carrier gas such as argon gas and helium gas is present, the monomer gases will be deposited at a rate 3 to 5 times faster than when plasma polymerizing them alone. It is preferable to carry out this process in the presence of a carrier gas. When coexisting with these carrier gases, it is preferable that the composition ratio is within the range of 1:1 to 20:1 in terms of the volume ratio of the carrier gas to the monomer gas, and if the carrier gas is too small, the precipitation rate will be reduced. If the amount is too high, the amount of monomer gas will decrease and the plasma polymerization reaction will be hindered.

このようなプラズマ重合を行う場合のガス圧および高周
波の電力は、ガス圧が高くなるほどプラズマ重合保護膜
層の析出速度が速くなる反面上ツマーガスが比較的低い
架橋度でプラズマ重合されて硬い保護膜層が得られず、
また、ガス圧を低くして高周波電力を高くすると析出速
度が遅くなる反面高架橋化された比較的硬い保護膜層が
得られる。ところが、ガス圧を低くして高周波電力を高
くしすぎると、七ツマーガスが粉末化してしまいプラズ
マ重合保護膜層が形成されないため、ガス圧を0.00
3〜5トールの範囲内とし、高周波電力を0.03〜I
W/+fの範囲内とするのが好ましく、ガス圧をo、o
os〜0.1トールとし、高周波電力を0.05〜0.
5 W/、fflの範囲内とするのがより好ましい。こ
のようにしてプラズマ重合を行うことによって析出形成
されるプラズマ重合保護膜層は、塩素の存在によって水
素引抜き反応が促進され、ラジカルが良好に発生されて
架橋密度が高くなり、また塩素という大きな置換基を含
むため、この置換基の立体障害により原子間の間隙が閉
塞されて、水分の透過が極めて良好に防止され、耐食性
が一段と向上される。このようなプラズマ重合保護膜層
の膜厚は、20〜1000人の範囲内であることが好ま
しく、膜厚が薄すぎるとこの保護膜層による耐食性の効
果が充分に発揮されず、厚すぎるとスペーシングロスが
大きくなりすぎて電磁変換特性に悪影響を及ぼす。
When performing such plasma polymerization, the gas pressure and high frequency power are such that the higher the gas pressure, the faster the deposition rate of the plasma-polymerized protective film layer, but on the other hand, the plasma polymerization of the plasma polymerized gas with a relatively low degree of crosslinking results in a hard protective film. Layer is not obtained,
Further, when the gas pressure is lowered and the high frequency power is increased, the deposition rate becomes slower, but on the other hand, a highly crosslinked and relatively hard protective film layer is obtained. However, if the gas pressure is lowered and the high frequency power is increased too high, the 7-mer gas will turn into powder and the plasma polymerized protective film layer will not be formed.
The high frequency power should be within the range of 3 to 5 torr, and the high frequency power should be within the range of 0.03 to I.
It is preferable to set the gas pressure within the range of W/+f, and the gas pressure to be within the range of o, o
os ~ 0.1 Torr, and the high frequency power is 0.05~0.
More preferably, it is within the range of 5 W/, ffl. The plasma-polymerized protective film layer that is deposited and formed by plasma polymerization in this way has a hydrogen abstraction reaction promoted by the presence of chlorine, good generation of radicals, and a high crosslinking density, and a large substitution of chlorine. Since it contains a group, the steric hindrance of this substituent closes the interatomic gaps, extremely well preventing moisture permeation, and further improving corrosion resistance. The thickness of such a plasma polymerized protective film layer is preferably within the range of 20 to 1000. If the film thickness is too thin, the corrosion resistance effect of this protective film layer will not be fully exhibited, and if it is too thick, Spacing loss becomes too large, which adversely affects electromagnetic conversion characteristics.

金属磁性材を記録素子とする磁性層は、Fe粉末、Go
粉末、Fe−Ni粉末などの金属磁性粉末を、結合剤成
分および有機溶剤等とともに基体上に塗布、乾燥するか
、あるいは、Co、Fe、Ni、Go−Ni−Pなどの
強磁性材を、真空蒸着、イオンブレーティング、スパッ
タリング、メッキ等の手段によって基体上に被着するな
どの方法で形成される。
The magnetic layer, which uses a metal magnetic material as a recording element, is made of Fe powder, Go
A metal magnetic powder such as powder or Fe-Ni powder is coated on a substrate together with a binder component and an organic solvent and dried, or a ferromagnetic material such as Co, Fe, Ni, Go-Ni-P, etc. It is formed by depositing it on a substrate by means such as vacuum evaporation, ion blasting, sputtering, and plating.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 厚さ10μのポリエステルフィルムを真空蒸着装置に装
填し、5×10′5トールの真空下でコバルト−ニッケ
ル合金(重量比8:2)を加熱蒸発させてポリエステル
フィルム上に厚さ1000人のコバルト−ニッケル合金
からなる強磁性金属薄膜層を形成した。次いで、第1図
に示すプラズマ処理装置を使用し、強磁性金属薄膜層を
形成したポリエステルフィルム1を処理槽2内の上部に
配設した基板3の下面にセットし、処理槽2に取りつけ
たガス導入管4から塩化ビニリデンの七ツマーガスを4
 secmの流量で導入してガス圧を0.03 )−ル
とし、電極5の電力密度0.2W/ciでプラズマ重合
を行い、厚さが300人のプラズマ重合保護膜層を形成
した。しかる後、所定の巾に裁断して第2図゛に示すよ
うなポリエステルフィルム1上に強磁性金属薄膜層8お
よび′プラズマ重合保護膜層9を順次に積層形成した磁
気テープAをつくった。なお、図中6は処理槽2内を減
圧するための排気系であり、7は電極5に高周波を印加
するための高周波電源である。
Example 1 A polyester film with a thickness of 10 μm was loaded into a vacuum evaporation apparatus, and cobalt-nickel alloy (weight ratio 8:2) was heated and evaporated under a vacuum of 5×10′5 Torr to form a 100 μm thick polyester film on the polyester film. A ferromagnetic metal thin film layer made of a cobalt-nickel alloy was formed. Next, using the plasma processing apparatus shown in FIG. 1, the polyester film 1 on which the ferromagnetic metal thin film layer was formed was set on the lower surface of the substrate 3 disposed at the upper part of the processing tank 2, and attached to the processing tank 2. Inject vinylidene chloride 7-mer gas from gas inlet pipe 4.
The gas was introduced at a flow rate of secm, the gas pressure was set to 0.03), and plasma polymerization was carried out at a power density of 0.2 W/ci for the electrode 5 to form a plasma polymerized protective film layer with a thickness of 300 mm. Thereafter, the tape was cut to a predetermined width, and a magnetic tape A was prepared by sequentially laminating a ferromagnetic metal thin film layer 8 and a plasma polymerized protective film layer 9 on a polyester film 1 as shown in FIG. In the figure, 6 is an exhaust system for reducing the pressure inside the processing tank 2, and 7 is a high frequency power source for applying high frequency to the electrode 5.

実施例2 実施例1の強磁性金属薄膜層の形成において、コバルト
−ニッケル合金に代えてコバルトを使用した以外は、実
施例1と同様にしてコバルトからなる強磁性金属薄膜層
を形成し、磁気チー゛ブAをつくった。
Example 2 A ferromagnetic metal thin film layer made of cobalt was formed in the same manner as in Example 1, except that cobalt was used instead of the cobalt-nickel alloy in the formation of the ferromagnetic metal thin film layer in Example 1. I made Team A.

実施例3 実施例1におけるプラズマ重合保護膜層の形成において
、塩化ビニリデンのモノマーガスに代えて、塩化ビニル
のモノマーガスを同量使用した以外は実施例1と同様に
して、厚さが300人のプラズマ重合保護膜層を形成し
、磁気テープAをつくった。
Example 3 In the formation of the plasma polymerized protective film layer in Example 1, the same procedure as in Example 1 was performed except that the same amount of vinyl chloride monomer gas was used instead of the vinylidene chloride monomer gas, and the thickness was 300 mm. A plasma polymerized protective film layer was formed to prepare magnetic tape A.

実施例4 実施例1におけるプラズマ重合保護膜層の形成において
、塩化ビニリデンの七ツマーガスの流量を4 secm
から3 sec+wに変更するとともにc2F4のモノ
マーガスを1 secmの流量で導入して全圧を0.0
2 )−ルとし、電力密度を0.3W/cmとした以外
は、実施例1と同様にして厚さが300人のプラズマ重
合保護膜層を形成し、磁気テープAをつくった。
Example 4 In the formation of the plasma polymerized protective film layer in Example 1, the flow rate of vinylidene chloride 7-mer gas was set at 4 sec.
to 3 sec+w, and introduced c2F4 monomer gas at a flow rate of 1 sec to bring the total pressure to 0.0.
2) Magnetic tape A was produced by forming a plasma polymerized protective film layer having a thickness of 300 mm in the same manner as in Example 1, except that the magnetic tape was set to 0.3 W/cm and the power density was set to 0.3 W/cm.

実施例5 実施例1におけるプラズマ重合保護膜層の形成において
、塩化ビニリデンのモノマーガスに代えて、塩化ビニル
のモノマーガスを5 secmの流量で導入するととも
に、塩素ガスをl secmの流量で導入して全圧を0
.02 )−ルとし、電力密度を0.3W/−とした以
外は、実施例1と同様にして厚さが300人のプラズマ
重合保護膜層を形成し、磁気テープAをつくった。
Example 5 In the formation of the plasma polymerized protective film layer in Example 1, instead of the vinylidene chloride monomer gas, vinyl chloride monomer gas was introduced at a flow rate of 5 seconds, and chlorine gas was introduced at a flow rate of l seconds. to reduce the total pressure to 0.
.. Magnetic tape A was produced by forming a plasma polymerized protective film layer having a thickness of 300 mm in the same manner as in Example 1, except that the magnetic tape was 0.02 ) - and the power density was 0.3 W/-.

実施例6 α−Fe磁性粉末       600重量部エスレフ
クCN(種水化学工業  80  〃社製、塩化ビニル
−酢酸ビニ ル共重合体) バンデフクスT−5250(大  30μ日本インキ社
製、ウレタンエ ラストマー) コロネートしく日本ポリウレタ  10〃ン工業社製、
三官能性低分子 量イソシアネート化合物) メチルイソブチルケトン    400〃トルエン  
         400〃この組成物をボールミル中
で72時間混合分散して磁性塗料を調製し、この磁性塗
料を厚さ10μのポリエステルフィルム上に乾燥厚が4
μとなるように塗布、乾燥して磁性層を形成した0次い
で、この磁性層上に、実施例1と同様にして厚さが30
0人のプラズマ重合保護膜層を形成し、磁気テープAを
つくった。
Example 6 α-Fe magnetic powder 600 parts by weight S-Lefukus CN (manufactured by Tanemizu Kagaku Kogyo 80, vinyl chloride-vinyl acetate copolymer) Vandefuchs T-5250 (large 30μ made by Nippon Ink Co., Ltd., urethane elastomer) Coronate Shikoku Nippon Polyurethane manufactured by 10〃Ingyo Co., Ltd.
Trifunctional low molecular weight isocyanate compound) Methyl isobutyl ketone 400〃Toluene
400 This composition was mixed and dispersed in a ball mill for 72 hours to prepare a magnetic paint, and this magnetic paint was coated on a polyester film with a dry thickness of 4 μm.
A magnetic layer was formed by coating and drying so as to have a thickness of 30μ.
Magnetic tape A was produced by forming a plasma polymerized protective film layer.

比較例1 実施例1におけるプラズマ重合保護膜層の形成において
、塩化ビニリデンのモノマーガスに代えて、オクタメチ
ルシクロテトラシロキサンのモノマーガスを4 scc
mの流量で導入するとともに、窒素ガスをl 5cca
+の流量で導入して全圧を0.05 ) −ルとし、電
力密度を0.3W/ljとした以外は、実施例1と同様
にして厚さが300人のプラズマ重合保護膜層を形成し
、磁気テープをつくった。
Comparative Example 1 In the formation of the plasma polymerized protective film layer in Example 1, octamethylcyclotetrasiloxane monomer gas was used at 4 scc instead of vinylidene chloride monomer gas.
At the same time, nitrogen gas was introduced at a flow rate of l 5cca.
A plasma-polymerized protective film layer with a thickness of 300 mm was prepared in the same manner as in Example 1, except that it was introduced at a flow rate of +, the total pressure was set to 0.05 ) -L, and the power density was set to 0.3 W/lj. and created magnetic tape.

比較例2 実施例1において、プラズマ重合保護膜層の形成を省い
た以外は、実施例1と同様にして磁気テープをつくった
Comparative Example 2 A magnetic tape was produced in the same manner as in Example 1, except that the formation of the plasma polymerized protective film layer was omitted.

各実施例および比較例で得られた磁気テープについて、
耐食性を試験した。耐食性試験は得られた磁気テープを
60℃、90%RHの条件下に7日間放置して最大磁束
密度を測定し、放置前の磁気テープの最大磁束密度を1
00%とし、これと比較した値でその劣化率を調べて行
った。
Regarding the magnetic tapes obtained in each example and comparative example,
Corrosion resistance was tested. In the corrosion resistance test, the obtained magnetic tape was left under conditions of 60°C and 90% RH for 7 days, and the maximum magnetic flux density was measured.
00%, and the deterioration rate was investigated using the value compared with this value.

下表はその結果である。The table below shows the results.

上表から明らかなように実施例工ないし6で得られた磁
気テープは、いずれも比較例1および2で得られた磁気
テープに比し、劣化率が小さく、このことからこの発明
によれば、一段と耐食性に優れた磁気記録媒体が得られ
るのがわかる。
As is clear from the table above, the magnetic tapes obtained in Examples 1 to 6 all had a lower deterioration rate than the magnetic tapes obtained in Comparative Examples 1 and 2, and therefore, according to the present invention, It can be seen that a magnetic recording medium with even better corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明のプラズマ重合保護膜層を形成する
際に使用するプラズマ処理装置の1例を示す概略断面図
、第2図はこの発明によって得られた磁気テープの部分
拡大断面図である。 1・・・ポリエステルフィルム(基体)、8・・・強磁
性金属i膜層、9・・・プラズマ重合保護膜層、A・・
・□ 磁気テープ(磁気記録媒体) 特許出願人  日立マクセル株式会社 第1図
FIG. 1 is a schematic sectional view showing an example of a plasma processing apparatus used in forming the plasma polymerized protective film layer of the present invention, and FIG. 2 is a partially enlarged sectional view of a magnetic tape obtained by the present invention. be. DESCRIPTION OF SYMBOLS 1... Polyester film (substrate), 8... Ferromagnetic metal i-film layer, 9... Plasma polymerization protective film layer, A...
・□ Magnetic tape (magnetic recording medium) Patent applicant Hitachi Maxell, Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に磁性層を形成し、この磁性層上に塩素を含
有するプラズマ重合保護膜層を設けたことを特徴とする
磁気記録媒体。
1. A magnetic recording medium characterized in that a magnetic layer is formed on a substrate, and a plasma polymerized protective film layer containing chlorine is provided on the magnetic layer.
JP22482884A 1984-10-25 1984-10-25 Magnetic recording medium Pending JPS61104425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22482884A JPS61104425A (en) 1984-10-25 1984-10-25 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22482884A JPS61104425A (en) 1984-10-25 1984-10-25 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61104425A true JPS61104425A (en) 1986-05-22

Family

ID=16819826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22482884A Pending JPS61104425A (en) 1984-10-25 1984-10-25 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61104425A (en)

Similar Documents

Publication Publication Date Title
US5104709A (en) Magnetic recording medium which includes a protective layer, an adhesion strengthening substance and a lubricant layer
JPS61104425A (en) Magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS6234324A (en) Magnetic recording medium
JPS60237640A (en) Production of magnetic recording medium
JPH0546013B2 (en)
JPS61104430A (en) Production of magnetic recording medium
JPS60237639A (en) Production of magnetic recording medium
JPS61214130A (en) Magnetic recording medium
JPS6089817A (en) Magnetic recording medium
JPS6122432A (en) Production of magnetic recording medium
JPS62167616A (en) Magnetic recording medium and its production
JPS6122434A (en) Magnetic recording medium and its production
JPH0760523B2 (en) Method of manufacturing magnetic recording medium
JPS6057536A (en) Magnetic recording medium
JPS60237627A (en) Magnetic recording medium
JPS62157324A (en) Magnetic recording medium and its production
JPS60237634A (en) Magnetic recording medium and its production
JPS6231022A (en) Magnetic recording medium and its manufacture
JPS6177132A (en) Magnetic recording medium
JPS62167615A (en) Magnetic recording medium and its production
JPS6344316A (en) Magnetic recording medium
JPS6116029A (en) Magnetic recording medium and its production
JPS6089820A (en) Magnetic recording medium
JPS6116030A (en) Production of magnetic recording medium