JPS61216123A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS61216123A
JPS61216123A JP5691685A JP5691685A JPS61216123A JP S61216123 A JPS61216123 A JP S61216123A JP 5691685 A JP5691685 A JP 5691685A JP 5691685 A JP5691685 A JP 5691685A JP S61216123 A JPS61216123 A JP S61216123A
Authority
JP
Japan
Prior art keywords
compartment
film layer
substrate
plasma
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5691685A
Other languages
Japanese (ja)
Inventor
Takashi Kubota
隆 久保田
Fumio Komi
文夫 小海
Minoru Ichijo
稔 一條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP5691685A priority Critical patent/JPS61216123A/en
Publication of JPS61216123A publication Critical patent/JPS61216123A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve sufficiently the resistance to abrasion and corrosion of the titled medium by increasing the flow rate of a gaseous monomer or decreasing high-frequency electric power to carry out plasma polymerization and forming a plasma-polymerized protective layer of an org. compd. whose degree of corss-linking decreases as the distance from the surface decreases on a ferromagnetic metallic thin film layer. CONSTITUTION:A substrate 1 moving along the peripheral side surface of a cylindrical can 5 is successively exposed in each compartment A, B and C to the same gaseous monomer of an org. compd. from gas introducing pipes 19, 20 and 21. Accordingly, the flow rate of the gaseous monomer is successively increased in each compartment A, B and C or the high-frequency wave impressed on electrodes 22, 23 and 24 is reduced to carry out plasma polymerization. Consequently, a plasma-polymerized protective layer 29 of an org. compd. whose degree of corss-linking is reduced as the distance from the surface is decreased, whose surface energy is low, which hardly absorbs oxygen and a hydroxyl group, whose degree of cross-linking is high at the interface with a ferromagnetic metallic this film layer 28 and having an excellent adhesive property is formed on the ferromagnetic metallic thin film layer 28 which is formed on the substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は強磁性金属薄膜層を磁気記録層とする磁気記
録媒体の製造方法に関し、さらに詳しくは、耐久性およ
び耐食性に優れた前記の磁気記録媒体の製造方法に関す
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a magnetic recording layer, and more specifically relates to a method for producing a magnetic recording medium having a magnetic recording layer having a ferromagnetic metal thin film layer, and more specifically, the present invention relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a magnetic recording layer. The present invention relates to a method for manufacturing a recording medium.

〔従来の技術〕[Conventional technology]

強磁性金属薄膜層を磁気記録層とする磁気記録媒体は、
通常、金属もしくはそれらの合金などを真空蒸着等によ
って基体フィルム上に被着してつくられ、高密度記録に
適した特性を有するが、反面磁気ヘッドとの摩擦係数が
大きくて摩耗や損傷を受は易く、また空気中で徐々に酸
化を受けて最大磁束密度などの磁気特性が劣化するなど
の難点がある。
A magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film layer is
It is usually made by depositing metals or their alloys on a base film by vacuum deposition, etc., and has characteristics suitable for high-density recording, but on the other hand, it has a high coefficient of friction with the magnetic head, making it susceptible to wear and damage. It also has disadvantages such as gradual oxidation in the air and deterioration of magnetic properties such as maximum magnetic flux density.

このため、従来から強磁性金属薄膜層上に種々の保護膜
層を設けるなどして耐久性を改善することが行われてお
り、たとえば、第1図に示すようなプラズマ処理装置を
使用し、強磁性金属薄膜屓を表面に形成したポリエステ
ルフィルム1を、真空槽2の原反ロール3からガイドロ
ール4を介して円筒状キャン5の周側面に沿って移動さ
せ、さラニガイドロール6を介して巻き取りロール7に
巻き取るようにセットし、真空槽2内を排気系8により
所定の真空度に保持するとともに真空槽2に取りつけた
ガス導入管9から有機化合物のモノ1       ′
−”7を導入6・高周波電源10で電)動11″高周波
を印加してプラズマ重合し、強磁性金属薄:     
1FIiiiiii&m*[(li@1Ic7)7”5
−Xq*1MmWH’AM@□ 1       設けることが行われている。
For this reason, durability has been conventionally improved by providing various protective film layers on the ferromagnetic metal thin film layer. For example, using a plasma processing apparatus as shown in FIG. A polyester film 1 having a ferromagnetic metal thin film formed on its surface is moved from a raw roll 3 in a vacuum chamber 2 through a guide roll 4 along the circumferential side of a cylindrical can 5, and then through a guide roll 6. The interior of the vacuum chamber 2 is maintained at a predetermined degree of vacuum by the exhaust system 8, and the organic compound 1' is fed from the gas introduction pipe 9 attached to the vacuum chamber 2.
- Introducing ``7'' 6. Applying electric 11'' high frequency with high frequency power source 10 to plasma polymerize, ferromagnetic metal thin:
1FIiiiiii&m*[(li@1Ic7)7”5
-Xq*1MmWH'AM@□ 1 is being provided.

□ :        〔発明が解決しようとする問題点〕
・1        ところが、この方法で、被着形成
される有機化1       合物のプラズマ重合保護
膜層は、成膜の際にモノマーガスの導入量を少なくし、
高周波電力を高く1       して強磁性金属薄膜
層との接着性を高め、耐摩耗j       性を改善
させると、保護膜層の表面エネルギーが1      
 増大し、表面に水酸基等が吸着しやすくなるためよ I       、良好な防食効果が得られず、また、
モノマーガ4       スの導入量を多くし、高周
波電力を低下すると接着性および膜の強度が低下するな
どの問題点があった。
□ : [Problem that the invention seeks to solve]
・1 However, with this method, the plasma-polymerized protective film layer of the organic compound 1 that is deposited and formed can be formed by reducing the amount of monomer gas introduced during film formation.
When high frequency power is increased by 1 to increase the adhesion with the ferromagnetic metal thin film layer and improve wear resistance, the surface energy of the protective film layer decreases by 1.
As a result, a good anticorrosion effect cannot be obtained, and
When the amount of monomer gas introduced is increased and the high frequency power is decreased, there are problems such as a decrease in adhesiveness and strength of the film.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、かかる現状に鑑み種々検討を行った結果、
基体上に金属もしくはそれらの合金からなる強磁性金属
薄膜層を形成し、しかる後、この強磁性金属薄膜層を形
成した基体を、真空槽内に2以上の区画室とこの各区画
室に跨って周側面をさらした円筒状キャンとこの円筒状
キャンの周側面に沿って移動する基体に対向して各区画
室内に配設したプラズマ発生用電極とを備えたプラズマ
処理装置にセットし、基体を円筒状キャンの周側面に沿
って移動させるとともに、各区画室に同一の有機化合物
のモノマーガスを導入し、基体が導入される側の区画室
から基体が導出される側の区画室にかけて順次に区画室
内のモノマーガスのガス流量を多くするかまたは高周波
電力を低くしてプラズマ重合を行うと、強磁性金属薄膜
層上に表面に行くほど架橋度が小さくて表面エネルギー
が低く、かつ強磁性金属薄膜層との界面付近におい:1
      7架橋度が高く接着性に優れた有機化合物
のプラ4       ズマ重合保護膜層が形成されて
耐摩耗性および耐食性が充分に向上された磁気記録媒体
が得られる1    ′″−’bly゛’Q゛f&8h
t:’j>(DT:〜。
This invention was developed as a result of various studies in view of the current situation.
A ferromagnetic metal thin film layer made of a metal or an alloy thereof is formed on a substrate, and then the substrate on which this ferromagnetic metal thin film layer is formed is placed in two or more compartments in a vacuum chamber and straddled between each compartment. The substrate is set in a plasma processing apparatus equipped with a cylindrical can with an exposed circumferential surface and a plasma generation electrode disposed in each compartment facing the substrate that moves along the circumferential surface of the cylindrical can. While moving along the circumferential side of the cylindrical can, monomer gas of the same organic compound is introduced into each compartment, and the compartments are sequentially divided from the compartment where the substrate is introduced to the compartment where the substrate is taken out. When plasma polymerization is performed by increasing the gas flow rate of the monomer gas in the room or by lowering the radio frequency power, the degree of crosslinking decreases toward the surface of the ferromagnetic metal thin film layer, and the surface energy decreases, and the ferromagnetic metal thin film Odor near the interface with the layer: 1
7. A magnetic recording medium with sufficiently improved abrasion resistance and corrosion resistance is obtained by forming a plasma polymerized protective film layer of an organic compound with a high degree of crosslinking and excellent adhesiveness.1'''-'bly゛'Q゛f&8h
t:'j>(DT:~.

1        以下、図面を参照しながらこの発明
について説1       明する。
1 Hereinafter, this invention will be explained with reference to the drawings.

1    □21..。(7)Q!]”r(□□ワ、、
オフ□□;       の1例を示したもので、この
プラズマ処理装置は1       、真空槽2内に原
反ロール3、ガイドロール4、’     P1ffi
4J’?”−t−75、ヵ、イl、。−7,6およ、j
−よ。
1 □21. .. . (7) Q! ]”r(□□wa,,
Off □□; This plasma processing apparatus has 1, a raw roll 3, a guide roll 4, and a 'P1ffi' in a vacuum chamber 2.
4J'? ”-t-75, ka, il, .-7,6 and j
-Yo.

ロール7を配設した点では第1図に示す従来のプ1  
     ラズ・処理装置と同じであるが、真空槽2内
を隔1       壁12・ 13・14・15で区
画分離して区画室i        A、B、Cを設け
、各区画室毎に排気系16.19      7.18
およびガス導入管19.20.21を設]2,6よよ6
6o円筒1大や、2.。周、11つ6o、091]  
  ヵtおヵオI LZ’1friilL”’C@m 
22.23.24や・1       配設し、各高周
波電源25.26.27に接続し″l−t’イx。、ヵ
1,7 C(D 7” y 7 ” % Fl! !!
 W &’ニー ヨh 4;t:、円筒状キャン5の周
側面に沿って移動する基体1が各区画室A、B、Cで順
次にそれぞれガス導入管19.20.21から導入され
る同じ有機化合物のモノマーガスにさらされる。従って
各区画室A、BXCの順にモノマーガスのガス流量を多
くするか、あるいは各区画室A、B、Cの順に各電極2
2.23.24に印加する高周波を小さくしてプラズマ
重合を行えば、基体1上に形成された強磁性金属薄膜層
上に、表面に行(はど架橋度が小さく、表面エネルギー
が低くて酸素や水酸基等が吸着しにクク、かつ強磁性金
属薄膜層との界面付近において架橋度が高く接着性に優
れた有機化合物のプラズマ重合保護膜層が形成される。
It is different from the conventional printer 1 shown in Fig. 1 in that the roll 7 is provided.
Although it is the same as the Razz processing equipment, the inside of the vacuum chamber 2 is divided into sections by walls 12, 13, 14, and 15 to provide compartments iA, B, and C, and an exhaust system 16, 19 is provided for each compartment. 7.18
and gas inlet pipe 19.20.21] 2, 6 yo 6
6o cylinder 1 size, 2. . Zhou, 11 6o, 091]
Katokao I LZ'1friilL"'C@m
22.23.24 and 1, connect to each high frequency power source 25.26.27 and connect it to each high frequency power source 25.26.27.
W&'nee yo h4;t:, the base body 1 moving along the circumferential side of the cylindrical can 5 is introduced into each compartment A, B, C sequentially from the gas inlet pipes 19, 20, 21 respectively. Exposure to monomer gas of organic compounds. Therefore, the gas flow rate of the monomer gas should be increased in the order of each compartment A, BXC, or each electrode 2 should be increased in the order of each compartment A, B, and C.
2.23.24 If plasma polymerization is performed by reducing the high frequency applied to A plasma-polymerized protective film layer of an organic compound that absorbs oxygen, hydroxyl groups, etc., and has a high degree of crosslinking and excellent adhesiveness near the interface with the ferromagnetic metal thin film layer is formed.

その結果、基体l上の強磁性金属薄膜層上には接着性が
良好で耐食性に優れたプラズマ重合保護膜層が形成され
、耐摩耗性および耐食性が充分に改善された磁気記録媒
体が得られる。
As a result, a plasma polymerized protective film layer with good adhesion and excellent corrosion resistance is formed on the ferromagnetic metal thin film layer on the substrate l, and a magnetic recording medium with sufficiently improved wear resistance and corrosion resistance is obtained. .

このような、真空槽2内の各区画室A、BおよびCに各
ガス導入管19.20および21から導入される有機化
合物のモノマーガスとしては、たとえば、C2F4 、
C3Fs等の〕・ノ素系有機化合物のモノマーガス、プ
ロパン、エチレン、プロピレン等の炭化水素系化合物の
モノマーガスおよびテトラメチルシラン、オクタメチル
シクロテトラシロキサン、ヘキサメチルジシラザン等の
ケイ素系有機化合物のモノマーガス等が好ましく使用さ
れ、これらの有機化合物のモノマーガスは、各プラズマ
発生用電極22.23および24の高周波の印加によっ
てプラズマ重合が行われると、ラジカルが生成され、こ
の生成されたラジカルが反応し重合して被膜となる。こ
のようなプラズマ重合の際のラジカルはこれらの有機化
合物が二重結合または三重結合を有していたり、また末
端に金属元素を有する金属塩化合物であるかあるいはO
H基等の官能基を有しているほど生成しやすいため、こ
れら不飽和結合、金属元素および官能基等を有するもの
がより好ましく使用される。またこれらのモノマーガス
をプラズマ重合する際、アルゴンガス、ヘリウムガスお
よび酸素ガス等のキャリアガスを併存させるとモノマー
ガスを単独でプラズマ重合する場合に比べて3〜5倍の
速度で析出されるため、これらのキャリアガスを併存さ
せて行うのが好ましい。これらのキャリアガスと併存さ
せる際、その組成割合はキャリアガス対前記有機化合物
のモノマーガスの比にして1対1〜20対1の範囲内で
併存させるのが好ましく、キャリアガスが少なずぎると
析出速度が低下し、多すぎるとモノマーガスが少なくな
ってプラズマ重合反応に支障をきたす。なお、炭化水素
系化合物のモノマーガスを使用するときは、酸素ガスを
キャリアガスとして使用すると酸化反応が生じるため酸
素ガスをキャリアガスとして使用するのは好ましくない
The organic compound monomer gases introduced into the compartments A, B, and C in the vacuum chamber 2 from the gas introduction pipes 19, 20, and 21 include, for example, C2F4,
[C3Fs, etc.] Monomer gas of non-atomic organic compounds, monomer gas of hydrocarbon compounds such as propane, ethylene, propylene, etc., and silicon-based organic compounds such as tetramethylsilane, octamethylcyclotetrasiloxane, hexamethyldisilazane, etc. A monomer gas or the like is preferably used, and when plasma polymerization is performed in the monomer gas of these organic compounds by applying high frequency waves to each of the plasma generating electrodes 22, 23 and 24, radicals are generated, and the generated radicals are It reacts and polymerizes to form a film. The radicals used in such plasma polymerization are those in which these organic compounds have double bonds or triple bonds, metal salt compounds with a metal element at the end, or O
The more functional groups such as H groups, the easier it is to form, so those having these unsaturated bonds, metal elements, functional groups, etc. are more preferably used. Also, when plasma polymerizing these monomer gases, if a carrier gas such as argon gas, helium gas, or oxygen gas is present, the monomer gases will be deposited at a rate 3 to 5 times faster than when plasma polymerizing them alone. It is preferable to use these carrier gases together. When coexisting with these carrier gases, it is preferable that the composition ratio of the carrier gas to the monomer gas of the organic compound be within the range of 1:1 to 20:1. If the carrier gas is too small, precipitation may occur. If the amount is too high, the monomer gas will decrease and the plasma polymerization reaction will be hindered. Note that when using a monomer gas of a hydrocarbon compound, it is not preferable to use oxygen gas as a carrier gas because an oxidation reaction will occur if oxygen gas is used as a carrier gas.

このように、各ガス導入管19.20.21から各区画
室A、B、C内に有機化合物のモノマーガスを導入して
、プラズマ重合を行う場合のガス流量および高周波電力
は、各区画室で異なり、円筒状キャン5の周側面に沿っ
て移動する基板1の移動方向に沿って、区画室A、B、
Cの順にガス流量を多くし、また高周波電力を高くする
必要があるが、ガス流量が多くなるほど析出速度が速く
なる反面モノマーガスが比較的低分子量でプラズマ重合
されて硬い保護膜層が得られず、また、ガス流量を少な
くして高周波電力を高くすると析出速度が遅くなる反面
高分子化された比較的硬い保護膜層が得られるものの、
ガス流量を少なくして高周波電力を高くしすぎると、モ
ノマーガスが粉末化してしまいプラズマ重合保護膜層が
形成されないため、ガス流量を5〜500 secmの
範囲内とし、高周波電力を0.03〜3 W / cJ
の範囲内とするのが好ましく、ガス流量を10〜300
secmとし、高周波電力を0.05〜2 W / c
Jの範囲内とするのがより好ましい。
In this way, the gas flow rate and high-frequency power when plasma polymerization is performed by introducing monomer gas of an organic compound into each compartment A, B, and C from each gas introduction pipe 19, 20, and 21 are different for each compartment. , along the moving direction of the substrate 1 moving along the circumferential side of the cylindrical can 5, the compartments A, B,
It is necessary to increase the gas flow rate and the high frequency power in the order of C, but the higher the gas flow rate, the faster the deposition rate, but on the other hand, the monomer gas with a relatively low molecular weight is plasma polymerized and a hard protective film layer is obtained. Also, if the gas flow rate is reduced and the high frequency power is increased, the deposition rate will be slowed down, but at the same time a relatively hard protective film layer made of polymer will be obtained.
If the gas flow rate is reduced and the high frequency power is increased too high, the monomer gas will turn into powder and a plasma polymerized protective film layer will not be formed. 3W/cJ
It is preferable to set the gas flow rate within the range of 10 to 300
secm, and the high frequency power is 0.05 to 2 W/c.
It is more preferable to set it within the range of J.

このようにして、各区画室A、B、C毎に有機化合物の
モノマーガスを導入し、順次にガス流量を多くするかあ
るいは高周波電力を小さくし、プラズマ重合して析出形
成される有機化合物のプラズマ重合保護膜層は、表面に
行くに従って架橋度が小さく、表面エネルギーが低いも
のが得られ、さらに強磁性金属薄膜層との界面付近では
架橋度が高く、緻密で接着性の優れたものが得られ、耐
食性および耐久性が充分に改善された磁気記録媒体が得
られる。なお、区画室は上記実施例のように3室に限定
されるものではなく、必要に応じて2以上の適数の区画
室を設ければよい。
In this way, organic compound monomer gas is introduced into each of the compartments A, B, and C, and the gas flow rate is increased or the high frequency power is decreased in order to form an organic compound plasma that is precipitated by plasma polymerization. The polymerized protective film layer has a lower degree of crosslinking and lower surface energy as it approaches the surface, and a higher degree of crosslinking near the interface with the ferromagnetic metal thin film layer, resulting in a dense layer with excellent adhesive properties. A magnetic recording medium with sufficiently improved corrosion resistance and durability can be obtained. Note that the number of compartments is not limited to three as in the above embodiment, and an appropriate number of compartments of two or more may be provided as necessary.

基体上への強磁性金属薄膜層の形成は、Co、F e 
% N 1 % CON i合金、Co−Cr合金、C
o−P合金、Co−N1−P合金などの強磁性材を、真
空蒸着、イオンブレーティング、スパッタリング、メッ
キ等の手段によって基体上に被着するなどの方法で行わ
れる。
The formation of the ferromagnetic metal thin film layer on the substrate is performed using Co, Fe,
%N 1% CON i alloy, Co-Cr alloy, C
This is accomplished by depositing a ferromagnetic material such as an o-P alloy or a Co-N1-P alloy onto a substrate by means such as vacuum evaporation, ion blasting, sputtering, or plating.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 厚さ10μのポリエステルフィルムを真空蒸着装置に装
填し、酸素ガス圧5X10−5トールの残留ガス圧の下
でコバルトを加熱蒸発させてポリエステルフィルム上に
厚さ1000人のコバルトからなる強磁性金属薄膜層を
形成した。次いで、第2図に示すプラズマ処理装置を使
用し、強磁性金属薄膜層を形成したポリエステルフィル
ム1を、真空槽2内の原反ロール3からガイドロール4
を介して円筒状キャン5の周側面に沿って移動させ、サ
ラにガイドロール6を介して巻き取りロール7に巻き取
るようにセットした。次にポリエステルフィルム1を5
m/minの速度で走行させながら各区画室A、B、C
の各ガス導入管19.20.21からC2F4ガスをそ
れぞれ50secm、、150sccm、 250sc
cmの流量で導入し、C2F4ガスのガス圧をそれぞれ
区画室へで0.05 トール、区画室Bで0.1トール
、区画室Cで0.5トールとし、各プラズマ発生用電極
22.23.24の高周波電力を0.5W/cn+で一
定にしてプラズマ重合を行った。このとき形成されたプ
ラズマ重合保護膜層の層厚は100人であった。しかる
後、所定1       のrIJに裁断して第3図に
示すようにポリエステルフィルム1上に強磁性金属薄膜
層28およびプラズマ重合保護膜層29を積層形成した
磁気テープ::、        Aをつくった。
Example 1 A polyester film with a thickness of 10 μm was loaded into a vacuum evaporation apparatus, and cobalt was heated and evaporated under a residual gas pressure of 5×10 −5 torr of oxygen gas to deposit a 100 μm thick cobalt film on the polyester film. A magnetic metal thin film layer was formed. Next, using the plasma processing apparatus shown in FIG.
It was moved along the circumferential side of the cylindrical can 5 through the guide roll 6, and set so as to be wound onto the winding roll 7 through the guide roll 6. Next, add polyester film 1 to 5
Each compartment A, B, C while running at a speed of m/min.
50sec, 150sccm, 250sc of C2F4 gas from each gas introduction pipe 19, 20, 21 respectively.
C2F4 gas was introduced at a flow rate of cm, and the gas pressure of C2F4 gas was set to 0.05 Torr in each compartment, 0.1 Torr in compartment B, and 0.5 Torr in compartment C, and each plasma generation electrode 22.23 Plasma polymerization was carried out with the high frequency power of .24 constant at 0.5 W/cn+. The thickness of the plasma polymerized protective film layer formed at this time was 100 layers. Thereafter, it was cut to a predetermined rIJ, and a magnetic tape A was prepared in which a ferromagnetic metal thin film layer 28 and a plasma polymerized protective film layer 29 were laminated on a polyester film 1 as shown in FIG.

、     ′“112 :        実施例1のプラズマ重合において、
各区画室A、B、Cに導入する02F4ガスの流量を1
50secmと同じにし、各区画室内でのC2F4ガス
のガス圧を0.1トールと一定にし、各プラズマ発生用
電極22.23.24の高周波電力をそれぞれ区画室A
でIW/crA、区画室Bで0.6W/cJ、区画室C
で0.2W/cJとしてプラズマ重合を行った以外は、
実施例1と同様にしてプラズマ重合を行い、磁気テープ
をつくった。
, '"112: In the plasma polymerization of Example 1,
The flow rate of 02F4 gas introduced into each compartment A, B, C is 1
50 seconds, the gas pressure of C2F4 gas in each compartment was kept constant at 0.1 Torr, and the high frequency power of each plasma generation electrode 22, 23, 24 was set to 0.1 Torr.
IW/crA in compartment B, 0.6W/cJ in compartment B, compartment C
Except that plasma polymerization was performed at 0.2 W/cJ at
Plasma polymerization was carried out in the same manner as in Example 1 to produce a magnetic tape.

比較例1 実施例1のプラズマ重合において、各区画室A、B、C
に導入する02F4ガスの流量を50secmと同じに
し、各区画室内でのC2F4ガスのガス圧を0.05 
)−ルと一定にしてプラズマ重合を行った以外は、実施
例1と同様にしてプラズマ重合を行い、磁気テープをつ
くった。
Comparative Example 1 In the plasma polymerization of Example 1, each compartment A, B, C
The flow rate of the 02F4 gas introduced into the chamber was set to 50 seconds, and the gas pressure of the C2F4 gas in each compartment was set to 0.05 seconds.
) - Plasma polymerization was carried out in the same manner as in Example 1, except that the plasma polymerization was carried out at a constant value, and a magnetic tape was produced.

比較例2 実施例2のプラズマ重合において、高周波電力を0.2
W/c♂と一定にしてプラズマ重合を行った以外は、実
施例2と同様にしてプラズマ重合を行い、磁気テープを
つくった。
Comparative Example 2 In the plasma polymerization of Example 2, the high frequency power was set to 0.2
A magnetic tape was produced by plasma polymerization in the same manner as in Example 2, except that the plasma polymerization was carried out at a constant W/c♂.

↓        比較例3 :        実施例1において、プラズマ重合保
護膜層の形成を省いた以外は、実施例1と同様にして磁
気テープをつくった。
↓ Comparative Example 3: A magnetic tape was produced in the same manner as in Example 1 except that the formation of the plasma polymerized protective film layer was omitted.

各実施例および各比較例で得られた磁気テープ4   
    について接着性、耐摩耗性および耐食性を試験
した。接着性試験は引張試験機を用いて90度剥離1 
      法により剥離接着力を測定して行った。ま
た耐摩A       純性試験は摺動試験機を用いて
摺動試験し、強磁j       性金属薄膜層表面に
傷がつくまでの摺動回数を測1       定して行
・た・さらに耐食性試験は得られた磁気」 )       テープを60℃、90%RHの条件下
に70間放1       置して最大磁束密度を測定
し、放置前の磁気テープの最大磁束密度を100%とし
、これと比較した値でその劣化率を調べて行った。
Magnetic tape 4 obtained in each example and each comparative example
Adhesion, abrasion resistance and corrosion resistance were tested. The adhesion test was performed using a tensile tester with 90 degree peeling.
The peel adhesion strength was measured using a method. In addition, the wear resistance A purity test was performed by performing a sliding test using a sliding tester and measuring the number of times the ferromagnetic metal thin film layer surface was scratched. The obtained magnetic flux density was measured by leaving the tape under the conditions of 60°C and 90% RH for 70 minutes, and comparing it with the maximum magnetic flux density of the magnetic tape before leaving it as 100%. The deterioration rate was investigated based on the value.

1        下表はその結果である。1. The table below shows the results.

」 ・) 表 上表から明らかなように、この発明で得られた磁気テー
プ(実施例1および2)は、いずれも比較例1ないし3
で得られた磁気テープに比し、接着力が大きく、摺動回
数が多くて劣化率が小さく、このことからこの発明によ
って得られる磁気記録媒体は、表面に行くほど架橋度が
小さくてぬれ性が低く、さらに界面付近の架橋度が高く
て接着性に優れたプラズマ重合保護膜層が形成された結
果、耐摩耗性および耐食性が一段と改善されていること
がわかる。
” ・) As is clear from the table above, the magnetic tapes obtained by the present invention (Examples 1 and 2) were all similar to Comparative Examples 1 to 3.
Compared to the magnetic tape obtained by the present invention, the adhesive force is greater, the number of times of sliding is greater, and the rate of deterioration is lower. Therefore, the magnetic recording medium obtained by the present invention has a lower degree of crosslinking toward the surface, and has better wettability. It can be seen that the abrasion resistance and corrosion resistance are further improved as a result of the formation of a plasma-polymerized protective film layer which has a low cross-linking rate and a high degree of cross-linking near the interface and has excellent adhesion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のプラズマ処理装置の概略断面図、第2図
はこの発明の製造方法で使用するプラズマ処理装置の1
例を示す概略断面図、第3図はこの発明によって得られ
た磁気テープの部分拡大断面図である。 ■・・・基体、2・・・真空槽、5・・・円筒状キャン
、12.13,14.15・・・隔壁、16,17.1
8・・・排気系、19,20.21・・・ガス導入管、
22.23.24・・・電極、28・・・強磁性金属薄
膜層、29・・・プラズマ重合保護膜層、A、B、C・
・・区画室
FIG. 1 is a schematic sectional view of a conventional plasma processing apparatus, and FIG. 2 is a schematic sectional view of a plasma processing apparatus used in the manufacturing method of the present invention.
A schematic sectional view showing an example, and FIG. 3 is a partially enlarged sectional view of a magnetic tape obtained by the present invention. ■... Base body, 2... Vacuum chamber, 5... Cylindrical can, 12.13, 14.15... Partition wall, 16, 17.1
8...Exhaust system, 19,20.21...Gas introduction pipe,
22.23.24... Electrode, 28... Ferromagnetic metal thin film layer, 29... Plasma polymerized protective film layer, A, B, C.
・Compartment room

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に金属もしくはそれらの合金からなる強磁性
金属薄膜層を形成し、しかる後、この強磁性金属薄膜層
を形成した基体を、真空槽内に2以上の区画室とこの各
区画室に跨って周側面をさらした円筒状キャンとこの円
筒状キャンの周側面に沿って移動する基体に対向して各
区画室内に配設したプラズマ発生用電極とを備えたプラ
ズマ処理装置にセットし、基体を円筒状キャンの周側面
に沿って移動させると共に、各区画室に同一の有機化合
物のモノマーガスを導入し、基体が導入される側の区画
室から基体が導出される側の区画室にかけて順次に区画
室内のモノマーガスのガス流量を多くするかまたは高周
波電力を低くしてプラズマ重合を行い、強磁性金属薄膜
層上に表面に行くほど架橋度が小さい有機化合物のプラ
ズマ重合保護膜層を形成することを特徴とする磁気記録
媒体の製造方法
1. A ferromagnetic metal thin film layer made of metal or an alloy thereof is formed on a substrate, and then the substrate on which this ferromagnetic metal thin film layer is formed is placed in two or more compartments and each compartment in a vacuum chamber. It is set in a plasma processing apparatus equipped with a cylindrical can whose circumferential side is exposed across the cylindrical can and a plasma generation electrode disposed in each compartment facing a substrate that moves along the circumferential side of the cylindrical can, The substrate is moved along the circumferential side of the cylindrical can, and monomer gas of the same organic compound is introduced into each compartment, sequentially from the compartment where the substrate is introduced to the compartment where the substrate is taken out. Plasma polymerization is performed by increasing the gas flow rate of the monomer gas in the compartment or by lowering the radio frequency power to form a plasma polymerized protective film layer of an organic compound with a degree of crosslinking decreasing toward the surface on the ferromagnetic metal thin film layer. A method for manufacturing a magnetic recording medium characterized by:
JP5691685A 1985-03-20 1985-03-20 Production of magnetic recording medium Pending JPS61216123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5691685A JPS61216123A (en) 1985-03-20 1985-03-20 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5691685A JPS61216123A (en) 1985-03-20 1985-03-20 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61216123A true JPS61216123A (en) 1986-09-25

Family

ID=13040798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5691685A Pending JPS61216123A (en) 1985-03-20 1985-03-20 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61216123A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029578A1 (en) * 1996-12-27 1998-07-09 Tdk Corporation Method for forming film by plasma polymerization and apparatus for forming film by plasma polymerization
WO2012133102A1 (en) * 2011-03-25 2012-10-04 積水化学工業株式会社 Polymerizable monomer-condensing device
WO2014002773A1 (en) * 2012-06-29 2014-01-03 株式会社アルバック Film formation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029578A1 (en) * 1996-12-27 1998-07-09 Tdk Corporation Method for forming film by plasma polymerization and apparatus for forming film by plasma polymerization
US5972435A (en) * 1996-12-27 1999-10-26 Tdk Corporation Method for forming film by plasma polymerization and apparatus for forming film by plasma polymerization
WO2012133102A1 (en) * 2011-03-25 2012-10-04 積水化学工業株式会社 Polymerizable monomer-condensing device
WO2014002773A1 (en) * 2012-06-29 2014-01-03 株式会社アルバック Film formation device
CN104379804A (en) * 2012-06-29 2015-02-25 株式会社爱发科 Film formation device

Similar Documents

Publication Publication Date Title
JPS61216123A (en) Production of magnetic recording medium
JPS6089816A (en) Magnetic recording medium and its production
JPS6057535A (en) Magnetic recording medium
JP2594625B2 (en) Manufacturing method of magnetic recording medium
JPS6122433A (en) Production of magnetic recording medium
JPS6122432A (en) Production of magnetic recording medium
JPS6122430A (en) Production of magnetic recording medium
JPS6122420A (en) Magnetic recording medium
JPS6063724A (en) Manufacture of magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS62167616A (en) Magnetic recording medium and its production
JPS6116027A (en) Magnetic recording medium and its production
JPS6116030A (en) Production of magnetic recording medium
JPS61216124A (en) Production of magnetic recording medium
JPS61211833A (en) Production of magnetic recording medium
JPS6122429A (en) Production of magnetic recording medium
JPS61211821A (en) Magnetic recording medium
JPS6089819A (en) Magnetic recording medium and its production
JPS61214137A (en) Production of magnetic recording medium
JPS6089821A (en) Magnetic recording medium
JPS60121521A (en) Magnetic recording medium
JPS62273624A (en) Magnetic recording medium and its production
JP3831424B2 (en) Method for manufacturing magnetic recording medium
JPS6122431A (en) Production of magnetic recording medium
JPS61211834A (en) Production of magnetic recording medium