JPS6344316A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6344316A
JPS6344316A JP18718886A JP18718886A JPS6344316A JP S6344316 A JPS6344316 A JP S6344316A JP 18718886 A JP18718886 A JP 18718886A JP 18718886 A JP18718886 A JP 18718886A JP S6344316 A JPS6344316 A JP S6344316A
Authority
JP
Japan
Prior art keywords
protective film
film layer
layer
atoms
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18718886A
Other languages
Japanese (ja)
Inventor
Fumio Komi
文夫 小海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP18718886A priority Critical patent/JPS6344316A/en
Publication of JPS6344316A publication Critical patent/JPS6344316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve durability by providing an amorphous protective film layer on a magnetic layer by the combination of respective atoms; carbon atom, oxygen atom, hydrogen atom, and fluorine atom, and depositing the protective film layer securely onto the magnetic layer. CONSTITUTION:The amorphous protective film layer 11 which consists of the respective atoms; carbon atom, oxygen atom and hydrogen atom or said atoms and the fluorine atoms or the respective atoms; carbon atom, oxygen atom and fluorine atom, and contains the oxygen atom at the ratio higher in the boundary layer with the magnetic layer 10 than in the surface layer is formed. The protective film layer 11 formed in such a manner is satisfactorily improved in the adhesiveness to the magnetic layer by the oxygen atom contained much in the boundary layer and the protective film layer 11 is securely deposited on the magnetic layer 10, by which the durability is additionally improved without generating the worn powder by the defective adhesion and the exfoliation, etc., of the protective film layer 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体に関し、さらに詳しくは耐久性
に優れた磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium with excellent durability.

〔従来の技術〕[Conventional technology]

一般に、金属もしくはそれらの合金などを真空蒸着、ス
パッタリング等によって基体フィルム上に被着するか、
あるいは磁性粉末を結合剤成分とともに基体フィルム上
に結着してつくられる磁気記録媒体は、記録再生時に磁
気ヘッド等と激しく摺接するため磁性層が摩耗されやす
く、特に真空蒸着等によって形成される強磁性金属薄膜
層は、高密度記録に通した特性を有する反面、磁気ヘッ
ドとの摩擦係数が大きくて摩耗や損傷を受けやすい。
Generally, metals or their alloys are deposited on a base film by vacuum evaporation, sputtering, etc.
Alternatively, magnetic recording media made by bonding magnetic powder together with a binder component onto a base film are susceptible to abrasion of the magnetic layer due to violent sliding contact with a magnetic head etc. during recording and reproduction. Although the magnetic metal thin film layer has characteristics suitable for high-density recording, it has a large coefficient of friction with the magnetic head and is susceptible to wear and damage.

このため、従来から磁性層上に種々の保護膜層を設ける
などして耐久性を改善することが行われており、たとえ
ば、グラファイト状カーボンやダイヤモンド状カーボン
などからなる炭素を主成分とする保護膜層を磁性層上に
設ける(特開昭53−143206号、特開昭59−1
27232号)ことが提案されている。
For this reason, durability has traditionally been improved by providing various protective film layers on the magnetic layer. A film layer is provided on the magnetic layer (JP-A-53-143206, JP-A-59-1)
No. 27232) has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような炭素を主成分とする保護膜層は磁
性層に対する接着性が悪く、長期間の使用により摩耗粉
の発生や、保護膜層の磁性層からの剥離等が見られ、未
だ、充分に良好な耐久性が得られていない。
However, such a protective film layer mainly composed of carbon has poor adhesion to the magnetic layer, and when used for a long period of time, abrasion particles are generated and the protective film layer peels off from the magnetic layer. Sufficient durability has not been achieved.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、かかる現状に鑑み鋭意研究を重ねた結果な
されたもので、磁性層上に、炭素原子と酸素原子と水素
原子の各原子、もしくはこれらの原子とフッ素原子、あ
るいは炭素原子と酸素原子とフッ素原子の各原子からな
り、かつ酸素原子の含有量を表面層に比べ磁性層との界
面層で多くしたアモルファス状の保護膜層を設けること
によって、磁性層に対する保#i膜屡の接着性を改善し
、保護膜層を磁性層上に強固に被着させて耐久性を充分
に向上させたものである。
This invention was made as a result of extensive research in view of the current situation, and it was discovered that carbon atoms, oxygen atoms, and hydrogen atoms, or these atoms and fluorine atoms, or carbon atoms and oxygen atoms, or carbon atoms and oxygen atoms, By providing an amorphous protective film layer consisting of fluorine atoms and fluorine atoms, and with a higher content of oxygen atoms in the interface layer with the magnetic layer than in the surface layer, the adhesiveness of the protective #i film layer to the magnetic layer is improved. The magnetic layer has improved properties and a protective film layer is firmly adhered to the magnetic layer to sufficiently improve durability.

この発明において、磁性層上に被着形成される保護膜層
は、まず処理槽内で、炭化水素化合物の七ツマーガス、
またはフッ素系有機化合物のモノマーガス、もしくはこ
れらの混合ガス、さらにはこれらとフッ素ガスとの混合
ガス等を、酸素ガスとともに高周波あるいはマイクロ波
等によるグロー放電中に導入させ、分解あるいは重合反
応させて磁性層上に沈積させるか、あるいはグラファイ
トやテフロンなどを希ガスと酸素ガスとの混合ガス雰囲
気下でスパッタリングし、磁性層上に被着するなどして
、炭素原子と酸素原子と水素原子の各原子、もしくはこ
れらの原子とフッ素原子、あるいは炭素原子と酸素原子
とフッ素原子の各原子からなり、酸素原子を比較的多量
含ませたアモルファス状の保護膜層を形成し、次いで、
同様の方法で酸素ガスを併用せずに保護膜層を形成して
、酸素原子を含まないかあるいは僅かに含むアモルファ
ス状の保護膜層を積層するなどの方法で形成される。こ
のようにして形成される保護膜層の磁性層との界面層に
おける酸素原子の含有量は、酸素ガスのガス流量やガス
圧を調整したり、グロー放電する際の高周波やマイクロ
波の電力等を制御することによって制御される。
In this invention, the protective film layer deposited on the magnetic layer is first treated with a hydrocarbon compound 7-mer gas in a treatment tank.
Alternatively, a monomer gas of a fluorine-based organic compound, a mixed gas thereof, or a mixed gas of these and fluorine gas, etc., is introduced together with oxygen gas into a glow discharge using high frequency waves or microwaves, etc., and a decomposition or polymerization reaction is caused. Carbon, oxygen, and hydrogen atoms are deposited on the magnetic layer, or sputtered with graphite, Teflon, etc. in a mixed gas atmosphere of rare gas and oxygen gas, and deposited on the magnetic layer. An amorphous protective film layer is formed of atoms, or these atoms and fluorine atoms, or carbon atoms, oxygen atoms, and fluorine atoms, and contains a relatively large amount of oxygen atoms, and then,
A protective film layer is formed in a similar manner without using oxygen gas, and an amorphous protective film layer that does not contain or contains a small amount of oxygen atoms is laminated. The content of oxygen atoms in the interface layer between the protective film layer and the magnetic layer formed in this way can be adjusted by adjusting the gas flow rate and gas pressure of oxygen gas, and by adjusting the power of high frequency or microwave during glow discharge. controlled by controlling.

このようにして、炭素原子と酸素原子と水素原子の各原
子、もしくはこれらの原子とフッ素原子、あるいは炭素
原子と酸素原子とフッ素原子の各原子からなり、かつ酸
素原子の含有量が表面層に比べ磁性層との界面層で多い
アモルファス状の保護膜層が形成されると、界面層に多
く含まれる酸素原子によって、磁性層との接着性が充分
に向上され、保護膜層が磁性層上に強固に被着されて、
接着不良による摩耗粉の発生や、保護膜層の剥離等が生
じることもなく、耐久性が一段と向上される。
In this way, if the surface layer is composed of carbon atoms, oxygen atoms, and hydrogen atoms, or these atoms and fluorine atoms, or carbon atoms, oxygen atoms, and fluorine atoms, and the content of oxygen atoms is In comparison, when an amorphous protective film layer is formed, which has a large number of atoms at the interface with the magnetic layer, the adhesion with the magnetic layer is sufficiently improved due to the oxygen atoms contained in the interface layer, and the protective film layer is formed on the magnetic layer. firmly adhered to,
Durability is further improved without generation of abrasion powder due to poor adhesion or peeling of the protective film layer.

このような保護膜層を、グロー放電によって形成するの
に使用する炭化水素化合物の七ツマーガスとしては、た
とえば、CH4、C2H4、C2H5、C3He 、C
s Hsなどが好適なものとして使用され、また、フッ
素系有機化合物の七ツマーガスとしては、たとえば、C
F4 、c2F4、C2Fs 、C3F6などが好適な
ものとして使用される。この他これらの混合ガスや、こ
れらのガスと水素ガスやフッ素ガスとの混合ガスも好ま
しく使用される。
Examples of hydrocarbon compound gases used to form such a protective film layer by glow discharge include CH4, C2H4, C2H5, C3He, C
S Hs etc. are preferably used, and as the fluorine-based organic compound 7mer gas, for example, C
F4, c2F4, C2Fs, C3F6, etc. are preferably used. In addition, mixed gases of these gases and mixed gases of these gases and hydrogen gas or fluorine gas are also preferably used.

また、スパッタリングによって形成するのに使用するタ
ーゲットとしては、グラファイト、テフロン等が好適な
ものとして使用される。このスパッタリングは、通常、
アルゴンガス、ネオンガスなどの希ガス中で行われ、酸
素原子を含有させる場合はこれらの希ガスに酸素ガスを
混合して行われる。
Furthermore, graphite, Teflon, and the like are preferably used as targets for forming by sputtering. This sputtering is usually
It is carried out in a rare gas such as argon gas or neon gas, and when oxygen atoms are contained, oxygen gas is mixed with these rare gases.

このようにして、保護膜層をグロー放電によって形成す
る場合のガス圧及び高周波やマイクロ波の電力は、ガス
圧を0.001〜1トールの範囲内とし、平方センナあ
たりの高周波電力を0.05〜2W/CIIIの範囲内
、マイクロ波の電力を0.05〜2W/−の範囲内とす
るのが好ましく、ガス圧を0.005〜0.05トール
とし、平方センチあたりの高周波電力を0.1〜I W
/cdの範囲内、マイクロ波の電力を0.1〜I W/
cdの範囲内とするのがより好ましい。
In this way, when forming the protective film layer by glow discharge, the gas pressure and the high frequency or microwave power are set within the range of 0.001 to 1 Torr, and the high frequency power per square senna is set at 0.001 Torr. Preferably, the microwave power is within the range of 0.05 to 2 W/CIII, the gas pressure is 0.005 to 0.05 Torr, and the high frequency power per square centimeter is within the range of 0.05 to 2 W/CIII. 0.1~IW
/cd, the microwave power is 0.1 to IW/
More preferably, it is within the range of cd.

また、スパッタリングによって保護膜層を形成する場合
のガス圧および高周波の電力は、ガス圧ヲ0.005〜
0.5トールの範囲内とし、平方センナあたりの高周波
電力を0.05〜2 W/antの範囲内とするのが好
ましく、ガス圧を0.01〜0.1トールとし、平方セ
ンチあたりの高周波電力を0.1〜IW/ c+dの範
囲内とするのがより好ましい。
In addition, when forming a protective film layer by sputtering, the gas pressure and high frequency power are 0.005~
Preferably, the high frequency power per square centimeter is within the range of 0.05 to 2 W/ant, the gas pressure is 0.01 to 0.1 Torr, and the high frequency power per square centimeter is within the range of 0.05 to 2 W/ant. It is more preferable that the high frequency power is within the range of 0.1 to IW/c+d.

このよ・うにして形成される保護膜層の膜厚は、20〜
1000人の範囲内であることが好ましく、薄すぎると
この保護膜層による耐久性の向上効果が充分に発揮され
ず、厚すぎるとスペーシングロスが大きくなり、電磁変
換特性に悪影蓼を及ぼすおそれがある。また、表面層よ
り磁性層との界面層で多く含まれる酸素原子は、磁性層
との界面から1〜30人の範囲の界面層において、界面
層を構成する全原子の合計量に対して、原子数比で0.
05倍以上含有されていることが好ましい。さらにこの
保護膜層中における炭素原子の含有量は保護膜層を構成
する全原子の合計量に対して、原子数比で0.4〜0.
9倍の範囲内とし、水素原子の含有量は保護膜層を構成
する全原子の合計量に対して、原子数比で0.05〜0
.3倍の範囲内とするのが好ましく、フッ素原子の含有
量は保護膜層を構成する全原子の合計量に対して、原子
数比で0.03〜0.2倍の範囲内とするのが好ましい
The thickness of the protective film layer formed in this way is 20~
It is preferably within the range of 1,000 people; if it is too thin, the durability improvement effect of this protective film layer will not be fully exhibited, and if it is too thick, the spacing loss will increase, which will have a negative impact on the electromagnetic conversion characteristics. There is a risk. In addition, oxygen atoms, which are more abundant in the interface layer with the magnetic layer than in the surface layer, are as follows: The atomic ratio is 0.
It is preferable that the content is 0.5 times or more. Further, the content of carbon atoms in this protective film layer is 0.4 to 0.0 in atomic ratio with respect to the total amount of all atoms constituting the protective film layer.
The hydrogen atom content is within the range of 9 times, and the hydrogen atom content is 0.05 to 0 in atomic ratio with respect to the total amount of all atoms constituting the protective film layer.
.. It is preferable that the content of fluorine atoms is within the range of 3 times, and the content of fluorine atoms is within the range of 0.03 to 0.2 times in atomic ratio with respect to the total amount of all atoms constituting the protective film layer. is preferred.

基体上に形成される磁性層は、r−Fe203粉末、F
e3O4粉末、Co含有r−Fe203粉末、Co含有
Fe3O4粉末、Fe粉末、CO粉末、F e−N i
粉末などの磁性粉末を結合剤成分および有機溶剤等とと
もに基体上に塗布、乾燥するか、あるいは、Co、Fe
、N i、Co−Ni合金、Go−Cr合金、Co−P
合金、Co−N1−P合金などの強磁性材を、真空蒸着
、イオンブレーティング、スパッタリング、メツキ等の
手段によって基体上に被着するなどの方法で形成される
The magnetic layer formed on the substrate is made of r-Fe203 powder, F
e3O4 powder, Co-containing r-Fe203 powder, Co-containing Fe3O4 powder, Fe powder, CO powder, Fe-Ni
Magnetic powder such as powder is coated on a substrate together with a binder component and an organic solvent and dried, or Co, Fe
, Ni, Co-Ni alloy, Go-Cr alloy, Co-P
It is formed by depositing a ferromagnetic material such as alloy, Co--N1--P alloy, etc. on the substrate by means such as vacuum evaporation, ion blasting, sputtering, plating, or the like.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 厚さ10μmのポリエステルフィルムを真空蒸着装置に
装置し、lXl0−5トールの真空下で酸素ガスを20
0secmの流量で導入しなからコバルトを加熱蒸発さ
せてポリエステルフィルム上に厚さ1000人のコバル
トからなる強磁性金属薄膜層を形成した。次いで、第1
図に示すグロー放電処理装置を使用し、強磁性金属薄膜
層を形成したポリエステルフィルム1を処理槽2内で供
給ロール3から巻き取りロール4に巻き取るようにセッ
トした。次いで、ポリエステルフィルム1を5m/分の
速度で走行させながら、処理槽2に取りつけたガス導入
管5からCH4ガスを100secmの流量で、また酸
素ガスを53secmの流量で導入し、全ガス圧を0.
005 トールにして、走行するポリエステルフィルム
1の直下に配設した下部電極6に、13.56 MHz
の高周波を電力密度0.2W/cJで印加し、グロー放
電を発生させて厚さ30人の保護膜層を形成した。次ぎ
に、この保護膜層を形成したポリエステルフィルム1を
、こんどは巻き取りロール4から供給ロール3側に3m
/分の速度で走行させながら、ガス導入管5からCH4
ガスを30secmの流量で導入し、ガス圧を0.00
5 トールにした。そして下部電極6に13.56 M
Hzの高周波を電力密度0.5W/CIl!で印加し、
グロー放電を発生させて厚さ70人の保護膜層を形成し
、全体の保護膜層の厚みを100人とした。しかる後、
所定の巾に裁断して第2図に示すようなポリエステルフ
ィルム1上に強磁性金属薄膜層10および保護H*層1
1を順次に積層形成した磁気テープAをつくった。なお
、第1図中7は供給ロール3および巻き取りロール4間
を移動するポリエステルフィルム1の直上に配設した上
部電極であり、8は処理槽2内を減圧するための排気系
、9は下部電極6に高周波を印加するための高周波電源
である。このようにして得られた磁気テープへの保護膜
層を高感度反射赤外吸収分光法により調べたところ保護
膜層の性状はアモルファス状であった。また、この保護
膜層の元素組成をArイオンエツチングしながらESC
AおよびSIMSによって調べたところ、最表面では、
原子数比でC:0:Hが1 : 0.02 : 0.0
8であり、磁性層との界面ではC:O:Hがに〇、20
 : 0.12であった。
Example 1 A polyester film with a thickness of 10 μm was placed in a vacuum evaporation apparatus, and 20 μm of oxygen gas was added under a vacuum of 1X10-5 torr.
Cobalt was introduced at a flow rate of 0 seconds and then heated to evaporate to form a ferromagnetic metal thin film layer of 1000 nm thick on the polyester film. Then the first
Using the glow discharge treatment apparatus shown in the figure, a polyester film 1 on which a ferromagnetic metal thin film layer was formed was set in a treatment tank 2 so as to be wound up from a supply roll 3 to a take-up roll 4. Next, while running the polyester film 1 at a speed of 5 m/min, CH4 gas was introduced at a flow rate of 100 seconds and oxygen gas was introduced at a flow rate of 53 seconds from the gas introduction pipe 5 attached to the processing tank 2 to bring the total gas pressure down. 0.
005 toll, and a 13.56 MHz
A high frequency wave was applied at a power density of 0.2 W/cJ to generate a glow discharge to form a protective film layer with a thickness of 30 mm. Next, the polyester film 1 with this protective film layer formed thereon is moved from the take-up roll 4 to the supply roll 3 side for 3 m.
CH4 from the gas introduction pipe 5 while running at a speed of /min.
Gas was introduced at a flow rate of 30 sec, and the gas pressure was set to 0.00.
5 I made it to Thor. and 13.56 M to the lower electrode 6
Hz high frequency with a power density of 0.5W/CIl! Apply with
A glow discharge was generated to form a protective film layer with a thickness of 70 μm, making the total thickness of the protective film layer 100 μm. After that,
A ferromagnetic metal thin film layer 10 and a protective H* layer 1 are placed on a polyester film 1 cut to a predetermined width as shown in FIG.
A magnetic tape A was prepared by sequentially laminating the magnetic tapes 1 and 2. In FIG. 1, 7 is an upper electrode disposed directly above the polyester film 1 moving between the supply roll 3 and the take-up roll 4, 8 is an exhaust system for reducing the pressure inside the processing tank 2, and 9 is an exhaust system. This is a high frequency power source for applying high frequency to the lower electrode 6. When the protective film layer on the magnetic tape thus obtained was examined by high-sensitivity reflection infrared absorption spectroscopy, the property of the protective film layer was found to be amorphous. In addition, while etching the elemental composition of this protective film layer with Ar ions, ESC
When investigated by A and SIMS, on the outermost surface,
The atomic ratio of C:0:H is 1:0.02:0.0
8, and C:O:H is 20 at the interface with the magnetic layer.
: It was 0.12.

実施例2 実施例1と同様にしてポリエステルフィルム上に強磁性
金属?#膜層を形成し、次いで、第3図に示すグロー放
電処理装置を使用し、強磁性金属薄膜層を形成したポリ
エステルフィルム1を隣接した一方の処理槽12内に配
設した供給ロール13から、他方の処理槽14内に配設
した巻き取りロール15に巻き取るようにセットした。
Example 2 A ferromagnetic metal was deposited on a polyester film in the same manner as in Example 1. #A film layer is formed, and then, using the glow discharge treatment apparatus shown in FIG. , and was set so as to be wound onto a winding roll 15 disposed in the other processing tank 14.

次いで、ポリエステルフィルム1を4m/分の速度で走
行させながら、処理槽12に取りつけたガス導入管16
から02F4ガスを100secmの流量で、また酸素
ガスを20secmの流量で導入し、全ガス圧を0.0
1  トールにして、処理槽12内を走行するポリエス
テルフィルム1の直下に配設した下部電極17に、13
.56 MHzの高周波を電力密度0.3W/CI+1
で印加し、グロー放電を発生させた。同時に、処理槽1
4に取りつけたガス導入管18からCH4ガスを200
secmの流量で導入し、ガス圧を0.04 1−−ル
にして、処理槽14内を走行するポリエステルフィルム
1の直下に配設した下部型i19に、13.56 MH
zの高周波を電力密度0.6W / cn!で印加し、
グロー放電を発生させて厚さ110人の保護膜層を形成
した。しかる後、所定の巾に裁断して第2図に示すよう
な磁気テープAをつくった。なお、第3図中20.21
は供給ロール13および巻き取りロール15間を移動す
るポリエステルフィルム1の直上に配設した上部電極で
あり、22.23は処理槽12.14内をそれぞれ減圧
するための排気系、24.25は下部電極17.19に
高周波を印加するための高周波電源である。このように
して得られた磁気テープAの保護膜層を高感度反射赤外
吸収分光法により調べたところ保護膜層の性状はアモル
ファス状であった。またこの保護膜層の元素組成を、実
施例1と同様にして調べたところ、最表面では、原子数
比でC:0:Hが1 : 0.03 : 0.07であ
り、磁性層との界面ではC:O:Fがl : 0.25
 : 0.07であった。
Next, while running the polyester film 1 at a speed of 4 m/min, the gas introduction pipe 16 attached to the processing tank 12 is
02F4 gas was introduced at a flow rate of 100 sec, and oxygen gas was introduced at a flow rate of 20 sec, and the total gas pressure was reduced to 0.0.
1 to the lower electrode 17 disposed directly under the polyester film 1 running in the processing tank 12.
.. 56 MHz high frequency power density 0.3W/CI+1
was applied to generate a glow discharge. At the same time, processing tank 1
Inject 200% CH4 gas from the gas introduction pipe 18 attached to 4.
A gas of 13.56 MH was introduced at a flow rate of 13.56 secm, and the gas pressure was set to 0.04 1-rel, to the lower mold i19 disposed directly below the polyester film 1 running in the processing tank 14.
z high frequency with a power density of 0.6W/cn! Apply with
A glow discharge was generated to form a protective film layer with a thickness of 110 mm. Thereafter, it was cut to a predetermined width to produce magnetic tape A as shown in FIG. In addition, 20.21 in Figure 3
22.23 is an upper electrode disposed directly above the polyester film 1 moving between the supply roll 13 and the take-up roll 15, 22.23 is an exhaust system for reducing the pressure inside the processing tank 12.14, and 24.25 is an exhaust system. This is a high frequency power source for applying high frequency to the lower electrodes 17 and 19. When the protective film layer of magnetic tape A thus obtained was examined by high-sensitivity reflection infrared absorption spectroscopy, the property of the protective film layer was amorphous. Furthermore, when the elemental composition of this protective film layer was investigated in the same manner as in Example 1, the atomic ratio of C:0:H on the outermost surface was 1:0.03:0.07, which was similar to that of the magnetic layer. At the interface, C:O:F is l: 0.25
: It was 0.07.

実施例3 実施例1における保護膜層の形成において、CH4ガス
の導入に代えて、上部電極7にグラファイトのターゲッ
トを配し、ガス導入管5からArガスおよび酸素ガスを
それぞれ50scc+n、 30sccraの流量で導
入して全ガス圧を0.011−−ルにし、上部電極7に
13.56 MHzの高周波を、電力密度0.7W/c
dで印加してスパッタリングを行い、厚さ30人の保護
膜層を形成した。次ぎに、この保護膜層を形成したポリ
エステルフィルム1を、巻き取りロール4から供給ロー
ル3側に4m/分の速度で走行させ、ガス導入管5から
Arガスを101005eの流量で導入し、ガス圧を0
.01  トールにして、上部電極7に13.56 M
H2の高周波を電力密度0.9W/cdで印加してスパ
ッタリングを行い、厚さ70人の保護膜層を形成し、全
体の保護膜層の厚みを100人とした。しかる後、所定
の巾に裁断して第2図に示すような磁気テープAをつく
った。このようにして得られた磁気テープAの保護膜層
を高感度反射赤外吸収分光法により調べたところ保護膜
層の性状はアモルファス状であった。またこの保護膜層
のの元素組成を実施例1と同様にして調べたところ、最
表面では、原子数比でC:O:Hが1 : 0.02 
: 0.01であり、磁性層との界面ではC:○:Hが
I n O,10: 0.04であった。
Example 3 In forming the protective film layer in Example 1, instead of introducing CH4 gas, a graphite target was placed on the upper electrode 7, and Ar gas and oxygen gas were introduced from the gas introduction tube 5 at flow rates of 50 sc+n and 30 sccra, respectively. A high frequency of 13.56 MHz was applied to the upper electrode 7 at a power density of 0.7 W/c.
Sputtering was performed by applying a voltage of d to form a protective film layer with a thickness of 30 mm. Next, the polyester film 1 on which the protective film layer was formed was run at a speed of 4 m/min from the take-up roll 4 to the supply roll 3 side, and Ar gas was introduced from the gas introduction pipe 5 at a flow rate of 101005e. pressure to 0
.. 01 toll and 13.56 M to the upper electrode 7
Sputtering was performed by applying H2 high frequency at a power density of 0.9 W/cd to form a protective film layer with a thickness of 70 nm, making the total thickness of the protective film layer 100 nm. Thereafter, it was cut to a predetermined width to produce magnetic tape A as shown in FIG. When the protective film layer of magnetic tape A thus obtained was examined by high-sensitivity reflection infrared absorption spectroscopy, the property of the protective film layer was amorphous. Further, when the elemental composition of this protective film layer was investigated in the same manner as in Example 1, it was found that on the outermost surface, the atomic ratio of C:O:H was 1:0.02.
: 0.01, and at the interface with the magnetic layer, C:○:H was InO,10:0.04.

実施例4 実施例1における保護膜層の形成において、CH4ガス
に代えて、CH,とCF4ガスを容量比1:1で混合し
た混合ガスを、同量使用した以外は、実施例1と同様に
してそれぞれ厚さ30人および40人で合計厚が70人
のアモルファス状の保護膜層を形成し、磁気テープAを
つくった。このようにして1厚られた磁気テープAの保
護膜層の元素組成を実施例1と同様にして調べたところ
、最表面では原子数比でC:O:H:Fがx:o、o2
: 0.04 : 0.04であり、磁性層との界面で
はC:○:H:Fが1 : 0.10 : 0.20 
: 0.20であった。
Example 4 Same as Example 1 except that in forming the protective film layer in Example 1, the same amount of mixed gas of CH and CF gas mixed at a volume ratio of 1:1 was used instead of CH gas. Magnetic tape A was produced by forming amorphous protective film layers with a total thickness of 70 and 30 and 40 layers, respectively. When the elemental composition of the protective film layer of the magnetic tape A, which had been thickened by one layer in this manner, was investigated in the same manner as in Example 1, the atomic ratio of C:O:H:F was x:o, o2 on the outermost surface.
: 0.04: 0.04, and at the interface with the magnetic layer, C:○:H:F is 1: 0.10: 0.20.
: It was 0.20.

実施例5 α−Fe@性粉末       600重量部エスレッ
クCN(ta水化学工業  80〃社製、塩化ビニル−
酢酸ビニ ル共重合体) バンデソクスT−5250(大  30〃日本インキ化
学工業社製、ウ レタンエラストマー) コロネートしく日本ポリウレタ  10〃ン工業社製、
三官能性低分子 量イソシアネート化合物) メチルイソブチルケトン     400〃トルエン 
          400〃この組成物をボールミル
中で72時間混合分散して磁性塗料を調製し、この磁性
塗料を厚さ10μmのポリエステルフィルム上に乾燥厚
が4μmとなるように塗布、乾燥して磁性層を形成した
Example 5 α-Fe @ powder 600 parts by weight S-LEC CN (manufactured by Ta Mizu Kagaku Kogyo 80, vinyl chloride)
(Vinyl acetate copolymer) Bandesox T-5250 (30% manufactured by Nippon Ink Chemical Industries, Ltd., urethane elastomer) Coronate Shiku Nippon Polyurethane 10% manufactured by Nippon Ink Industries, Ltd.
Trifunctional low molecular weight isocyanate compound) Methyl isobutyl ketone 400〃Toluene
400 This composition was mixed and dispersed in a ball mill for 72 hours to prepare a magnetic paint, and this magnetic paint was applied onto a polyester film with a thickness of 10 μm to a dry thickness of 4 μm, and dried to form a magnetic layer. did.

次いで、これに、実施例1と同様にしてアモルファス状
の保護膜層を形成し、磁気テープをつくった。
Next, an amorphous protective film layer was formed thereon in the same manner as in Example 1 to produce a magnetic tape.

比較例1 実施例1における保護膜層の形成において、強磁性金属
薄膜層を形成したポリエステルフィルム1の供給ロール
3から巻き取りロール4側に走行する走行速度を4m/
分から3m/分に変更し、ガス導入管5から導入するガ
スをCH4ガスと酸素ガスとの混合ガスからCH4ガス
に変更して3Q sccmの流量で導入し、ガス圧を0
.005  トールにした。また下部電極6に13.5
6 MHzの高周波を電力密度0 、5 W / ci
で印加してグロー放電を発生させ、厚さ70人のアモル
ファス状の保護膜層を形成し、この保護膜層を形成した
ポリエステルフィルム1を巻き取りロール4から逆に供
給ロール3側に走行させて行う保護膜層の形成を省いた
以外は、実施例1と同様にして保護膜層を形成し、磁気
テープをつくった。このようにして得られた磁気テープ
の保護膜層の元素組成を実施例1と同様にして調べたと
ころ、最表面および磁性層との界面とも原子数比でC:
O:Hは1 : 0.02 : 0.08であった。
Comparative Example 1 In the formation of the protective film layer in Example 1, the traveling speed of the polyester film 1 on which the ferromagnetic metal thin film layer was formed from the supply roll 3 to the take-up roll 4 side was set at 4 m/min.
The gas introduced from the gas introduction pipe 5 was changed from a mixed gas of CH4 gas and oxygen gas to CH4 gas, and the gas was introduced at a flow rate of 3Q sccm, and the gas pressure was reduced to 0.
.. 005 I made it to Thor. Also, the lower electrode 6 has 13.5
6 MHz high frequency with power density 0, 5 W/ci
was applied to generate a glow discharge to form an amorphous protective film layer with a thickness of 70 mm, and the polyester film 1 with this protective film layer formed thereon was run reversely from the winding roll 4 to the supply roll 3 side. A magnetic tape was produced by forming a protective film layer in the same manner as in Example 1, except that the formation of the protective film layer was omitted. When the elemental composition of the protective film layer of the magnetic tape thus obtained was investigated in the same manner as in Example 1, it was found that both the outermost surface and the interface with the magnetic layer had an atomic ratio of C:
O:H was 1:0.02:0.08.

比較例2 実施D113における保護膜層の形成において、ガス導
入管5から導入するガスをArガスと酸素ガスとの混合
ガスからArガスに変更して101005eの流量で導
入し、ガス圧を0.01 トールにして上部電極7に1
3.56 MHzの高周波を電力密度0.9W/cnl
で印加し、スパッタリングを行って、厚さ70人のアモ
ルファス状の保護膜層を形成した以外は、実施例3と同
様にして磁気テープをつくった。このようにして得られ
た磁気テープの保護膜層の元素組成を実施例1と同様に
して調べたところ、最表面および磁性層との界面とも原
子数比でC:O:Hは1 : 0.02 : 0.01
であった。
Comparative Example 2 In forming the protective film layer in Example D113, the gas introduced from the gas introduction pipe 5 was changed from a mixed gas of Ar gas and oxygen gas to Ar gas, and the gas was introduced at a flow rate of 101005e, and the gas pressure was set to 0. 01 Thor and upper electrode 7 1
3.56 MHz high frequency with power density 0.9W/cnl
A magnetic tape was produced in the same manner as in Example 3, except that an amorphous protective film layer having a thickness of 70 mm was formed by applying an electric current at 100 nm and performing sputtering. When the elemental composition of the protective film layer of the magnetic tape thus obtained was investigated in the same manner as in Example 1, the atomic ratio of C:O:H was 1:0 both on the outermost surface and at the interface with the magnetic layer. .02: 0.01
Met.

各実施例および比較例で得られた磁気テープについて、
市販の8mmVTR装置でスチル寿命を測定してスチル
試験を行い、耐久性を評価した。
Regarding the magnetic tapes obtained in each example and comparative example,
The still life was measured using a commercially available 8 mm VTR device, a still test was conducted, and the durability was evaluated.

下表はその4拮果である。The table below shows the four antagonists.

〔発明の効果〕〔Effect of the invention〕

上表から明らかなように、この発明で得られた磁気テー
プ(実施例1ないし5)は、いずれも比較例1および2
で得られた磁気テープに比し、スチル寿命が長く、この
ことからこの発明によって得られる磁気記録媒体は、一
段と耐久性に優れていることがわかる。
As is clear from the above table, the magnetic tapes obtained in this invention (Examples 1 to 5) are the same as Comparative Examples 1 and 2.
This shows that the magnetic recording medium obtained by the present invention has a longer still life than the magnetic tape obtained by the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアモルファス状の有機高分子化合物からなる保
護膜層を形成する際に使用するグロー放電処理装置の1
例を示す概略断面図、第2図はこの発明の製造方法によ
って得られた磁気テープの部分拡大断面図、第3図はア
モルファス状の有機高分子化合物からなる保護膜層を形
成する際に使用するグロー放電処理装置の他の例を示す
概略断面図である。 1・・・ポリエステルフィルム(基体)、10・・・強
磁性金属薄膜層(磁性り、11・・・保護膜層、A・・
・磁気テープ(磁気記録媒体) 特許出願人  日立マクセル株式会社 第1図
Figure 1 shows a glow discharge treatment device used to form a protective film layer made of an amorphous organic polymer compound.
A schematic cross-sectional view showing an example, FIG. 2 is a partially enlarged cross-sectional view of a magnetic tape obtained by the manufacturing method of the present invention, and FIG. 3 is used when forming a protective film layer made of an amorphous organic polymer compound. FIG. 2 is a schematic cross-sectional view showing another example of a glow discharge treatment apparatus. DESCRIPTION OF SYMBOLS 1... Polyester film (substrate), 10... Ferromagnetic metal thin film layer (magnetic material), 11... Protective film layer, A...
・Magnetic tape (magnetic recording medium) Patent applicant Hitachi Maxell Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に磁性層を形成し、この磁性層上に炭素原子
と酸素原子と水素原子の各原子、もしくはこれらの原子
とフッ素原子、あるいは炭素原子と酸素原子とフッ素原
子の各原子からなり、かつ酸素原子の含有量を表面層に
比べ磁性層との界面層で多くしたアモルファス状の保護
膜層を設けたことを特徴とする磁気記録媒体
1. A magnetic layer is formed on a substrate, and on this magnetic layer, a magnetic layer consisting of carbon atoms, oxygen atoms, and hydrogen atoms, or these atoms and fluorine atoms, or carbon atoms, oxygen atoms, and fluorine atoms is formed. , and an amorphous protective film layer in which the content of oxygen atoms is greater in the interface layer with the magnetic layer than in the surface layer.
JP18718886A 1986-08-09 1986-08-09 Magnetic recording medium Pending JPS6344316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18718886A JPS6344316A (en) 1986-08-09 1986-08-09 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18718886A JPS6344316A (en) 1986-08-09 1986-08-09 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6344316A true JPS6344316A (en) 1988-02-25

Family

ID=16201646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18718886A Pending JPS6344316A (en) 1986-08-09 1986-08-09 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6344316A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113123A (en) * 1984-11-08 1986-05-31 Fuji Photo Film Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113123A (en) * 1984-11-08 1986-05-31 Fuji Photo Film Co Ltd Magnetic recording medium

Similar Documents

Publication Publication Date Title
US4755426A (en) Magnetic recording medium and production of the same
JPH05325175A (en) Magnetic recording medium
US5798135A (en) Method for producing a magnetic recording medium having a carbon protective layer
JPS6344316A (en) Magnetic recording medium
JPS6218970B2 (en)
JPS6344315A (en) Magnetic recording medium
JPS62167616A (en) Magnetic recording medium and its production
JPS6344318A (en) Production of magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS6057535A (en) Magnetic recording medium
JPS6057536A (en) Magnetic recording medium
JP3687117B2 (en) Magnetic recording medium and method for manufacturing the same
JPS60205820A (en) Magnetic recording medium and its production
JPS6122432A (en) Production of magnetic recording medium
JPS6057534A (en) Magnetic recording medium
JPS60237640A (en) Production of magnetic recording medium
JPS6063724A (en) Manufacture of magnetic recording medium
JPS60237634A (en) Magnetic recording medium and its production
JPS61104425A (en) Magnetic recording medium
JPH0528465A (en) Production of protective film for magnetic disk
JPH08102052A (en) Recording medium and production thereof
JPS6057537A (en) Production of magnetic recording medium
JPS60237639A (en) Production of magnetic recording medium
JPS61211833A (en) Production of magnetic recording medium
JPS62167615A (en) Magnetic recording medium and its production