JPS6063724A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPS6063724A
JPS6063724A JP17171283A JP17171283A JPS6063724A JP S6063724 A JPS6063724 A JP S6063724A JP 17171283 A JP17171283 A JP 17171283A JP 17171283 A JP17171283 A JP 17171283A JP S6063724 A JPS6063724 A JP S6063724A
Authority
JP
Japan
Prior art keywords
plasma
organic compound
cylindrical
film layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17171283A
Other languages
Japanese (ja)
Inventor
Tsunemi Oiwa
大岩 恒美
Fumio Komi
文夫 小海
Kunio Wakai
若居 邦夫
Yasunori Kanazawa
金沢 安矩
Hiroshi Yamamoto
博司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP17171283A priority Critical patent/JPS6063724A/en
Publication of JPS6063724A publication Critical patent/JPS6063724A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the durability of a magnetic recording medium, by forming a compact and hard plasma polymerized protective film layer of an organic compound by moving a base body on which a ferromagnetic metallic thin layer is formed along the peripheral side face of a cylindrical can and, at the same time, performing plasma processing by introducing a monomer gas of the organic compound to a space between a trough-like shielding frame and the cylindrical can from a side from which the base body is introduced. CONSTITUTION:Since plasma processing is performed by introducing a monomer gas of an organic compound to a space 10 formed between a trough-like shielding frame 11 and cylindrical can 4 from a side from which a base body 1 is introduced, plasma polymerization successively proceeds as the base body 1 moves and, because of the gas pressure being high at first, a plasma polymerized material of the organic compound having a relatively low molecular weight and a good adhesion is adhered to the surface of the ferromagnetic metallic thin layer on the base body 1 with a good adhesiveness. Then, as the gas pressure becomes lower, a hard and compact plasma polymerized material having a relatively high molecular weight is adhered and as approaching to the surface a more compact and harder plasma polymerized protective layer is formed.

Description

【発明の詳細な説明】 この発明は強磁性金属薄膜層を磁気記録層とする磁気記
録媒体の製造方法に関し、さらに詳しくは、耐久性に優
れた前記の磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a magnetic recording layer, and more particularly to a method of manufacturing the above-mentioned magnetic recording medium having excellent durability.

強磁性金属薄膜層を磁気記録層とする磁気記録媒体は、
通常、金属もしくはそれらの合金などを真空蒸着等によ
って基体フィルム上に結着してつくられ、高密度記録に
適した特性を有するが、反面磁気ヘッドとの摩擦係数が
大きくて摩耗や損傷を受け易く、充分な耐り性が得られ
ないという難点がある。
A magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film layer is
It is usually made by bonding metals or their alloys onto a base film by vacuum deposition, etc., and has characteristics suitable for high-density recording, but on the other hand, it has a high coefficient of friction with the magnetic head and is susceptible to wear and damage. It has the disadvantage that it is easy to use and sufficient durability cannot be obtained.

このため、従来から強磁性金属薄膜層上に種々の保護膜
層を設りるなどして耐久性を改善することが行われてお
り、たとえば、第1図に示すようなプラズマ処理装置を
使用し、強磁性金属薄膜層を表面に形成したポリエステ
ルフィルム1を、真空槽2の原反ロール3から円筒状キ
ャン4の周側面に沿って移動させて巻き取りロール5に
巻き取るようにセソl−L、真空槽2内を1ノ1気系6
により所定の真空度に保持するとともに真空槽2に取り
つけたガス導入管7から有機化合物の七ツマーガスを導
入し、交流電源8で電極9に高周波を印加して、強磁性
金属!lIA層表面に有機化合物のプラズマ重合保護膜
層を設けることが行われている。
For this reason, durability has been conventionally improved by providing various protective film layers on the ferromagnetic metal thin film layer. Then, the polyester film 1 with a ferromagnetic metal thin film layer formed on the surface is moved from the raw roll 3 of the vacuum chamber 2 along the circumferential side of the cylindrical can 4 and wound onto the take-up roll 5. -L, 1-1 gas system 6 inside the vacuum chamber 2
At the same time, a predetermined degree of vacuum is maintained, and an organic compound gas is introduced from the gas inlet tube 7 attached to the vacuum chamber 2, and a high frequency is applied to the electrode 9 using the AC power source 8. A plasma polymerized protective film layer of an organic compound is provided on the surface of the IIA layer.

ところが、この方法では、真空槽内に有機化合物のモノ
マーガスを均一に存在させなければならないため、真空
槽内に導入する有機化合物のモノマーガスの流量が多く
、またこの方法によって形成されるプラズマ重合保護膜
層は均一な組成のものしか得られず保護膜層表面がいま
ひとつ充分に緻密で硬くないため、未だ耐久性が充分に
良好なものは得られていない。
However, in this method, the monomer gas of the organic compound must be uniformly present in the vacuum chamber, so the flow rate of the monomer gas of the organic compound introduced into the vacuum chamber is large, and the plasma polymerization formed by this method Since the protective film layer can only have a uniform composition and the surface of the protective film layer is not sufficiently dense and hard, it has not yet been possible to obtain a protective film layer with sufficiently good durability.

この発明者らは、かかる現状に鑑み種々検討を行った結
果、基体上に金属もしくはそれらの合金からなる強磁性
金属薄l!!層を形成し、しかる後、この強磁性金属薄
膜層を形成した基体を、真空槽内に円筒状キャンとこの
円筒状キャンの下部周縁に間隙を設けて被嵌配設した樋
状のシールド枠とこのシールド枠内に配設したプラズマ
発生用電極とを備えたプラズマ処理装置にセントし、基
体を円筒状キャンの周側面に沿って移動させるとともに
、前記樋状のシールド枠によって形成される円筒状キャ
ンとの間隙に基体が導入される側から有機化合物のモノ
マーガスを導入して基体の進行プノ向に流動させ、シー
ルド枠内のプラズマ発生用電極によりプラズマ処理を行
って強磁性金属薄膜層表面に有機化合物のプラズマ重合
保護膜層を形成すると、有機化合物のモノマーガスの導
入量が少なくてずみ、また強磁性金属薄膜層上に表面に
行くほど緻密で硬い有機化合物のプラズマ重合保護膜層
が形成されて耐久性が充分に向上された磁気記録媒体が
得られることを見いだし、この発明をなすに至った。
In view of the current situation, the inventors conducted various studies and found that a thin ferromagnetic metal made of metal or an alloy thereof is formed on a substrate! ! After that, the substrate on which the ferromagnetic metal thin film layer was formed was placed in a cylindrical can in a vacuum chamber and a gutter-shaped shield frame in which a gap was provided at the lower periphery of the cylindrical can. and a plasma generation electrode disposed within the shield frame, and move the base body along the circumferential side of the cylindrical can, and remove the cylindrical can formed by the gutter-shaped shield frame. A monomer gas of an organic compound is introduced from the side where the substrate is introduced into the gap with the shaped can, and is made to flow in the direction of the substrate, and plasma treatment is performed using the plasma generation electrode in the shield frame to form a ferromagnetic metal thin film layer. Forming a plasma-polymerized protective film layer of an organic compound on the surface reduces the amount of organic compound monomer gas introduced, and also forms a plasma-polymerized protective film layer of an organic compound that is denser and harder toward the surface on the ferromagnetic metal thin film layer. It was discovered that a magnetic recording medium with sufficiently improved durability can be obtained by forming a magnetic recording medium, and the present invention was completed based on this discovery.

以下、図面を参照しながらこの発明について説明する。The present invention will be described below with reference to the drawings.

第2図はこの発明で使用するプラズマ処理装置の1例を
示したもので、このプラズマ処理装置は、真空槽2内に
原反ロール3、円筒状キャン4および巻き取りロール5
を配設し、排気系6を真空槽2に取りつけた点では第1
図に示す従来のプラズマ処理装置と同じであるが、円筒
状キャン4の下部周縁に所定の間隙IOを設けて樋状の
シールド枠11を被嵌配設し、このシールド枠lI内に
プラズマ発生用電極12を配設して交流電源13に接続
している。また樋状のシールド枠11を円筒状キャン4
の下部周縁に被嵌配設することによって形成された間隙
10の基体1が導入される側に、真空槽2に取りつけた
ガス導入管14の先端を挿入して、有機化合物のモノマ
ーガスをこの間隙10内に供給し、かつ有機化合物のモ
ノマーガスを基体1の進行方向に沿って流動し基体1が
導出される側から排出されるようにしている。しかして
このプラズマ処理装置によれば、ガス導入管14から有
機化合物のモノマーガスを導入してプラズマ処理を行う
際、有機化合物のモノマーガスの流量が少なくても充分
なプラズマ処理が行えるため有機化合物のモノマーガス
の流量が少な(てよく、さらに、このような樋状のシー
ルド枠11と円筒状キャン4との間に形成された間隙1
0内に、有機化合物の七ツマーガスを基体1が導入され
る側から供給してプラズマ処理を行っているため、基体
1′の移動に従って順次にプラズマ重合が進行し、最初
はガス圧が高くて基体1上の強磁性金属薄膜層表面に、
比較的低分子量で粘着性を有する有機化合物のプラズマ
重合物が接着性よく被着する。次いで次第にガス圧も低
くなって比較的高分子量で硬くて緻密なプラズマ重合物
が被着し、表面に行くに従って緻密で硬いプラズマ重合
保護膜層が形成される。従って基体1上の強磁性金属薄
膜層上には接着性がよく、かつ表面が緻密で硬いプラズ
マ重合保護膜層が形成され、1iif摩耗性が充分に改
善されて一段と耐久性に優れた磁気記録媒体が得られる
FIG. 2 shows an example of a plasma processing apparatus used in the present invention. This plasma processing apparatus consists of a vacuum chamber 2 containing an original fabric roll 3, a cylindrical can 4, and a take-up roll 5.
It is the first in that the exhaust system 6 is installed in the vacuum chamber 2.
Although it is the same as the conventional plasma processing apparatus shown in the figure, a gutter-shaped shield frame 11 is fitted with a predetermined gap IO provided at the lower periphery of the cylindrical can 4, and plasma is generated within this shield frame II. An electrode 12 is provided and connected to an AC power source 13. In addition, the gutter-shaped shield frame 11 is connected to the cylindrical can 4.
The tip of the gas introduction pipe 14 attached to the vacuum chamber 2 is inserted into the side of the gap 10 formed by fitting the substrate 1 to the lower peripheral edge of the vacuum chamber 2, and the monomer gas of the organic compound is introduced into the gap 10. The monomer gas of the organic compound is supplied into the gap 10 and flows along the traveling direction of the substrate 1, so that it is discharged from the side from which the substrate 1 is led out. However, according to this plasma processing apparatus, when performing plasma processing by introducing monomer gas of an organic compound from the gas introduction pipe 14, sufficient plasma processing can be performed even if the flow rate of the monomer gas of the organic compound is small. Furthermore, the gap 1 formed between the gutter-shaped shield frame 11 and the cylindrical can 4
Since the plasma treatment is carried out by supplying a 7-mer gas of an organic compound from the side where the substrate 1 is introduced, plasma polymerization proceeds sequentially as the substrate 1' moves, and the gas pressure is high at first. On the surface of the ferromagnetic metal thin film layer on the base 1,
Plasma polymerized organic compounds with relatively low molecular weight and adhesive properties adhere with good adhesion. Then, the gas pressure is gradually lowered, and a relatively high molecular weight, hard and dense plasma polymer is deposited, and a dense and hard plasma polymerized protective film layer is formed as it approaches the surface. Therefore, a plasma-polymerized protective film layer with good adhesion and a dense and hard surface is formed on the ferromagnetic metal thin film layer on the substrate 1, and the 1iif abrasion resistance is sufficiently improved, resulting in even more durable magnetic recording. A medium is obtained.

このような、円筒状キャン4とその下部周縁に被嵌され
たシールド枠11内のプラズマ発生用′市極12とによ
って形成される間隙1oの間隔は、放電しやすくするた
め円筒状キャン4がらl cm〜10cmの範囲内であ
ることが好ましい。
The gap 1o formed by the cylindrical can 4 and the plasma generating pole 12 in the shield frame 11 fitted to the lower periphery of the cylindrical can 4 is set so as to facilitate discharge. It is preferably within the range of 1 cm to 10 cm.

ガス導入管14から円筒状キャン4と樋状のシールド枠
11によって形成される間隙10内に導入される有機化
合物のモノマーガスとしては、たとえば、C2F今等の
フッ素系有機化合物のモノマーガス、エチレン、プロピ
レン等の炭化水素系化合物のモノマーガスおよびテトラ
メチルシラン、オクタメチルシクロテトラシロキサン、
ヘキザメチルジシラザン等のケイ素系有機化合物のモノ
マーガス等が好ましく使用され、これらの有機化合物の
モノマーガスは、プラズマ発生用電極12への高周波の
印加によってプラズマ処理が行われると、ラジカルが生
成され、この生成されたラジカルが反応し重合して被膜
となる。この際、間隙10内には有機化合物のモノマー
ガスが基体1が導入される側から供給され、順次にプラ
ズマ重合が進行するため、最初はガス圧が高くて基体1
上の強磁性金属薄膜層表面に、比較的低分子量で粘着性
を有する有機化合物のプラズマ重合物が接着性よく被着
し、次いで次第にガス圧も低(なり比較的高分子量で硬
くて緻密なプラズマ重合物が被着して、表面に行くに従
って緻密で硬いプラズマ重合保護膜層が形成される。こ
のようなプラズマ処理の際のラジカルはこれらの有機化
合物が二重結合または三重結合を有していたり、また末
端に金属元素を有する金属塩化合物であるがあるいはO
H基等の官能基を有しているほど生成しゃすいため、こ
れら不飽和結合、金属元素および官能基等を有するもの
がより好ましく使用される。また、これらの七ツマーガ
スをプラズマ重合する際、アルゴンガス、ヘリウムガス
および酸素ガス等のキャリアガスを併存させるとモノマ
ーガスを単独でプラズマ重合する場合に比べて3〜5倍
の速度で析出されるため、これらのキャリアガスを併存
させて行うのが好ましい。これらのキャリアガスと併存
させる際、その組成割合はキャリアガス対前記有機化合
物のモノマーガスの比にして4対1の割合で併存させる
のが好ましく、キャリアガスが少なすぎると析出速度が
低下し、多ずぎると七ツマーガスが少なくなってプラズ
マ重合反応に支障をきたす。なお、炭化水素系化合物の
七ツマーガスを使用するときは、酸素ガスをキャリアガ
スとして使用すると酸化反応が生じるため、酸素ガスを
キャリアガスとして使用するのは好ましくない。
Examples of the organic compound monomer gas introduced from the gas introduction pipe 14 into the gap 10 formed by the cylindrical can 4 and the gutter-shaped shield frame 11 include C2F, fluorine-based organic compound monomer gas, and ethylene. , monomer gas of hydrocarbon compounds such as propylene, and tetramethylsilane, octamethylcyclotetrasiloxane,
Monomer gases of silicon-based organic compounds such as hexamethyldisilazane are preferably used, and these organic compound monomer gases generate radicals when plasma treatment is performed by applying high frequency to the plasma generation electrode 12. The generated radicals react and polymerize to form a film. At this time, monomer gas of the organic compound is supplied into the gap 10 from the side where the substrate 1 is introduced, and plasma polymerization proceeds sequentially, so the gas pressure is initially high and the substrate 1
On the surface of the upper ferromagnetic metal thin film layer, a plasma polymer of a relatively low-molecular-weight, sticky organic compound adheres with good adhesion, and then the gas pressure gradually decreases (as it becomes relatively high-molecular-weight, hard, and dense). The plasma polymer is deposited and a dense and hard plasma polymerized protective film layer is formed as it approaches the surface.Radicals during such plasma treatment are caused by the fact that these organic compounds have double or triple bonds. It is a metal salt compound with a metal element at the end, or O
The more functional groups such as H groups are present, the less the formation occurs, so those having these unsaturated bonds, metal elements, functional groups, etc. are more preferably used. In addition, when plasma polymerizing these 7-mer gases, if a carrier gas such as argon gas, helium gas, or oxygen gas is coexisting, the monomer gas will be deposited at a rate 3 to 5 times faster than when monomer gas is plasma polymerized alone. Therefore, it is preferable to use these carrier gases together. When coexisting with these carrier gases, it is preferable that the composition ratio is 4:1 in terms of the ratio of the carrier gas to the monomer gas of the organic compound; if the carrier gas is too small, the precipitation rate will decrease; If it is too much, the amount of 7-mer gas will decrease, which will interfere with the plasma polymerization reaction. Note that when using a 7-mer gas of a hydrocarbon compound, it is not preferable to use oxygen gas as a carrier gas because an oxidation reaction will occur if oxygen gas is used as a carrier gas.

このように、ガス導入管14から円筒状キャン4と樋状
のシールド枠11によって形成される間隙IO内に有機
化合物のモノマーガスを導入して、プラズマ重合を行う
場合のガス圧および高周波の出力は、ガス圧が高くなる
ほど析出速度が速くなる反面モノマーガスが比較的低分
子量でプラズマ重合されて硬い保護膜層が得られず、ま
たガス圧を低くして高周波出力を高くすると析出速度が
遅くなる反面高分子化された比較的硬い保護膜層が得ら
れるが、ガス圧を低くして高周波出力を高くしすぎると
、モノマーガスが粉末化してしまいプラズマ重合保護膜
層が形成されないため、ガス圧を0.03〜3トールの
範囲内とし、高周波出力を0.03〜0.5 W/−の
範囲内とするのが好ましく、ガス圧を0.1〜1トール
とし、高周波出力を0.05〜0.3 W/CIl+の
範囲内とするのがより好ましい。
In this way, the gas pressure and high frequency output when plasma polymerization is performed by introducing monomer gas of an organic compound from the gas introduction pipe 14 into the gap IO formed by the cylindrical can 4 and the gutter-shaped shield frame 11 The higher the gas pressure, the faster the deposition rate, but the monomer gas has a relatively low molecular weight and is plasma-polymerized, making it impossible to obtain a hard protective film layer.The lower the gas pressure and the higher the high-frequency output, the slower the deposition rate. On the other hand, a relatively hard polymerized protective film layer can be obtained, but if the gas pressure is low and the high frequency output is too high, the monomer gas will turn into powder and a plasma polymerized protective film layer will not be formed. Preferably, the pressure is in the range of 0.03 to 3 torr and the high frequency output is in the range of 0.03 to 0.5 W/-, the gas pressure is in the range of 0.1 to 1 torr, and the high frequency output is in the range of 0. More preferably, it is within the range of .05 to 0.3 W/CIl+.

このようにして、間隙10内に、有機化合物の七ツマー
ガスを基体1が導入される側から供給し、順次にプラズ
マ重合させて被着形成される有機化合物のプラズマ重合
保護膜層は、表面に行くに従って緻密で硬いものが得ら
れ、従って、耐摩耗性が一段と向上され、耐久性に優れ
た強磁性金属薄膜型磁気記録媒体が得られる。このよう
な有機化合物のプラズマ重合保護膜層の膜厚は、30〜
1000人の範囲内であることが好ましく、膜厚が薄す
ぎるとこの保護膜層による耐久性の効果が充分に発揮さ
れず、厚ずぎるとスペルシングロスが大きくなりすぎて
電磁変換特性に悪影響を及ぼす。
In this way, a plasma-polymerized protective film layer of an organic compound is formed by supplying the organic compound gas into the gap 10 from the side where the substrate 1 is introduced and sequentially causing plasma polymerization to form on the surface. As it progresses, a denser and harder material is obtained, and therefore, a ferromagnetic metal thin film type magnetic recording medium with improved wear resistance and excellent durability is obtained. The film thickness of such a plasma polymerized protective film layer of an organic compound is 30~
It is preferably within the range of 1,000 people. If the film thickness is too thin, the durability effect of this protective film layer will not be fully exhibited, and if it is too thick, the spelling loss will be too large, which will adversely affect the electromagnetic conversion characteristics. affect

基体上への強磁性金属M、膜層の形成は、C01Fe、
、Ni、、Co−Ni合金、Co−Cr合金、Co−P
合金、Co−N1−P合金などの強磁性相を、真空蒸着
、イオンブレーティング、スパッタリング、メッキ等の
手段によって基体」−に被着するなどの方法で行われる
The ferromagnetic metal M on the substrate, the formation of the film layer is C01Fe,
, Ni, , Co-Ni alloy, Co-Cr alloy, Co-P
A ferromagnetic phase such as alloy, Co--N1--P alloy, etc. is deposited on a substrate by means such as vacuum evaporation, ion blasting, sputtering, plating, etc.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 厚さ10μのポリエステルフィルムを真空苅着装置に装
填し、酸素ガス圧5X10−5)−ルの残留ガス圧の下
でコバルトを加熱蒸発させてポリエステルフィルム らなる強磁性金属薄膜層を形成した。次いで、第2図に
示すプラズマ処理装置を使用し、強磁性金属薄I!!層
を形成したポリエステルフィルム1を、真空槽2内の原
反ロール3から円筒状キャン4の周側面に沿って移動さ
せ、巻き取りロール5に巻き取るようにセットし、ポリ
エステルフィルムlを1m/Hidの速度で走行させな
がらガス導入管14からC 2’− F 4ガスを3 
0 0secmの流量で導入、、。2,4カ”、toガ
オ圧1)’−)Lt、7・、スフ発生用電極12の高周
波出力500Wでプラズマ重合を行った。しかる後、所
定の巾に裁断して磁気テープをつくった。
Example 1 A polyester film with a thickness of 10 μm was loaded into a vacuum coating device, and cobalt was heated and evaporated under a residual gas pressure of 5×10−5) to form a ferromagnetic metal thin film layer made of a polyester film. Formed. Next, using the plasma processing apparatus shown in FIG. 2, ferromagnetic metal thin I! ! The layered polyester film 1 is moved from the raw roll 3 in the vacuum chamber 2 along the circumferential side of the cylindrical can 4, and set to be wound onto the take-up roll 5. C2'-F4 gas is supplied from the gas introduction pipe 14 while running at the Hid speed.
Introduced at a flow rate of 0 0 sec. Plasma polymerization was carried out at a high frequency output of 500 W from the sulphate generation electrode 12. After that, it was cut into a predetermined width to make a magnetic tape. .

実施例2 実施例1のプラズマ重合において、ポリエステルフィル
ムlを走行させずに停止した状態で1分間プラズマ重合
を行った以外は、実施例1と同様にしてプラズマ重合を
行い、磁気テープをつ(つた。このようにしてiMられ
た磁気テープの全長は75cmであった。
Example 2 Plasma polymerization was carried out in the same manner as in Example 1, except that the plasma polymerization was carried out for 1 minute while the polyester film l was stopped without running, and the magnetic tape was attached ( The total length of the magnetic tape thus imprinted was 75 cm.

比較例1 実施例1において、第2図に示すプラズマ処理装置に代
えて第1図に示すプラズマ処理装置を使用し、ガス導入
管7から導入されるc2F4ガスの流量を3 0 0s
ecmから6 5 0secmに変更した以外は、実施
例1と同様にして磁気テープをつくった。
Comparative Example 1 In Example 1, the plasma processing apparatus shown in FIG. 1 was used instead of the plasma processing apparatus shown in FIG. 2, and the flow rate of c2F4 gas introduced from the gas introduction pipe 7 was set to 300 s
A magnetic tape was produced in the same manner as in Example 1 except that the ecm was changed to 650 sec.

実施例1で得られた磁気テープ、実施例2で(↓Iられ
た磁気テープのC2F4ガスの導入側より10co+の
位置(試料1)およびC2 F4ガスの導出側より10
cmの位置(試料2)の磁気テープ試料、および比較例
1で得られた磁気テープについて、プラズマ重合保護膜
層の厚みを測定し、耐久性を試験した。耐久性試験は、
得られた磁気テープをザファイア針で摺動試験し、プラ
ズマ重合保護膜層に傷がつくまでの回数を測定して行っ
た。
The magnetic tape obtained in Example 1, the magnetic tape obtained in Example 2 (↓I) at a position 10 co+ from the C2F4 gas inlet side (sample 1) and 10 co+ from the C2F4 gas outlet side.
Regarding the magnetic tape sample at the cm position (Sample 2) and the magnetic tape obtained in Comparative Example 1, the thickness of the plasma polymerized protective film layer was measured and the durability was tested. The durability test is
The obtained magnetic tape was subjected to a sliding test using a Zaphire needle, and the number of times until the plasma polymerized protective film layer was scratched was measured.

下表はその結果である。The table below shows the results.

上表から明らかなように、実施例2の試料1で得られた
ものは保護膜層の膜厚が厚く、試料2で得られたものは
耐久性に優れ、このこと力・ら有機化合物のモノマーガ
スの導入側ではプ・ラズマ重合速度が速く、導出側では
耐久性に優れた保護1%層が得られることがわかる。ま
た、実施例1で(昇られた磁気テープは比較例1で得ら
れた磁気テープ。
As is clear from the above table, the protective film obtained in Sample 1 of Example 2 has a thick film thickness, and the one obtained in Sample 2 has excellent durability. It can be seen that the plasma polymerization rate is fast on the monomer gas introduction side, and that a 1% protective layer with excellent durability is obtained on the output side. Furthermore, in Example 1 (the magnetic tape shown was the magnetic tape obtained in Comparative Example 1).

に比し、保護膜層の膜厚が厚くて耐久性がよく、このこ
とからこの発明の製造方法によれば、耐久性に優れた磁
気記録媒体が得られることがわかる。
Compared to the above, the protective film layer is thicker and has better durability. This shows that the manufacturing method of the present invention can provide a magnetic recording medium with excellent durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプラズマ処理装置の概略断面しく、第2
図はこの発明の製造方法で使用するプラズマ処理装置の
1例を示す概略正面…1面図、第31釆1は同プラズマ
処理装置の要部側面断面図である。 ■・・・基体、2・・・真空槽、4・・・円筒状キャン
、IO・・・間隙、11・・・シールド枠、12・・・
プラズマ発生用電極、14・・・ガス導入管、 特許出願人 日立マクセル株式会社
Figure 1 shows a schematic cross section of a conventional plasma processing apparatus.
The figure is a schematic front view showing one example of a plasma processing apparatus used in the manufacturing method of the present invention, and No. 31 button 1 is a side sectional view of a main part of the plasma processing apparatus. ■...Base body, 2...Vacuum chamber, 4...Cylindrical can, IO...Gap, 11...Shield frame, 12...
Plasma generation electrode, 14... gas introduction tube, patent applicant Hitachi Maxell, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 16基体上に金属もしくはそれらの合金からなる強磁性
金属薄膜層を形成し、しかる後、この強磁性金属薄膜層
を形成した基体を、真空槽内に円筒状キャンとこの円筒
状キャンの下部周縁に間隙を設けて被嵌配設した樋状の
シールド枠とこのシールド枠内に配設したプラズマ発生
用電極とを備えたプラズマ処理装置にセットし、基体を
円筒状キャンの周側面に沿って移動させるとともに、前
記樋状のシールド枠によって形成される円筒状キャンと
の間隙に基体が導入される側から有機化合物のモノマー
ガスを導入して基体の進行方向に流動させ、シールド枠
内のプラズマ発生用電極によりプラズマ処理を行って強
磁性金属薄膜層表面に有機化合物のプラズマ重合保護膜
層を形成することを特徴とする磁気記録媒体の製造方法
16 A ferromagnetic metal thin film layer made of metal or an alloy thereof is formed on a substrate, and then the substrate on which this ferromagnetic metal thin film layer is formed is placed in a vacuum chamber with a cylindrical can and the lower peripheral edge of the cylindrical can. The substrate is placed in a plasma processing apparatus equipped with a gutter-shaped shield frame that is fitted with a gap between the sides and a plasma generation electrode placed inside the shield frame, and the base is placed along the circumferential side of the cylindrical can. At the same time, an organic compound monomer gas is introduced from the side where the substrate is introduced into the gap between the cylindrical can formed by the gutter-like shield frame and flows in the direction of movement of the substrate, thereby increasing the plasma inside the shield frame. A method for producing a magnetic recording medium, which comprises performing plasma treatment using a generating electrode to form a plasma polymerized protective film layer of an organic compound on the surface of a ferromagnetic metal thin film layer.
JP17171283A 1983-09-16 1983-09-16 Manufacture of magnetic recording medium Pending JPS6063724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17171283A JPS6063724A (en) 1983-09-16 1983-09-16 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17171283A JPS6063724A (en) 1983-09-16 1983-09-16 Manufacture of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6063724A true JPS6063724A (en) 1985-04-12

Family

ID=15928276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17171283A Pending JPS6063724A (en) 1983-09-16 1983-09-16 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6063724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093632A (en) * 1983-10-25 1985-05-25 Taiyo Yuden Co Ltd Formation of protecting film of magnetic recording medium
EP0617143A1 (en) * 1993-03-26 1994-09-28 Sollac S.A. Method and apparatus for continuous coating of metallic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093632A (en) * 1983-10-25 1985-05-25 Taiyo Yuden Co Ltd Formation of protecting film of magnetic recording medium
EP0617143A1 (en) * 1993-03-26 1994-09-28 Sollac S.A. Method and apparatus for continuous coating of metallic material
FR2703073A1 (en) * 1993-03-26 1994-09-30 Lorraine Laminage A method and apparatus for continuously coating a moving metallic material with a composition gradient polymer deposit and the product obtained by this method.
US5437725A (en) * 1993-03-26 1995-08-01 Sollac, Societe Anonyme Device for the continuous coating of a metallic material in motion with a polymer deposition having a composition gradient

Similar Documents

Publication Publication Date Title
JP3916868B2 (en) Method for manufacturing magnetic recording medium
JPH0421929B2 (en)
JPS6063724A (en) Manufacture of magnetic recording medium
JPS6218970B2 (en)
JPH0223926B2 (en)
JPS6057535A (en) Magnetic recording medium
JPS6089816A (en) Magnetic recording medium and its production
JPS61216123A (en) Production of magnetic recording medium
JPH071546B2 (en) Method of manufacturing magnetic recording medium
JPS62167616A (en) Magnetic recording medium and its production
JPS6122430A (en) Production of magnetic recording medium
JPS6057533A (en) Magnetic recording medium
JPS6057534A (en) Magnetic recording medium
JPS6344315A (en) Magnetic recording medium
JPS6122420A (en) Magnetic recording medium
JPS6116030A (en) Production of magnetic recording medium
JPS6089820A (en) Magnetic recording medium
JPS60121521A (en) Magnetic recording medium
JPS6122426A (en) Magnetic recording medium
JPS61211821A (en) Magnetic recording medium
JPS61139918A (en) Magnetic recording medium and its production
JPS61216114A (en) Magnetic recording medium
JPS6122429A (en) Production of magnetic recording medium
JPS6122433A (en) Production of magnetic recording medium
JPS61211834A (en) Production of magnetic recording medium