WO2012133102A1 - Polymerizable monomer-condensing device - Google Patents

Polymerizable monomer-condensing device Download PDF

Info

Publication number
WO2012133102A1
WO2012133102A1 PCT/JP2012/057324 JP2012057324W WO2012133102A1 WO 2012133102 A1 WO2012133102 A1 WO 2012133102A1 JP 2012057324 W JP2012057324 W JP 2012057324W WO 2012133102 A1 WO2012133102 A1 WO 2012133102A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
resin film
cover
polymerizable monomer
nozzle
Prior art date
Application number
PCT/JP2012/057324
Other languages
French (fr)
Japanese (ja)
Inventor
野上 光秀
川崎 真一
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2013507455A priority Critical patent/JP5866340B2/en
Publication of WO2012133102A1 publication Critical patent/WO2012133102A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing

Definitions

  • the polymerizable monomer vapor blown from both ends of the nozzle flows not only in the circumferential direction of the roll but also in the axial direction of the roll.
  • steam flows out outside from the both ends of the condensation space in the circumferential direction of a roll, and the both ends of the condensation space in the axial direction of a roll.
  • Patent Document 2 discloses a technique in which both end portions of a processing space such as a condensation space, that is, both end portions of the processing space in the axial direction of the roll are closed by a shielding member. According to the one described in Patent Document 2, it is possible to prevent the processing gas such as the vapor of the polymerizable monomer from flowing in the axial direction of the roll and to flow only in the circumferential direction of the roll. Therefore, the problem that the adhesiveness of the both ends of a resin film falls rather than the adhesiveness of an intermediate part can be solved.
  • the shield member is rotatably supported, and both end portions of the cover in the axial direction of the roll portion are moved closer to and away from each other in the radial direction of the roll portion above the shield members of the pair of shielding mechanisms. It is possible and airtightly mounted, and one of the end surface of the roll portion and the end surface of the shielding member facing the end surface is centered on the axis of the roll portion.
  • a convex portion extending in a ring shape around the axis of the roll portion is formed on the other side, and the convex portion enters the concave portion so as to be relatively rotatable, whereby the polymerizable property in the condensation space is formed.
  • the convex part and recessed part which fit so that relative rotation is possible are formed in the shielding member and the end surface of a roll, and the space
  • the monomer gas supplied to the nozzle part 25 is rectified so that the flow rate of each part in the nozzle part 25 in the axial direction of the cylinder part 21a is uniform in a rectification path (not shown) provided in the nozzle part 25. Is done.
  • the rectified monomer gas is sent to the outlet 25a through the outlet passage 25b. Then, the monomer gas is blown out into the condensing space 24 from the blowout port 25a. In this case, the monomer gas is blown out toward the inside in the radial direction of the cylindrical portion 21 a and blown onto the resin film F. A part of the vapor of the polymerizable monomer condenses on the resin film F and adheres to the resin film F.
  • the curvature radius of the outer peripheral surface of the shielding plate 41 is substantially the same as the curvature radius of the inner surface of the cover 23, the shielding plate 41 and the end portions of the cylindrical portion 21 a and the end plate 21 b, and between the shielding plate 41 and the cover 23.
  • a gap 43 extending annularly about the axis of the cylindrical portion 21a is formed between the end surface and the edge on the small diameter side.
  • the gap 43 communicates with the condensation space 24. Therefore, when the monomer gas flows out from the end of the condensing space 24 in the axial direction of the cylindrical portion 21 a, the monomer gas enters the gap 43.
  • the monomer gas entering the gap 43 hits the shielding plate 41 and stops flowing in the same direction. A part of the monomer gas tends to flow in the gap 43 along the shielding plate 41 toward the outer side in the radial direction (upper side), and the remaining part along the shielding plate 41 in the radial direction (lower side). Side).
  • the end surface of the support member 44 facing the cover 23 and the nozzle portion 25 is brought into airtight contact with the end surfaces of the cover 23 and the nozzle portion 25.
  • the inner surface of the support member 44 that is, the surface facing the inner side in the radial direction of the tube portion 21a is formed by an arc surface centering on the axis of the tube portion 21a.
  • the radius of curvature of the arc surface is set to be the same as the radius of the outer peripheral surface of the shielding plate 41.
  • the support member 44 is placed on the upper part of the outer peripheral surface of the shielding plate 41.
  • the curvature radius of the inner surface of the support member 44 is set to be the same as the radius of the outer peripheral surface of the shielding plate 41, the inner surface of the support member 44 contacts the outer peripheral surface of the shielding plate 41 over the entire length in the circumferential direction. It has been made.
  • a space between the inner surface of the support member 44 and the outer peripheral surface of the shielding plate 41 that are in contact with each other is hermetically sealed by a seal member 45 such as an O-ring.
  • a seal member 45 such as an O-ring
  • a nozzle 36 is disposed below the processing space 33.
  • the nozzle 36 has the same length as the cylindrical portions 21a and 31a, and is arranged in parallel with the cylindrical portions 21a and 31a and at the same position as the cylindrical portions 21a and 31a in the axial direction of the cylindrical portions 21a and 31a. Has been. Therefore, both end surfaces in the longitudinal direction of the nozzle 36 are positioned at the same positions as both end surfaces of the cylinder portions 21a and 231a.
  • a blowing port 36 a extending in the longitudinal direction of the nozzle 36 is formed on the upper surface of the nozzle 36 facing the processing space 33.
  • Discharge is performed between the cylinders 22 and 32 of the rotary rolls 21 and 31 by the voltage supply from the power source 38.
  • the nitrogen gas in the processing space 33 is turned into plasma, and the polymerizable monomer attached to the resin film F is activated to cause cleavage of double bonds, polymerization, and the like.
  • the contact of nitrogen gas to the resin film F or irradiation of ultraviolet rays (337 nm) from the nitrogen gas breaks the bonds such as C—C—C—O—C—H on the surface of the resin film F.
  • the cover 23 and the nozzle portion 25 are moved upward from the rotary roll 21.
  • the shielding plate 41 since the shielding plate 41 is attached to the rotary roll 21, the shielding plate 41 does not move together with the cover 23. Therefore, the trouble of removing the shielding plate 41 from the cover 23 after moving the cover 23 upward can be saved.
  • the cover 23 is returned to the original position after the maintenance and inspection of the surface treatment apparatus 10, it is only necessary to place the cover 23 on the shielding plates 41, 41 via the support members 44, 44. There is no need to attach to the cover 23. Therefore, the labor required for maintenance and inspection of the surface treatment apparatus 10 can be greatly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The invention prevents the reduction in density of polymerizable monomer gas at both ends of a condensing space in the longitudinal direction and reduces the labor necessary for maintenance inspections. Shielding members (41) are provided rotatably on the shank (21c) of a rotating roll (21). The edges of a cover (23) are provided on the upper part of the outer circumferential surfaces of the shielding members (41) via support members (44) so as to be capable of approaching or receding in the vertical direction and to be gas-tight. Grooves (46) and ridges (47) that fit together and can rotate relative to each other are formed in the surfaces of the shielding members (41) and the end plates (21b) of the rotating roll (21) that face each other.

Description

重合性モノマーの凝縮装置Polymeric monomer condensing device
 この発明は、樹脂フィルムの表面に重合性モノマーの蒸気を凝縮させるための凝縮装置に関する。 This invention relates to a condensing device for condensing a vapor of a polymerizable monomer on the surface of a resin film.
 この発明に係る凝縮装置の適用対象たる樹脂フィルムは、例えば液晶表示の偏光板に用いられている。図6に偏光板の一例が示されている。この偏光板1は、偏光フィルム2と、この偏光フィルム2の両面に積層された一対の保護フィルム(樹脂フィルム)3,3とを有している。一対の保護フィルム3,3は、偏光フィルム2の両面にそれぞれ接着剤4を介して接着されている。 The resin film to which the condensing apparatus according to the present invention is applied is used for a polarizing plate for liquid crystal display, for example. FIG. 6 shows an example of a polarizing plate. The polarizing plate 1 includes a polarizing film 2 and a pair of protective films (resin films) 3 and 3 laminated on both surfaces of the polarizing film 2. The pair of protective films 3 and 3 are bonded to both surfaces of the polarizing film 2 via an adhesive 4, respectively.
 偏光フィルム2は、例えばポリビニルアルコールを主成分とする樹脂によって構成されている。一方、保護フィルム3は、例えばトリアセテートセルロースを主成分とする樹脂によって構成されている。また、接着剤4としては、ポリビニルアルコール系接着剤やポリエーテル系接着剤等の水系接着剤が用いられている。 The polarizing film 2 is made of, for example, a resin mainly composed of polyvinyl alcohol. On the other hand, the protective film 3 is comprised by resin which has a triacetate cellulose as a main component, for example. As the adhesive 4, a water-based adhesive such as a polyvinyl alcohol-based adhesive or a polyether-based adhesive is used.
 偏光フィルム2は、水系接着剤4との接着性が良好であるが、保護フィルム3は、水系接着剤4との接着性が悪い。そこで、保護フィルム3を偏光フィルム2に接着するに際しては、保護フィルム3の表面(接着面)3aを予め処理して接着剤4に対する接着性を向上させている。 The polarizing film 2 has good adhesiveness with the aqueous adhesive 4, but the protective film 3 has poor adhesiveness with the aqueous adhesive 4. Therefore, when the protective film 3 is bonded to the polarizing film 2, the surface (adhesive surface) 3 a of the protective film 3 is treated in advance to improve the adhesion to the adhesive 4.
 保護フィルム3等の樹脂フィルムの表面を処理するための装置が特許文献1に開示されている。この装置では、ロールの外周面の一部に樹脂フィルムが巻回される。そして、ロールを回転させることにより、保護フィルムが移送される。また、ロールの外部には、カバーが配置されている。このカバーにより、樹脂フィルム及びそれが巻回されたロールの外周部が覆われている。この結果、ロールの外周面及び樹脂フィルムとカバーとの間には、ロールの外周面に沿って周方向及び軸線方向に延びる凝縮空間が形成されている。 An apparatus for treating the surface of a resin film such as a protective film 3 is disclosed in Patent Document 1. In this apparatus, a resin film is wound around a part of the outer peripheral surface of the roll. And a protective film is transferred by rotating a roll. Further, a cover is disposed outside the roll. The cover covers the outer peripheral portion of the resin film and the roll around which the resin film is wound. As a result, a condensation space extending in the circumferential direction and the axial direction along the outer peripheral surface of the roll is formed between the outer peripheral surface of the roll and the resin film and the cover.
 また、カバーには、凝縮空間に臨むノズルが設けられている。このノズルからは、アクリル酸(AA)等の重合性モノマーの蒸気が樹脂フィルムに向かって吹き出される。吹き出された重合性モノマーの蒸気の一部は、樹脂フィルムの表面に凝縮して付着する。重合性モノマーが付着した樹脂フィルムは、プラズマ処理工程においてプラズマ処理される。これにより、保護フィルムの表面の接着性が良好なものとされる。 Also, the cover is provided with a nozzle that faces the condensation space. From this nozzle, vapor of a polymerizable monomer such as acrylic acid (AA) is blown out toward the resin film. A part of the vapor of the polymerizable monomer blown out condenses and adheres to the surface of the resin film. The resin film to which the polymerizable monomer is attached is subjected to plasma treatment in the plasma treatment step. Thereby, the adhesiveness of the surface of a protective film shall be favorable.
 ところで、ノズルの長手方向の中間部から吹き出した重合性モノマーの蒸気は、ロールの軸線方向へ流れることがなく、ロールの周方向へ流れるだけであり、周方向に流れた重合性モノマーの蒸気は、凝縮空間の周方向の端部から外部に流出する。 By the way, the vapor of the polymerizable monomer blown out from the middle portion in the longitudinal direction of the nozzle does not flow in the axial direction of the roll, but only flows in the circumferential direction of the roll. And flows out from the circumferential end of the condensing space.
 しかるに、ノズルの両端部から吹き出した重合性モノマーの蒸気は、ロールの周方向へ流れるのみならず、ロールの軸線方向へも流れる。そして、上記蒸気は、ロールの周方向における凝縮空間の両端部及びロールの軸線方向における凝縮空間の両端部から外部に流出する。 However, the polymerizable monomer vapor blown from both ends of the nozzle flows not only in the circumferential direction of the roll but also in the axial direction of the roll. And the said vapor | steam flows out outside from the both ends of the condensation space in the circumferential direction of a roll, and the both ends of the condensation space in the axial direction of a roll.
 このように、ノズルの長手方向の中間部から吹き出した重合性モノマーの蒸気が、ロールの周方向へのみ流れて凝縮空間の周方向の端部から流出するだけであるのに対し、ノズルの両端部から凝縮空間の両端部に吹き出された重合性モノマーの蒸気は、ロールの周方向のみならず、軸線方向へも流れ、凝縮空間の周方向の両端部及び軸線方向の両端部から外部に流出する。このため、凝縮空間の両端部では、中間部よりも重合性モノマーの蒸気の密度が低下し、樹脂フィルムに対する重合性モノマーの付着量が、樹脂フィルムの幅方向の両端部で低下してしまう。この結果、保護フィルムの両端部の接着性が中間部より低下してしまうという問題があった。 In this way, the vapor of the polymerizable monomer blown from the middle part in the longitudinal direction of the nozzle flows only in the circumferential direction of the roll and flows out from the circumferential end of the condensation space, whereas both ends of the nozzle The vapor of the polymerizable monomer blown from both ends of the condensing space flows not only in the circumferential direction of the roll but also in the axial direction, and flows out from the both ends in the circumferential direction of the condensing space and from both ends in the axial direction. To do. For this reason, the density of the vapor | steam of a polymerizable monomer falls in the both ends of condensation space rather than an intermediate part, and the adhesion amount of the polymerizable monomer with respect to the resin film will fall in the both ends of the width direction of a resin film. As a result, there existed a problem that the adhesiveness of the both ends of a protective film will fall from an intermediate part.
 このような問題を解決するために、特許文献2には、凝縮空間等の処理空間の両端部、つまりロールの軸線方向における処理空間の両端部を遮蔽部材によって閉じるという技術が開示されている。この特許文献2に記載のものによれば、重合性モノマーの蒸気等の処理ガスがロールの軸線方向へ流れることを阻止し、ロールの周方向へのみ流すことができる。したがって、樹脂フィルムの両端部の接着性が中間部の接着性より低下するという問題を解決することができる。 In order to solve such a problem, Patent Document 2 discloses a technique in which both end portions of a processing space such as a condensation space, that is, both end portions of the processing space in the axial direction of the roll are closed by a shielding member. According to the one described in Patent Document 2, it is possible to prevent the processing gas such as the vapor of the polymerizable monomer from flowing in the axial direction of the roll and to flow only in the circumferential direction of the roll. Therefore, the problem that the adhesiveness of the both ends of a resin film falls rather than the adhesiveness of an intermediate part can be solved.
特開2009-25604JP2009-25604 国際公開第WO2010/073626号International Publication No. WO2010 / 073626
 しかしながら、上記特許文献2に記載のものにおいては、遮蔽部材がカバー又はノズルに取り付けられているので、ノズルの保守点検時にカバー及びノズルを取り外すと、遮蔽部材がカバー及びノズルと一緒に取り外される。このため、ノズルの保守点検時には、カバーから遮蔽部材をさらに取り外さなければならず、取り外し作業に多くの手間を要するという問題があった。 However, in the thing of the said patent document 2, since the shielding member is attached to the cover or the nozzle, if a cover and a nozzle are removed at the time of the maintenance inspection of a nozzle, a shielding member will be removed with a cover and a nozzle. For this reason, at the time of maintenance and inspection of the nozzle, the shielding member has to be further removed from the cover, and there has been a problem that much work is required for the removal work.
 この発明は、上記の問題を解決するためになされたもので、樹脂フィルムの表面に重合性モノマーの蒸気を凝縮させる重合性モノマーの凝縮装置であって、軸線を水平方向に向けて配置され、外周面の上部に前記樹脂フィルムが巻回されるロール部、及び前記ロール部の両端面にそれぞれの軸線を前記ロール部の軸線と一致させて設けられた一対の軸部を有し、前記ロール部が前記軸部を介して回転駆動されることにより、前記ロール部に巻回された前記樹脂フィルムを移送する回転ロールと、前記樹脂フィルムが巻回された前記ロール部の外周面の上部を覆い、前記ロール部の外周面との間に凝縮空間を形成するカバーと、前記樹脂フィルムの幅と同等以上の全長を有し、長手方向を前記ロール部の軸線方向に向けた状態で前記カバーに設けられ、重合性モノマーの蒸気を含むガスを前記樹脂フィルムに吹き付けて、前記重合性モノマーの蒸気を上記樹脂フィルムに凝縮させるノズルと、前記重合性モノマーの蒸気を含むガスが前記ロール部の軸線方向における前記凝縮空間の両端部から外部に流出することを阻止する一対の遮蔽機構とを備え、前記遮蔽機構が、前記ロール部の端面と所定の間隔を隔てて対向配置され、かつ前記軸部に回転可能に支持された遮蔽部材を有しており、前記ロール部の軸線方向における前記カバーの両端部が、前記一対の遮蔽機構の各遮蔽部材の上部に上記ロール部の径方向へ接近離間移動可能に、かつ気密に載置されること、及び前記ロール部の端面とこの端面に対向する前記遮蔽部材の端面とのいずれか一方に前記ロール部の軸線を中心として環状に延びる凹部が形成され、他方に前記ロール部の軸線を中心として環状に延びる凸部が形成され、前記凸部が前記凹部に相対回転可能に入り込むことにより、前記凝縮空間内の前記重合性モノマーの蒸気を含むガスが前記凝縮空間の両端部から外部へ前記ロール部の軸線方向に流出することが阻止されていることを特徴としている。
 この場合、前記遮蔽部材が円板状に形成され、前記一対の遮蔽部材の上部に前記カバーの両端部が載置されることにより、前記カバー及び前記ノズルが前記遮蔽部材によって支持されていることが望ましい。
 また、前記ノズルが前記ロール部の周方向における前記カバーの中間部に配置され、前記ロール部の径方向における前記凝縮空間の間隔が、前記ノズルより前記ロール部の回転方向前方側で広く、回転方向後方側で狭くなっていることが望ましい。
 さらに、前記ロール部と協働して一対の電極を構成する電極部材をさらに備え、前記電極部材が前記ロール部の回転方向において前記カバーより前方側に配置され、前記ロール部の外周面と前記電極部材との間にプラズマ放電が行われる処理空間が形成され、この処理空間に前記重合性モノマーが付着した前記樹脂フィルムが通されることが望ましい。
This invention was made in order to solve the above problem, and is a condensing device for a polymerizable monomer that condenses the vapor of the polymerizable monomer on the surface of a resin film, and is arranged with its axis oriented in the horizontal direction, A roll portion around which the resin film is wound on an outer peripheral surface; and a pair of shaft portions provided on both end surfaces of the roll portion with respective axes aligned with the axis of the roll portion, and the roll When the part is rotationally driven through the shaft part, a rotating roll for transferring the resin film wound around the roll part, and an upper part of the outer peripheral surface of the roll part around which the resin film is wound are provided. A cover that covers and forms a condensing space between the outer peripheral surface of the roll part and the cover having a total length equal to or greater than the width of the resin film, with the longitudinal direction oriented in the axial direction of the roll part Set in And a gas for condensing the polymerizable monomer vapor to the resin film by blowing a gas containing the polymerizable monomer vapor on the resin film, and the gas containing the polymerizable monomer vapor is in the axial direction of the roll portion. A pair of shielding mechanisms that prevent the condensation space from flowing out from both ends of the condensing space, and the shielding mechanism is disposed to face the end surface of the roll portion at a predetermined interval, and to the shaft portion. The shield member is rotatably supported, and both end portions of the cover in the axial direction of the roll portion are moved closer to and away from each other in the radial direction of the roll portion above the shield members of the pair of shielding mechanisms. It is possible and airtightly mounted, and one of the end surface of the roll portion and the end surface of the shielding member facing the end surface is centered on the axis of the roll portion. A convex portion extending in a ring shape around the axis of the roll portion is formed on the other side, and the convex portion enters the concave portion so as to be relatively rotatable, whereby the polymerizable property in the condensation space is formed. A gas containing monomer vapor is prevented from flowing out from both ends of the condensation space to the outside in the axial direction of the roll portion.
In this case, the shielding member is formed in a disc shape, and the cover and the nozzle are supported by the shielding member by placing both ends of the cover on top of the pair of shielding members. Is desirable.
In addition, the nozzle is disposed at an intermediate portion of the cover in the circumferential direction of the roll portion, and the interval of the condensation space in the radial direction of the roll portion is wider on the front side in the rotation direction of the roll portion than the nozzle and rotates. It is desirable that it is narrow on the rear side in the direction.
Furthermore, the electrode member which comprises a pair of electrodes in cooperation with the roll part is further provided, the electrode member is disposed in front of the cover in the rotation direction of the roll part, and the outer peripheral surface of the roll part and the It is desirable that a processing space in which plasma discharge is performed is formed between the electrode member and the resin film having the polymerizable monomer attached is passed through the processing space.
 上記特徴構成を有するこの発明によれば、ノズルの両端部から凝縮空間に噴出された重合性モノマーの蒸気を含むガス(以下、モノマーガスという。)は、凝縮空間の周方向のみならず、軸線方向へも向かう。軸線方向へ向かったモノマーガスは、遮蔽部材に突き当たる。遮蔽部材に突き当たったモノマーガスの一部は、遮蔽部材に沿って上方へ向かい、他の一部は遮蔽部材に沿って下方へ向かう。しかるに、遮蔽部材の上部には、カバーの端部が気密に載置されている。したがって、モノマーガスの上方への流出が阻止される。また、遮蔽部材とロールの端面とに、相対回転可能に嵌り合う凸部と凹部が形成されており、凸部と凹部との間が流体に対する抵抗として作用する。これにより、モノマーガスが遮蔽部材に沿って下方へ流出することが阻止される。したがって、ノズルの両端部から凝縮空間に吹き出されたモノマーガスは、ノズルの中間部から凝縮空間に吹き出されたモノマーガスと同様に、凝縮空間の周方向へのみ流れ、軸線方向へ流れることがない。よって、樹脂フィルムに対する重合性モノマーの付着量を、樹脂フィルムの幅方向の両端部と中間部とでほぼ同一にすることができる。
 また、遮蔽部材がロールの軸部に設けられ、しかもノズルが遮蔽部材に接近離間移動可能に載置されているから、保守点検のために、カバーを凝縮空間及びロールから離間移動させたとき、遮蔽部材はカバーと一緒に離間移動することがない。したがって、遮蔽部材をカバーから取り外すという作業を全く必要としない。勿論、カバーを元の位置に戻すときには、遮蔽部材をカバーに取り付ける必要もない。したがって、凝縮装置の保守点検に要する手間を大幅に軽減することができる。
According to the present invention having the above-described characteristic configuration, the gas containing the vapor of the polymerizable monomer ejected from both ends of the nozzle into the condensation space (hereinafter referred to as monomer gas) is not only the circumferential direction of the condensation space but also the axis line. Also head in the direction. The monomer gas directed in the axial direction hits the shielding member. A part of the monomer gas that hits the shielding member is directed upward along the shielding member, and the other part is directed downward along the shielding member. However, the end of the cover is airtightly placed on the upper part of the shielding member. Therefore, the monomer gas is prevented from flowing upward. Moreover, the convex part and recessed part which fit so that relative rotation is possible are formed in the shielding member and the end surface of a roll, and the space | interval between a convex part and a recessed part acts as resistance with respect to a fluid. This prevents the monomer gas from flowing downward along the shielding member. Therefore, the monomer gas blown from both ends of the nozzle to the condensation space flows only in the circumferential direction of the condensation space and does not flow in the axial direction, like the monomer gas blown from the middle part of the nozzle to the condensation space. . Therefore, the adhesion amount of the polymerizable monomer to the resin film can be made substantially the same at both end portions and the intermediate portion in the width direction of the resin film.
In addition, since the shielding member is provided on the shaft portion of the roll, and the nozzle is mounted on the shielding member so as to be able to move closer to and away from it, when the cover is moved away from the condensation space and the roll for maintenance inspection, The shielding member does not move away together with the cover. Therefore, there is no need to remove the shielding member from the cover. Of course, when returning the cover to the original position, it is not necessary to attach the shielding member to the cover. Therefore, the labor required for the maintenance and inspection of the condensing device can be greatly reduced.
図1は、この発明の一実施の形態を示す正面図である。FIG. 1 is a front view showing an embodiment of the present invention. 図2は、同実施の形態の一部を省略して示す正面図である。FIG. 2 is a front view showing the embodiment with a part thereof omitted. 図3は、図1のX-X線に沿う拡大断面図である。3 is an enlarged cross-sectional view taken along line XX in FIG. 図4は、カバー及びノズルを取り外してロールから上方へ移動させた状態で示す図3と同様の断面図である。FIG. 4 is a cross-sectional view similar to FIG. 3, showing a state where the cover and the nozzle are removed and moved upward from the roll. 図5は、図1のY-Y線に沿う断面図である。FIG. 5 is a sectional view taken along line YY of FIG. 図6は、この発明に係る凝縮装置によって処理された樹脂フィルムが用いられた偏光板を示す断面図である。FIG. 6 is a cross-sectional view showing a polarizing plate using a resin film processed by the condensing device according to the present invention. 図7は、この発明の変形態様を示す正面図である。FIG. 7 is a front view showing a modified embodiment of the present invention. 図8は、この発明の更なる変形態様を示す正面図である。FIG. 8 is a front view showing a further modified embodiment of the present invention.
 以下、この発明を実施するための最良の形態を、図面を参照して説明する。
 図1~図5は、この発明の一実施の形態を示す。この実施の形態は、この発明を樹脂フィルムFの表面処理装置10に適用したものである。樹脂フィルムFは、例えば図6に示す偏光板1の保護フィルム3として用いられ、トリアセテートセルロースを主成分とする。表面処理装置10は、樹脂フィルムFの表面の、ポリビニルアルコール系接着剤やポリエーテル系接着剤等の水系接着剤に対する接着性を向上させる処理を行なう。装置10は、凝縮部(重合性モノマーの凝縮装置)20、及びプラズマ処理部30を備えている。
The best mode for carrying out the present invention will be described below with reference to the drawings.
1 to 5 show an embodiment of the present invention. In this embodiment, the present invention is applied to a surface treatment apparatus 10 for a resin film F. The resin film F is used as the protective film 3 of the polarizing plate 1 shown in FIG. 6, for example, and has triacetate cellulose as a main component. The surface treatment apparatus 10 performs a process for improving the adhesion of the surface of the resin film F to a water-based adhesive such as a polyvinyl alcohol-based adhesive or a polyether-based adhesive. The apparatus 10 includes a condensing unit (condensing device for polymerizable monomer) 20 and a plasma processing unit 30.
 凝縮部20は、重合性モノマーの蒸気を含むガスを樹脂フィルムFの表面に凝縮させて付着させるためのものであり、回転ロール21を有している。回転ロール21は、筒部21a及び一対の端板21b,21bを主な構成要素としている。筒部21aは、断面円形の金属製又は樹脂製の筒体からなるものであり、その全長にわたって一定の外径を有している。筒部21aは、その軸線を水平方向に向けて配置されている。筒部21aの外周面には、金属製の円筒22が嵌合固定されている。円筒22は、筒部21aより短くなっており、円筒22の両端面は、筒部21aの両端面に対して同一距離だけ内側(中央側)に離間させられている。円筒22の外周面には、誘電体からなる誘電層(図示せず)が設けられている。端板21bは、金属又は樹脂からなるものであり、円板状をなし、筒部21aの両端開口部にそれぞれ嵌合固定されている。端板21bの外側の端面は、筒部21aの端面と同一平面上に配置されている。筒部21a、端板21b及び円筒22によってロール部が構成されている。 The condensing unit 20 is for condensing and adhering a gas containing a vapor of a polymerizable monomer to the surface of the resin film F, and has a rotating roll 21. The rotary roll 21 includes a cylindrical portion 21a and a pair of end plates 21b and 21b as main components. The cylinder part 21a is made of a metal or resin cylinder having a circular cross section, and has a constant outer diameter over its entire length. The cylinder portion 21a is arranged with its axis line oriented in the horizontal direction. A metal cylinder 22 is fitted and fixed to the outer peripheral surface of the cylindrical portion 21a. The cylinder 22 is shorter than the cylinder part 21a, and both end surfaces of the cylinder 22 are spaced inward (center side) by the same distance from both end surfaces of the cylinder part 21a. A dielectric layer (not shown) made of a dielectric is provided on the outer peripheral surface of the cylinder 22. The end plate 21b is made of metal or resin, has a disk shape, and is fitted and fixed to both end openings of the cylindrical portion 21a. The outer end face of the end plate 21b is disposed on the same plane as the end face of the cylindrical portion 21a. The cylindrical portion 21a, the end plate 21b, and the cylinder 22 constitute a roll portion.
 端板21bの外側の端面の中央部には、軸部21cが形成されている。この軸部21cは、その軸線を筒部21aの軸線と一致させて配置されている。軸部21bは、電動モータその他の回転駆動源(図示せず)によって回転駆動され、それによって回転ロール21が図1及び図2において時計方向へ回転駆動される。回転ロール21は、前記の構造のものに限定されるものではなく、例えば全体を中実な構造にしてもよい。図3においては、一対の端板21b,21bの軸部21c,21cどうしが別々になっているが、これら軸部21c,21cが一体に連なっていてもよい。例えば、回転ロール21の内部に軸体を設け、この軸体の両端部が、端板21bを貫通して外側に突出することで、この突出した部分が軸部21cを構成するようにしてもよい。 A shaft portion 21c is formed at the center of the outer end face of the end plate 21b. The shaft portion 21c is arranged such that its axis coincides with the axis of the tube portion 21a. The shaft portion 21b is rotationally driven by an electric motor or other rotational drive source (not shown), whereby the rotary roll 21 is rotationally driven in the clockwise direction in FIGS. The rotating roll 21 is not limited to the structure described above, and may be a solid structure as a whole, for example. In FIG. 3, the shaft portions 21c and 21c of the pair of end plates 21b and 21b are separated from each other, but the shaft portions 21c and 21c may be integrally connected. For example, a shaft body is provided in the rotary roll 21, and both end portions of the shaft body penetrate the end plate 21b and protrude outward so that the protruding portion constitutes the shaft portion 21c. Good.
 円筒22の外周面のうちの上部には、この処理装置10によって処理されるべき樹脂フィルムFが巻回されている。この場合、樹脂フィルムFは、処理すべき面、つまり接着性を向上させるべき面を円筒22の径方向外側に向けて巻回される。樹脂フィルムFの幅(図3において左右方向の長さ)は、円筒22の長さより短くなっている。樹脂フィルムFの両端は、円筒22の両端面から互いに同一距離だけ内側に離間させられている。樹脂フィルムFの両端部は、筒部21aの両端部から互いに異なる距離だけ離間させてもよい。なお、回転ロール21が図2の時計方向へ回転駆動されると、円筒22の外周面と樹脂フィルムFとの間に発生する摩擦抵抗によって樹脂フィルムFが同方向へ移送される。 A resin film F to be processed by the processing apparatus 10 is wound on the upper part of the outer peripheral surface of the cylinder 22. In this case, the resin film F is wound with the surface to be processed, that is, the surface to improve the adhesiveness, facing outward in the radial direction of the cylinder 22. The width of the resin film F (the length in the left-right direction in FIG. 3) is shorter than the length of the cylinder 22. Both ends of the resin film F are spaced inward from the both end surfaces of the cylinder 22 by the same distance. The both ends of the resin film F may be separated from the both ends of the cylindrical portion 21a by different distances. When the rotary roll 21 is driven to rotate clockwise in FIG. 2, the resin film F is transferred in the same direction by the frictional resistance generated between the outer peripheral surface of the cylinder 22 and the resin film F.
 筒部21aの上側には、樹脂その他の材料からなるカバー23が配置されている。カバー23は、断面略四半分の円筒状に形成されており、筒部21aと平行に、しかも周方向の中央部が筒部21aの真上に位置するように配置されている。したがって、カバー23の周方向の半分が、筒部21aの真上の箇所から筒部2a回転方向後方側に位置し、他の半分が筒部21aの回転方向前方側に位置している。カバー23は、必ずしもこのように配置する必要が無く、筒部21aの回転方向後方側の部分と前方側の部分との周方向の長さが互いに異なる長さになるように配置してもよい。 A cover 23 made of resin or other material is disposed on the upper side of the cylindrical portion 21a. The cover 23 is formed in a cylindrical shape with a substantially quadrant cross section, and is arranged in parallel with the cylindrical portion 21a and so that the central portion in the circumferential direction is located directly above the cylindrical portion 21a. Therefore, the half of the cover 23 in the circumferential direction is located on the rear side in the rotation direction of the cylinder portion 2a from the position directly above the cylinder portion 21a, and the other half is located on the front side in the rotation direction of the cylinder portion 21a. The cover 23 does not necessarily need to be arranged in this way, and may be arranged so that the circumferential lengths of the portion on the rear side in the rotation direction and the portion on the front side of the cylinder portion 21a are different from each other. .
 筒部21aの外周面と対向するカバー23の内面は、筒部21aの軸線を曲率中心とする円弧面によって構成されている。しかも、カバー23の内面を構成する円弧面の曲率半径は、円筒22の半径より大径になっている。したがって、カバー23の内面は、筒部21aから径方向外側に離間させられているのみならず、円筒22の半径とカバー23の内面の曲率半径との差の分だけ円筒22の外周面から径方向外側(上側)へ離間させられている。 The inner surface of the cover 23 facing the outer peripheral surface of the cylindrical portion 21a is formed by an arc surface having the center of curvature as the axis of the cylindrical portion 21a. In addition, the radius of curvature of the arc surface constituting the inner surface of the cover 23 is larger than the radius of the cylinder 22. Accordingly, the inner surface of the cover 23 is not only spaced radially outward from the cylindrical portion 21a, but also the diameter from the outer peripheral surface of the cylinder 22 by the difference between the radius of the cylinder 22 and the radius of curvature of the inner surface of the cover 23. It is spaced apart in the direction outward (upper side).
 カバー23は、筒部21aの全長と同一の長さを有している。カバー23は、その長手方向(筒部21aの軸線方向)の両端面が筒部21aの両端面と同一平面上に位置するように配置されている。カバー23の両端面は、必ずしも筒部21aの両端面と同一平面上に位置させる必要がなく、筒部21aの両端面に対し筒部21aの軸線方向前方に突出した位置に位置させてもよい。 The cover 23 has the same length as the entire length of the cylindrical portion 21a. The cover 23 is disposed such that both end faces in the longitudinal direction (the axial direction of the cylinder portion 21a) are located on the same plane as both end faces of the cylinder portion 21a. Both end surfaces of the cover 23 do not necessarily need to be positioned on the same plane as both end surfaces of the cylinder portion 21a, and may be positioned at positions protruding forward in the axial direction of the cylinder portion 21a with respect to both end surfaces of the cylinder portion 21a. .
 カバー23が筒部21a及び円筒22の上側に離間して配置されることにより、筒部21aの両端部外周面及び円筒22の外周面の各上部とカバー23との間には、筒部21aの外周面に沿って延びる断面円弧状の空間が形成されている。この空間が凝縮空間24である。凝縮空間24の周方向の両端部は、筒部21a及びカバー23の周方向の両端部において外部に開放されている。凝縮空間24の軸線方向の両端部は、筒部21a及びカバー23の軸線方向の両端部において外部に開放可能になっている。 Since the cover 23 is spaced apart from the upper side of the cylindrical portion 21a and the cylinder 22, the cylindrical portion 21a is interposed between the outer peripheral surface of both ends of the cylindrical portion 21a and the upper portions of the outer peripheral surface of the cylinder 22 and the cover 23. A space having an arcuate cross section extending along the outer peripheral surface is formed. This space is the condensation space 24. Both ends in the circumferential direction of the condensing space 24 are open to the outside at both ends in the circumferential direction of the cylindrical portion 21 a and the cover 23. Both end portions in the axial direction of the condensing space 24 can be opened to the outside at both end portions in the axial direction of the cylindrical portion 21 a and the cover 23.
 なお、カバー23は、回転ロール21に対して上下方向へ移動可能に配置されており、シリンダ機構等の移動手段(図示せず)によって上下方向へ移動可能に支持されている。そして、シリンダのロッドを適宜に進退移動させることにより、所望の位置に移動させられるようになっている。 The cover 23 is disposed so as to be movable in the vertical direction with respect to the rotary roll 21 and is supported so as to be movable in the vertical direction by a moving means (not shown) such as a cylinder mechanism. And it can be moved to a desired position by appropriately moving the rod of the cylinder forward and backward.
 カバー23には、ノズル部(ノズル)25が一体に設けられている。ノズル部25は、カバー23の周方向の中央部に配置されている。ノズル部25は、カバー23の長手方向に沿って延びている。つまり、ノズル部25は、筒部21aの軸線と平行に延びている。ノズル部25の長さは、カバー23の長さと同一に設定されており、筒部21aの軸線方向にはカバー23と同一位置に配置されている。したがって、ノズル部25の長手方向の両端面は、カバー23の長手方向の両端面と同一位置に位置している。 The cover 23 is integrally provided with a nozzle portion (nozzle) 25. The nozzle portion 25 is disposed in the center portion of the cover 23 in the circumferential direction. The nozzle portion 25 extends along the longitudinal direction of the cover 23. That is, the nozzle part 25 extends in parallel with the axis of the cylinder part 21a. The length of the nozzle portion 25 is set to be the same as the length of the cover 23, and is arranged at the same position as the cover 23 in the axial direction of the tube portion 21 a. Therefore, both end surfaces in the longitudinal direction of the nozzle portion 25 are located at the same position as both end surfaces in the longitudinal direction of the cover 23.
 カバー23の周方向の中央部は、ノズル部25の一部として兼用されており、当該中央部の凝縮空間24に臨む内面には、ノズル部25の吹き出し口25aが形成されている。吹き出し口25aは、筒部21aの軸線と平行に延びている。吹き出し口23の長さは、ノズル部25の長さよりは短いが、樹脂フィルムFの幅より所定の長さだけ長く設定されている。しかも、吹き出し口25aは、筒部21aの軸線方向には樹脂フィルムFと同一位置に配置されている。したがって、吹き出し口25aの長手方向の両端部は、樹脂フィルムFの幅方向の両端部に対して筒部21aの軸線方向へそれぞれ同一距離だけ外側に位置させられている。 The central portion in the circumferential direction of the cover 23 is also used as a part of the nozzle portion 25, and a blowout port 25a of the nozzle portion 25 is formed on the inner surface facing the condensing space 24 in the central portion. The blowout port 25a extends in parallel with the axis of the cylindrical portion 21a. The length of the blow-out port 23 is set shorter than the length of the nozzle portion 25 but longer than the width of the resin film F by a predetermined length. Moreover, the blowout port 25a is disposed at the same position as the resin film F in the axial direction of the cylindrical portion 21a. Accordingly, both end portions in the longitudinal direction of the blowout port 25a are positioned outside the both end portions in the width direction of the resin film F by the same distance in the axial direction of the cylindrical portion 21a.
 ノズル部25には、重合性モノマーの蒸気を含むガス(以下、モノマーガスという。)がモノマーガス供給源(図示せず)から供給される。重合性モノマーは、不飽和結合及び所定の官能基を有することが望ましく、親水性を有するものであることがより望ましい。そのような重合性モノマーとしては、例えばアクリル酸(CH=CHCOOH;図にはAAと表記)がある。また、モノマー供給源から供給されるモノマーガスは、重合性モノマーの蒸気だけで構成してもよく、重合性モノマーの蒸気に窒素ガス(N)、アルゴンガス(Ar)、ヘリウムガス(He)等の不活性ガスを混合させてもよい。この実施の形態では、モノマーガスとしてアクリル酸(AA)の蒸気に窒素ガスを混合したガスが採用されている。上記重合性モノマーとして、アクリル酸に代えて、メタクリル酸等を用いてもよい。機能性膜など、他の膜を作る場合には、その膜に応じたモノマーを上記重合性モノマーとして用いればよく、そのような重合性モノマーとして、例えばアルコキシドやアミド化合物が挙げられる。 The nozzle portion 25 is supplied with a gas containing a polymerizable monomer vapor (hereinafter referred to as a monomer gas) from a monomer gas supply source (not shown). The polymerizable monomer preferably has an unsaturated bond and a predetermined functional group, and more preferably has a hydrophilic property. An example of such a polymerizable monomer is acrylic acid (CH 2 ═CHCOOH; indicated as AA in the figure). In addition, the monomer gas supplied from the monomer supply source may be composed only of the vapor of the polymerizable monomer, and the vapor of the polymerizable monomer includes nitrogen gas (N 2 ), argon gas (Ar), and helium gas (He). An inert gas such as the above may be mixed. In this embodiment, a gas obtained by mixing a vapor of acrylic acid (AA) with a nitrogen gas is used as the monomer gas. As the polymerizable monomer, methacrylic acid or the like may be used instead of acrylic acid. When other films such as a functional film are formed, a monomer corresponding to the film may be used as the polymerizable monomer, and examples of such polymerizable monomers include alkoxides and amide compounds.
 ノズル部25に供給されたモノマーガスは、ノズル部25の内部に設けられた整流路(図示せず)において筒部21aの軸線方向におけるノズル部25内の各部の流量が均一になるように整流される。整流されたモノマーガスは、吹き出し通路25bを通って吹き出し口25aに送られる。そして、モノマーガスが吹き出し口25aから凝縮空間24内に吹き出される。この場合、モノマーガスは、筒部21aの径方向内側に向かって吹き出され、樹脂フィルムFに吹き付けられる。そして、重合性モノマーの蒸気の一部が、樹脂フィルムF上において凝縮して樹脂フィルムFに付着する。 The monomer gas supplied to the nozzle part 25 is rectified so that the flow rate of each part in the nozzle part 25 in the axial direction of the cylinder part 21a is uniform in a rectification path (not shown) provided in the nozzle part 25. Is done. The rectified monomer gas is sent to the outlet 25a through the outlet passage 25b. Then, the monomer gas is blown out into the condensing space 24 from the blowout port 25a. In this case, the monomer gas is blown out toward the inside in the radial direction of the cylindrical portion 21 a and blown onto the resin film F. A part of the vapor of the polymerizable monomer condenses on the resin film F and adheres to the resin film F.
 凝縮空間24内に吹き出したモノマーガス(樹脂フィルムに付着した重合性モノマーを除く)は、凝縮空間24内を筒部21a及び円筒22の各外周面、樹脂フィルムFの表面並びにカバー23の内面に沿って流れる。そして、モノマーガスが凝縮空間24の周方向の両端部から外部に流出する。勿論、モノマーガスは、凝縮空間24の軸線方向の両端部からも外部へ流出しようとする。しかし、凝縮空間24の軸線方向における両端部は、左右一対の遮蔽機構40,40によって外部との間がほとんど遮断されている。したがって、モノマーガスが凝縮空間24の軸線方向の両端部から流出することはほとんどない。 The monomer gas blown out into the condensing space 24 (excluding the polymerizable monomer adhering to the resin film) passes through the condensing space 24 to the outer peripheral surfaces of the cylinder portion 21a and the cylinder 22, the surface of the resin film F, and the inner surface of the cover 23. Flowing along. Then, the monomer gas flows out from both ends of the condensation space 24 in the circumferential direction. Of course, the monomer gas tends to flow out from both ends of the condensation space 24 in the axial direction. However, both ends in the axial direction of the condensation space 24 are almost shielded from the outside by the pair of left and right shielding mechanisms 40, 40. Therefore, the monomer gas hardly flows out from both ends of the condensation space 24 in the axial direction.
 二つの遮蔽機構40,40は、図3に示すように、左右対称に形成されている。そこで、図3の左側に配置された遮蔽機構40だけを説明することとし、右側の遮蔽機構については、左側の遮蔽機構40と同様な部分に同一符号を付してその説明を省略する。 The two shielding mechanisms 40, 40 are formed symmetrically as shown in FIG. Therefore, only the shielding mechanism 40 arranged on the left side of FIG. 3 will be described, and the same reference numerals are assigned to the same parts as the shielding mechanism 40 on the left side, and description thereof will be omitted.
 遮蔽機構40は、遮蔽板(遮蔽部材)41を有している。遮蔽板41は、円板からなるものであり、その中央部には、支持孔41aが貫通状態で形成されている。この支持孔41aには、回転ロール21の軸部21cが挿通されている。そして、遮蔽板41は、軸部21cに軸受42を介して回転可能に支持されている。 The shielding mechanism 40 has a shielding plate (shielding member) 41. The shielding plate 41 is made of a circular plate, and a support hole 41a is formed in a penetrating state at the center thereof. The shaft portion 21c of the rotary roll 21 is inserted through the support hole 41a. The shielding plate 41 is rotatably supported by the shaft portion 21c via a bearing 42.
 遮蔽板41は、筒部21a及び端板21bの端面(ロール部の端面)に対して筒部21aの軸線方向へ所定の距離だけ外側へ離間して配置されている。したがって、遮蔽板41は、回転ロール21が回転したとき、回転ロール21と一緒に回転することがなく、回転ロール21に対して停止状態を維持することができる。 The shielding plate 41 is disposed to be spaced outward by a predetermined distance in the axial direction of the cylinder portion 21a with respect to the end surfaces (end surfaces of the roll portion) of the cylinder portion 21a and the end plate 21b. Therefore, the shielding plate 41 does not rotate with the rotating roll 21 when the rotating roll 21 rotates, and can maintain a stopped state with respect to the rotating roll 21.
 遮蔽板41の外周面の半径は、カバー23の内面の曲率半径と同じ大きさに設定されている。カバー23の曲率半径は、必ずしもそのような大きさにする必要がなく、カバー23の内面の曲率半径より小さくしてもよく、逆に大きくしてもよい。小さくする場合には、筒部21aの半径より大きくすることが望ましい。大きくする場合には、カバー23の外面の曲率半径より小さくすることが望ましい。つまり、遮蔽板41の外周面の半径は、筒部21aの外周面の半径とカバー23の外面の曲率半径と間の寸法に定めることが望ましい。 The radius of the outer peripheral surface of the shielding plate 41 is set to the same size as the radius of curvature of the inner surface of the cover 23. The curvature radius of the cover 23 does not necessarily have to be such a size, and may be smaller than the curvature radius of the inner surface of the cover 23 or may be larger. When making small, it is desirable to make it larger than the radius of the cylinder part 21a. When making it large, it is desirable to make it smaller than the curvature radius of the outer surface of the cover 23. That is, it is desirable that the radius of the outer peripheral surface of the shielding plate 41 is set to a dimension between the radius of the outer peripheral surface of the cylindrical portion 21 a and the radius of curvature of the outer surface of the cover 23.
 遮蔽板41の外周面の曲率半径がカバー23の内面の曲率半径とほぼ同一であるので、遮蔽板41と筒部21a及び端板21bの各端面との間、及び遮蔽板41とカバー23の端面の小径側の端縁との間には、筒部21aの軸線を中心として環状に延びる隙間43が形成されている。この隙間43は、凝縮空間24に連通している。したがって、筒部21aの軸線方向における凝縮空間24の端部からモノマーガスが流出すると、そのモノマーガスは隙間43に入り込む。隙間43に入り込んだモノマーガスは、遮蔽板41に突き当たって同方向への流れが止められる。そして、モノマーガスの一部は、隙間43内を遮蔽板41に沿ってその径方向外側(上側)へ向かって流れようとし、残りの一部は遮蔽板41に沿ってその径方向内側(下側)へ向かって流れようとする。 Since the curvature radius of the outer peripheral surface of the shielding plate 41 is substantially the same as the curvature radius of the inner surface of the cover 23, the shielding plate 41 and the end portions of the cylindrical portion 21 a and the end plate 21 b, and between the shielding plate 41 and the cover 23. A gap 43 extending annularly about the axis of the cylindrical portion 21a is formed between the end surface and the edge on the small diameter side. The gap 43 communicates with the condensation space 24. Therefore, when the monomer gas flows out from the end of the condensing space 24 in the axial direction of the cylindrical portion 21 a, the monomer gas enters the gap 43. The monomer gas entering the gap 43 hits the shielding plate 41 and stops flowing in the same direction. A part of the monomer gas tends to flow in the gap 43 along the shielding plate 41 toward the outer side in the radial direction (upper side), and the remaining part along the shielding plate 41 in the radial direction (lower side). Side).
 筒部21aの軸線方向におけるノズル部25の端面には、支持部材44がボルト等の固定手段(図示せず)によって固定されている。支持部材44は、筒部21aの軸線を中心として円弧状に延びており、カバー23とほぼ同一の周方向長さを有している。しかも、支持部材44は、カバー23と周方向においてほぼ同一位置に配置されている。したがって、支持部材44の周方向の両端面は、カバー23の周方向の両端面とほぼ同一位置に位置させられている。支持部材44は、ノズル部25に一体に設けてもよい。つまり、支持部材44は、ノズル部25を介してカバー23に一体に設けてもよい。あるいは、支持部材44をカバー23の端部に一体に設けてもよい。 A support member 44 is fixed to an end surface of the nozzle portion 25 in the axial direction of the cylinder portion 21a by a fixing means (not shown) such as a bolt. The support member 44 extends in an arc shape around the axis of the cylindrical portion 21 a and has substantially the same circumferential length as the cover 23. Moreover, the support member 44 is disposed at substantially the same position as the cover 23 in the circumferential direction. Therefore, both end surfaces in the circumferential direction of the support member 44 are positioned at substantially the same positions as both end surfaces in the circumferential direction of the cover 23. The support member 44 may be provided integrally with the nozzle portion 25. That is, the support member 44 may be provided integrally with the cover 23 via the nozzle portion 25. Alternatively, the support member 44 may be integrally provided at the end of the cover 23.
 カバー23及びノズル部25と対向する支持部材44の端面は、カバー23及びノズル部25の端面に気密に接触させられている。支持部材44の内面、つまり筒部21aの径方向内側を向く面は、筒部21aの軸線を中心とする円弧面によって構成されている。この円弧面の曲率半径は、遮蔽板41の外周面の半径と同一に設定されている。 The end surface of the support member 44 facing the cover 23 and the nozzle portion 25 is brought into airtight contact with the end surfaces of the cover 23 and the nozzle portion 25. The inner surface of the support member 44, that is, the surface facing the inner side in the radial direction of the tube portion 21a is formed by an arc surface centering on the axis of the tube portion 21a. The radius of curvature of the arc surface is set to be the same as the radius of the outer peripheral surface of the shielding plate 41.
 支持部材44は、遮蔽板41の外周面の上部に載置されている。ここで、支持部材44の内面の曲率半径が遮蔽板41の外周面の半径と同一に設定されているから、支持部材44の内面は、その周方向の全長にわたって遮蔽板41の外周面に接触させられている。互いに接触する支持部材44の内面と遮蔽板41の外周面との間は、Oリング等のシール部材45によって気密に封止されている。これにより、隙間43のうちの上側の開放部が閉じられている。したがって、仮にモノマーガスが筒部21aの軸線方向における凝縮空間24の端部から隙間43に流入したとしても、そのモノマーガスが隙間43の上部から外部に流出することはない。 The support member 44 is placed on the upper part of the outer peripheral surface of the shielding plate 41. Here, since the curvature radius of the inner surface of the support member 44 is set to be the same as the radius of the outer peripheral surface of the shielding plate 41, the inner surface of the support member 44 contacts the outer peripheral surface of the shielding plate 41 over the entire length in the circumferential direction. It has been made. A space between the inner surface of the support member 44 and the outer peripheral surface of the shielding plate 41 that are in contact with each other is hermetically sealed by a seal member 45 such as an O-ring. As a result, the upper open portion of the gap 43 is closed. Therefore, even if the monomer gas flows into the gap 43 from the end of the condensation space 24 in the axial direction of the cylinder portion 21a, the monomer gas does not flow out from the upper part of the gap 43 to the outside.
 端板21bの遮蔽板41と対向する端面には、凹部46が形成されている。凹部46は、筒部21aの軸線を中心として環状に延びている。一方、端板21bと対向する遮蔽板41の端面には、凸部47が形成されている。凸部47は、筒部21aの軸線を中心として環状に延びている。しかも、凸部47は、回転ロール21が回転したときに凸部47の外面が凹部46の内面に接触することがないよう、凹部46に隙間をもって挿入されている。ただし、凸部47の外面と凹部46の内面との間の隙間の大きさは、それらが接触することを防止することができる範囲において可及的に小さな寸法に抑えられている。この結果、凹部46の内面と凸部47の外面との間にいわゆるラビリンス通路が形成される。このラビリンス通路は、遮蔽板41の径方向外側から内側(上側から下側)へ向かって流れるモノマーガスに対して一種の抵抗となる。したがって、凝縮空間24から隙間43に入り込んだモノマーガスは、遮蔽板41の径方向内側(下側)へ向かって流れることがほとんどない。なお、この実施の形態においては、凹部46及び凸部47がそれぞれ2個形成されているが、1個だけ形成してもよく、3個以上形成してもよい。 A recess 46 is formed on the end surface of the end plate 21b facing the shielding plate 41. The recess 46 extends annularly around the axis of the cylinder portion 21a. On the other hand, the convex part 47 is formed in the end surface of the shielding board 41 facing the end plate 21b. The convex portion 47 extends in an annular shape around the axis of the cylindrical portion 21a. Moreover, the convex portion 47 is inserted into the concave portion 46 with a gap so that the outer surface of the convex portion 47 does not contact the inner surface of the concave portion 46 when the rotary roll 21 rotates. However, the size of the gap between the outer surface of the convex portion 47 and the inner surface of the concave portion 46 is suppressed as small as possible within a range in which they can be prevented from contacting. As a result, a so-called labyrinth passage is formed between the inner surface of the concave portion 46 and the outer surface of the convex portion 47. The labyrinth passage serves as a kind of resistance to the monomer gas flowing from the radially outer side of the shielding plate 41 toward the inner side (from the upper side to the lower side). Therefore, the monomer gas that has entered the gap 43 from the condensation space 24 hardly flows toward the inner side (lower side) of the shielding plate 41 in the radial direction. In this embodiment, two concave portions 46 and two convex portions 47 are formed, but only one or three or more may be formed.
 このように、筒部21aの軸線方向おける凝縮空間24の両端部は、外部との間が遮蔽機構40によってほとんど遮断されている。したがって、吹き出し口25aの両端部から吹き出したモノマーガスは、筒部21aの軸線方向へ流れることがなく、吹き出し口25aの中間部から吹き出したモノマーガスと同様に、筒部21a及び円筒22の各外周面、樹脂フィルムFの表面並びにカバー23の内面に沿って周方向へ流れるだけである。よって、凝縮空間24の内部では、モノマーガスの密度がほぼ一定になる。この結果、凝縮して樹脂フィルムに付着するモノマーガスの付着量を、樹脂フィルムの幅方向の各部においてほぼ同一にすることができる。 Thus, both ends of the condensing space 24 in the axial direction of the cylindrical portion 21a are almost blocked from the outside by the shielding mechanism 40. Therefore, the monomer gas blown out from both ends of the blowout port 25a does not flow in the axial direction of the tube portion 21a, and each of the tube portion 21a and the cylinder 22 is similar to the monomer gas blown out from the middle portion of the blowout port 25a. It only flows in the circumferential direction along the outer peripheral surface, the surface of the resin film F, and the inner surface of the cover 23. Therefore, the density of the monomer gas is substantially constant inside the condensation space 24. As a result, the adhesion amount of the monomer gas that condenses and adheres to the resin film can be made substantially the same in each part in the width direction of the resin film.
 次に、プラズマ処理部30について説明する。プラズマ処理部30は、上記凝縮部20の回転ロール21と対をなす回転ロール31を有している。回転ロール31は、回転ロール21と同一構造及び同一寸法を有している。したがって、回転ロール31は、回転ロール21の筒部21a、端板21b、軸部21c及び円筒22にそれぞれ対応した筒部31a、端板31b、軸部31c及び円筒32を有している。勿論、回転ロール31の円筒の外周面にも、誘電層が設けられている。また、回転ロール31は、軸部31cが回転駆動されることにより、回転ロール21と同方向へ回転させられる。なお、筒部21a,31aが金属で形成される場合には、回転ロール21の円筒22及び回転ロール31の円筒32を省略してもよい。その場合には、筒部21a,31aの外周面に誘電層が設けられ、その上に樹脂フィルムFが巻回される。 Next, the plasma processing unit 30 will be described. The plasma processing unit 30 has a rotating roll 31 that forms a pair with the rotating roll 21 of the condensing unit 20. The rotating roll 31 has the same structure and the same dimensions as the rotating roll 21. Therefore, the rotary roll 31 has the cylindrical part 31a, the end plate 31b, the axial part 31c, and the cylinder 32 corresponding to the cylindrical part 21a, the end plate 21b, the shaft part 21c, and the cylinder 22 of the rotary roll 21, respectively. Of course, a dielectric layer is also provided on the outer peripheral surface of the cylinder of the rotary roll 31. Further, the rotary roll 31 is rotated in the same direction as the rotary roll 21 when the shaft portion 31 c is rotationally driven. In addition, when the cylinder parts 21a and 31a are formed with a metal, the cylinder 22 of the rotary roll 21 and the cylinder 32 of the rotary roll 31 may be omitted. In that case, a dielectric layer is provided on the outer peripheral surfaces of the cylindrical portions 21a and 31a, and the resin film F is wound thereon.
 回転ロール31は、回転ロール21と平行に配置されている。したがって、回転ロール21と回転ロール31との間隔は、それらの軸線を含む平面上において最も狭くなっている。その最狭部の間隔(この実施の形態では円筒22と回転ロール31の円筒との間の最狭部の間隔)は、通常0.5~数mmに設定される。最狭部及びそこから上下方向へ所定の距離だけ離間した範囲が処理空間33になっている。回転ロール21,31は、それらの軸線方向において同一位置に配置されている。したがって、処理空間33は、回転ロール21,31の全長にわたって形成されている。 The rotary roll 31 is arranged in parallel with the rotary roll 21. Therefore, the space | interval of the rotating roll 21 and the rotating roll 31 is the narrowest on the plane containing those axis lines. The interval between the narrowest portions (in this embodiment, the interval between the narrowest portions between the cylinder 22 and the cylinder of the rotary roll 31) is usually set to 0.5 to several mm. A processing space 33 is a narrowest portion and a range separated from the narrowest portion by a predetermined distance in the vertical direction. The rotary rolls 21 and 31 are disposed at the same position in the axial direction thereof. Therefore, the processing space 33 is formed over the entire length of the rotary rolls 21 and 31.
 樹脂フィルムFは、処理空間33内を2回にわたって通過する。すなわち、樹脂フィルムFは、凝縮部20において重合性モノマーが付着された後、回転ロール21に巻回された状態で、つまり回転ロール21の円筒22の外周面に接触した状態で処理空間33内を上側から下側へ通過する。その後、樹脂フィルムFは、二つのアイドルロール34,35を通過した後、回転ロール31の円筒の外周面に巻回された状態で処理空間33を下側から上側へ通過する。なお、回転ロール31の円筒に対する樹脂フィルムFの巻回位置は、円筒22に対する樹脂フィルムFの巻回位置と図1において左右対称な位置になっている。 The resin film F passes through the processing space 33 twice. That is, the resin film F is in the processing space 33 in a state in which the polymerizable monomer is attached in the condensing unit 20 and is wound around the rotary roll 21, that is, in a state of being in contact with the outer peripheral surface of the cylinder 22 of the rotary roll 21. From above to below. Thereafter, after passing through the two idle rolls 34 and 35, the resin film F passes through the processing space 33 from the lower side to the upper side while being wound around the outer peripheral surface of the cylinder of the rotary roll 31. In addition, the winding position of the resin film F with respect to the cylinder of the rotating roll 31 is symmetrical with the winding position of the resin film F with respect to the cylinder 22 in FIG.
 処理空間33の下側には、ノズル36が配置されている。ノズル36は、筒部21a,31aと同一の長さを有しており、筒部21a,31aと平行に、かつ筒部21a,31aの軸線方向には筒部21a,31aと同一位置に配置されている。したがって、ノズル36の長手方向の両端面は、筒部21a,231aの両端面と同一位置に位置させられている。ノズル36の処理空間33に臨む上面には、ノズル36の長手方向に延びる吹き出し口36aが形成されている。吹き出し口36aの長さは、樹脂フィルムFの幅より長くなっており、吹き出し口36aの長手方向の両端部は、円筒22及び回転ロール31の円筒に巻回された樹脂フィルムFの幅方向の両端部に対し筒部21a,31aの軸線方向へ互いに同一距離だけ外側に位置させられている。 A nozzle 36 is disposed below the processing space 33. The nozzle 36 has the same length as the cylindrical portions 21a and 31a, and is arranged in parallel with the cylindrical portions 21a and 31a and at the same position as the cylindrical portions 21a and 31a in the axial direction of the cylindrical portions 21a and 31a. Has been. Therefore, both end surfaces in the longitudinal direction of the nozzle 36 are positioned at the same positions as both end surfaces of the cylinder portions 21a and 231a. A blowing port 36 a extending in the longitudinal direction of the nozzle 36 is formed on the upper surface of the nozzle 36 facing the processing space 33. The length of the blowout port 36a is longer than the width of the resin film F, and both ends in the longitudinal direction of the blowout port 36a are arranged in the width direction of the resin film F wound around the cylinder 22 and the cylinder of the rotary roll 31. The cylindrical portions 21a and 31a are positioned on the outer sides by the same distance from both ends in the axial direction.
 ノズル36には、不活性ガス供給源(図示せず)から不活性ガスが供給される。不活性ガスとしては、窒素、アルゴン、ヘリウム等があるが、この実施の形態では、窒素が採用されている。ノズル36に供給された不活性ガスは、ノズル36の内部に設けられた整流路(図示せず)において整流された後、ノズル36に設けられた通路36bを通って吹き出し口36aから処理空間33内に吹き出される。これにより、処理空間33の内部が、ほぼ大気圧である不活性ガスの雰囲気とされている。 The inert gas is supplied to the nozzle 36 from an inert gas supply source (not shown). Examples of the inert gas include nitrogen, argon, helium, etc. In this embodiment, nitrogen is employed. The inert gas supplied to the nozzle 36 is rectified in a rectification path (not shown) provided in the nozzle 36, and then passes through a passage 36 b provided in the nozzle 36 and from the blowing port 36 a to the processing space 33. It is blown out inside. As a result, the inside of the processing space 33 is set to an atmosphere of an inert gas that is almost atmospheric pressure.
 処理空間33の上側には、ダミーノズル37が配置されている。ダミーノズル37は、不活性ガスの吹き出しに関連する吹き出し口等の構造を有していない点を除き、ノズル36と同一形状、同一寸法を有し、ノズル36と上下対称に配置されている。ダミーノズル37に代えて、ノズル36と同様のノズルを処理空間33の上側に設けてもよい。その場合、処理空間33内にその下側及び上側から不活性ガスを供給したり、処理空間33内にその上側からのみ不活性ガスを供給したりできる。 A dummy nozzle 37 is disposed above the processing space 33. The dummy nozzle 37 has the same shape and the same dimensions as the nozzle 36 except that the dummy nozzle 37 does not have a structure such as a blowing port related to blowing of the inert gas, and is arranged vertically symmetrically with the nozzle 36. Instead of the dummy nozzle 37, a nozzle similar to the nozzle 36 may be provided above the processing space 33. In that case, the inert gas can be supplied into the processing space 33 from below and above, or the inert gas can be supplied into the processing space 33 only from above.
 回転ロール21,31のうちの一方の回転ロール21の円筒22には、電源38の高圧端子が接続されている。他方の回転ロール31の円筒は、接地されている。勿論、円筒22を接地し、回転ロール31の円筒32に電源38の高圧端子を接続してもよい。電源38からの電圧供給により、円筒22,32間に電界が形成され、処理空間33がほぼ大気圧の放電空間になる。電源38からの供給電圧及び円筒22,32間の電界は、例えばパルス状になっている。パルスの立ち上がり時間及び立ち下がり時間は、10μs以下であることが望ましく、電界強度は、10~1000KV/cmであることが望ましく、周波数は、0.5~100kHzであることが望ましい。印加電圧及び電界は、パルス状の間欠波に限られず、正弦波等の連続波であってもよい。 A high voltage terminal of a power source 38 is connected to the cylinder 22 of one of the rotary rolls 21 and 31. The cylinder of the other rotating roll 31 is grounded. Of course, the cylinder 22 may be grounded, and the high voltage terminal of the power source 38 may be connected to the cylinder 32 of the rotary roll 31. By supplying a voltage from the power source 38, an electric field is formed between the cylinders 22 and 32, and the processing space 33 becomes a discharge space of almost atmospheric pressure. The supply voltage from the power source 38 and the electric field between the cylinders 22 and 32 are in the form of pulses, for example. The pulse rise time and fall time are desirably 10 μs or less, the electric field strength is desirably 10 to 1000 KV / cm, and the frequency is desirably 0.5 to 100 kHz. The applied voltage and electric field are not limited to pulsed intermittent waves, and may be continuous waves such as sine waves.
 電源38からの電圧供給により、回転ロール21,31の円筒22,32間において放電が行われる。この放電により、処理空間33内の窒素ガスがプラズマ化されるとともに、樹脂フィルムFに付着した重合性モノマーが活性化され、二重結合の開裂、重合等が発生する。また、樹脂フィルムFへの窒素ガスの接触や、窒素ガスからの紫外線(337nm)の照射により、樹脂フィルムFの表面の分子のC-C、C-O、C-H等の結合が切断される。この結合切断部にアクリル酸等の重合性モノマーの重合物が結合(グラフト結合)し、あるいは重合性モノマーから分解したCOOH基等が結合すると考えられる。これにより、樹脂フィルムFの表面に接着性促進層が形成され、樹脂フィルムFの水系接着剤に対する接着性が向上する。 Discharge is performed between the cylinders 22 and 32 of the rotary rolls 21 and 31 by the voltage supply from the power source 38. As a result of this discharge, the nitrogen gas in the processing space 33 is turned into plasma, and the polymerizable monomer attached to the resin film F is activated to cause cleavage of double bonds, polymerization, and the like. Also, the contact of nitrogen gas to the resin film F or irradiation of ultraviolet rays (337 nm) from the nitrogen gas breaks the bonds such as C—C—C—O—C—H on the surface of the resin film F. The It is considered that a polymer of a polymerizable monomer such as acrylic acid is bonded (grafted bond) to this bond cutting portion, or a COOH group decomposed from the polymerizable monomer is bonded. Thereby, the adhesion promoting layer is formed on the surface of the resin film F, and the adhesion of the resin film F to the aqueous adhesive is improved.
 上記構成を有する処理装置10の凝縮部(凝縮装置)20によれば、ノズル部25の吹き出し口25aから凝縮空間24内に吹き出したモノマーガスは、筒部21aの軸線方向における凝縮空間24の両端部から外部に向かって流れることがほとんどなく、吹き出し口25aの長手方向のいずれの箇所から吹き出されたモノマーガスも筒部21aの周方向へ流れるだけである。したがって、凝縮空間24内におけるモノマーガスの濃度を筒部21aの軸線方向における各部で均一にすることができる。よって、モノマーガスを樹脂フィルムFの幅方向の各部において均一に付着させることができる。その結果、プラズマ処理部30で処理された樹脂フィルムFの水系接着剤に対する接着性を、樹脂フィルムFの幅方向の各箇所において均一に向上させることができる。 According to the condensing part (condensing apparatus) 20 of the processing apparatus 10 having the above-described configuration, the monomer gas blown into the condensing space 24 from the air outlet 25a of the nozzle part 25 is absorbed at both ends of the condensing space 24 in the axial direction of the cylinder part 21a. The monomer gas blown out from any part in the longitudinal direction of the blowout port 25a only flows in the circumferential direction of the cylinder part 21a. Therefore, the concentration of the monomer gas in the condensation space 24 can be made uniform at each part in the axial direction of the cylinder part 21a. Therefore, the monomer gas can be uniformly attached at each part in the width direction of the resin film F. As a result, the adhesiveness of the resin film F processed by the plasma processing unit 30 to the water-based adhesive can be uniformly improved at each location in the width direction of the resin film F.
 また、表面処理装置10の保守点検の際には、カバー23及びノズル部25が回転ロール21から上方へ移動させられる。このとき、遮蔽板41が回転ロール21に取り付けられているから、遮蔽板41がカバー23と一緒に移動することがない。したがって、カバー23を上方へ移動させた後、遮蔽板41をカバー23から取り外すという手間を省くことができる。また、表面処理装置10の保守点検後にカバー23を元の位置に戻す際には、カバー23を遮蔽板41,41に支持部材44,44を介して載置するだけでよく、遮蔽板41をカバー23に取り付ける必要がない。よって、表面処理装置10の保守点検に要する手間を大幅に軽減することができる。 Further, during maintenance and inspection of the surface treatment apparatus 10, the cover 23 and the nozzle portion 25 are moved upward from the rotary roll 21. At this time, since the shielding plate 41 is attached to the rotary roll 21, the shielding plate 41 does not move together with the cover 23. Therefore, the trouble of removing the shielding plate 41 from the cover 23 after moving the cover 23 upward can be saved. Further, when the cover 23 is returned to the original position after the maintenance and inspection of the surface treatment apparatus 10, it is only necessary to place the cover 23 on the shielding plates 41, 41 via the support members 44, 44. There is no need to attach to the cover 23. Therefore, the labor required for maintenance and inspection of the surface treatment apparatus 10 can be greatly reduced.
 さらに、カバー23が遮蔽板41に支持部材44を介して接し、しかも遮蔽板41が回転ロール21に設けられているから、カバー23及び遮蔽板41の位置が、回転ロール21を基準として決定される。したがって、カバー23及びノズル部25を回転ロール21に対して容易にかつ精度良く位置決めすることができる。よって、凝縮空間24の間隔の精度、つまり筒部21a及び円筒22の各外周面とカバー23の内面との間隔の精度、及び筒部21aの径方向における吹き出し口25aの位置精度を向上させることができる。 Furthermore, since the cover 23 is in contact with the shielding plate 41 via the support member 44 and the shielding plate 41 is provided on the rotating roll 21, the positions of the cover 23 and the shielding plate 41 are determined with reference to the rotating roll 21. The Therefore, the cover 23 and the nozzle portion 25 can be easily and accurately positioned with respect to the rotary roll 21. Therefore, the accuracy of the interval of the condensing space 24, that is, the accuracy of the interval between the outer peripheral surfaces of the cylindrical portion 21a and the cylinder 22 and the inner surface of the cover 23, and the positional accuracy of the outlet 25a in the radial direction of the cylindrical portion 21a are improved. Can do.
 なお、この発明は、上記の実施の形態に限定されるものでなく、その要旨を逸脱しない範囲において各種の変形例を採用することができる。
 例えば、上記の実施の形態(図1~図5)においては、ノズル部25(ノズル)とカバー23が一体になり、カバー23の周方向の中央部がノズルの一部を構成しているが、これに代えて、図7に示すように、ノズル25とカバー23を別体に形成してもよい。その場合には、カバー23を一対のカバー片23a,23bにて構成するとよい。これらカバー片23a,23bは、上記実施の形態(図1~図5)のカバー23における、ノズル部25よりも周方向の両側の部分に相当する。そして、各カバー片23a,23bを、ノズル25の側面にボルト26等によって固定すればよい。そのように構成した場合には、ノズル25及び一対のカバー片23a,23bによって凝縮空間24が形成され、ノズル25の凝縮空間24に臨む部分が、カバーの一部(周方向の中央部)として兼用される。
In addition, this invention is not limited to said embodiment, A various modification is employable in the range which does not deviate from the summary.
For example, in the above embodiment (FIGS. 1 to 5), the nozzle portion 25 (nozzle) and the cover 23 are integrated, and the central portion in the circumferential direction of the cover 23 constitutes a part of the nozzle. Instead of this, as shown in FIG. 7, the nozzle 25 and the cover 23 may be formed separately. In that case, the cover 23 may be composed of a pair of cover pieces 23a and 23b. These cover pieces 23a and 23b correspond to portions on both sides in the circumferential direction with respect to the nozzle portion 25 in the cover 23 of the above-described embodiment (FIGS. 1 to 5). And each cover piece 23a, 23b should just be fixed to the side surface of the nozzle 25 with the volt | bolt 26 grade | etc.,. In such a configuration, the condensation space 24 is formed by the nozzle 25 and the pair of cover pieces 23a and 23b, and a portion of the nozzle 25 that faces the condensation space 24 is a part of the cover (a central portion in the circumferential direction). It is also used.
 また、上記の実施の形態(図1~図5)においては、凝縮空間24の間隔を、ノズル25に関して回転ロール21の回転方向の後方側に位置する部分と前方側に位置する部分とで同一にしているが、これに代えて、図8に示すように、凝縮空間24におけるノズル25よりも回転ロール21の回転方向の前方側の部分24aの間隔(厚み)を、凝縮空間24におけるノズル25よりも上記回転方向の後方側の部分24bの間隔(厚み)より広くしてもよい。例えば、図8においては、ノズル25よりも上記回転方向の前方側(図8の右)のカバー片23aの内周面とロール電極21の外周面との間隔を、ノズル25よりも上記回転方向の後方側(図8の左)のカバー片23bの内周面とロール電極21の外周面との間隔より広くすることで、凝縮空間24の前方側部分24aの厚みを後方側部分24bの厚みより大きくしてある。後方側のカバー片23bの内周面の曲率半径は、前方側のカバー片23aの内周面の曲率半径より小さい。そのようにした場合には、前方側部分24aのモノマーガスの流量が、後方側部分24bのモノマーガスの流量より多くなるので、樹脂フィルムFに対する重合性モノマーの付着効率を向上させることができる。
 電極部材の形状は、ロール形状に限られず、平板形状であってもよく、ロール21の外周面に沿う凹円筒面を有する形状であってもよい。
Further, in the above-described embodiment (FIGS. 1 to 5), the interval between the condensing spaces 24 is the same for the portion located on the rear side in the rotation direction of the rotary roll 21 with respect to the nozzle 25 and the portion located on the front side. However, instead of this, as shown in FIG. 8, the interval (thickness) of the front portion 24 a in the rotation direction of the rotary roll 21 relative to the nozzle 25 in the condensation space 24 is set to the nozzle 25 in the condensation space 24. It may be wider than the interval (thickness) of the portion 24b on the rear side in the rotational direction. For example, in FIG. 8, the interval between the inner peripheral surface of the cover piece 23 a on the front side (right in FIG. 8) of the rotation direction with respect to the nozzle 25 and the outer peripheral surface of the roll electrode 21 is greater than the nozzle 25. The thickness of the front side portion 24a of the condensing space 24 is made thicker than the distance between the inner peripheral surface of the cover piece 23b on the rear side (left in FIG. 8) and the outer peripheral surface of the roll electrode 21. It is bigger. The curvature radius of the inner peripheral surface of the rear cover piece 23b is smaller than the curvature radius of the inner peripheral surface of the front cover piece 23a. In such a case, the flow rate of the monomer gas in the front side portion 24a is larger than the flow rate of the monomer gas in the back side portion 24b, so that the efficiency of attaching the polymerizable monomer to the resin film F can be improved.
The shape of the electrode member is not limited to the roll shape, and may be a flat plate shape or a shape having a concave cylindrical surface along the outer peripheral surface of the roll 21.
 この発明は、水系接着剤に対する接着性が低い樹脂フィルムの表面を、接着性が向上するように処理する際に、樹脂フィルムに重合性モノマーを凝縮して付着させるための凝縮装置に利用することができる The present invention is used in a condensing device for condensing and adhering a polymerizable monomer to a resin film when processing the surface of a resin film having low adhesion to an aqueous adhesive so as to improve the adhesion. Can
 F  樹脂フィルム
 20  重合性モノマーの凝縮部(重合性モノマーの凝縮装置)
 21  回転ロール
 21a  筒部
 21b  端板
 21c  軸部
 22  円筒
 23  カバー
 24  凝縮空間
 25  ノズル部(ノズル)
 40  遮蔽機構
 41  遮蔽板(遮蔽部材)
 44  支持部材
 45  凹部
 46  凸部
F resin film 20 Condensing part of polymerizable monomer (Condensing device for polymerizable monomer)
21 Rotating roll 21a Tube portion 21b End plate 21c Shaft portion 22 Cylinder 23 Cover 24 Condensing space 25 Nozzle portion (nozzle)
40 shielding mechanism 41 shielding plate (shielding member)
44 Support member 45 Concave part 46 Convex part

Claims (4)

  1.  樹脂フィルムの表面に重合性モノマーの蒸気を凝縮させる重合性モノマーの凝縮装置であって、
     軸線を水平方向に向けて配置され、外周面の上部に前記樹脂フィルムが巻回されるロール部、及び前記ロール部の両端面にそれぞれの軸線を前記ロール部の軸線と一致させて設けられた一対の軸部を有し、前記ロール部が前記軸部を介して回転駆動されることにより、前記ロール部に巻回された前記樹脂フィルムを移送する回転ロールと、
     前記樹脂フィルムが巻回された前記ロール部の外周面の上部を覆い、前記ロール部の外周面との間に凝縮空間を形成するカバーと、
     前記樹脂フィルムの幅と同等以上の全長を有し、長手方向を前記ロール部の軸線方向に向けた状態で前記カバーに設けられ、重合性モノマーの蒸気を含むガスを前記樹脂フィルムに吹き付けて、前記重合性モノマーの蒸気を上記樹脂フィルムに凝縮させるノズルと、
     前記重合性モノマーの蒸気を含むガスが前記ロール部の軸線方向における前記凝縮空間の両端部から外部に流出することを阻止する一対の遮蔽機構とを備え、
     前記遮蔽機構が、前記ロール部の端面と所定の間隔を隔てて対向配置され、かつ前記軸部に回転可能に支持された遮蔽部材を有しており、
     前記ロール部の軸線方向における前記カバーの両端部が、前記一対の遮蔽機構の各遮蔽部材の上部に上記ロール部の径方向へ接近離間移動可能に、かつ気密に載置されること、及び前記ロール部の端面とこの端面に対向する前記遮蔽部材の端面とのいずれか一方に前記ロール部の軸線を中心として環状に延びる凹部が形成され、他方に前記ロール部の軸線を中心として環状に延びる凸部が形成され、前記凸部が前記凹部に相対回転可能に入り込むことにより、前記凝縮空間内の前記重合性モノマーの蒸気を含むガスが前記凝縮空間の両端部から外部へ前記ロール部の軸線方向に流出することが阻止されていることを特徴とする重合性モノマーの凝縮装置。
    A polymerizable monomer condensing device that condenses the vapor of the polymerizable monomer on the surface of the resin film,
    A roll is arranged with the axis line oriented in the horizontal direction, and the resin film is wound around the upper part of the outer peripheral surface, and the respective axis lines are provided on both end faces of the roll part so as to coincide with the axis of the roll part. A rotating roll that has a pair of shaft portions, and the roll portion is driven to rotate via the shaft portions, thereby transferring the resin film wound around the roll portion;
    Covering the upper part of the outer peripheral surface of the roll part around which the resin film is wound, and forming a condensation space with the outer peripheral surface of the roll part;
    Having a total length equal to or greater than the width of the resin film, provided in the cover in a state in which the longitudinal direction is directed to the axial direction of the roll portion, and blowing a gas containing a vapor of a polymerizable monomer on the resin film; A nozzle for condensing the vapor of the polymerizable monomer into the resin film;
    A pair of shielding mechanisms that prevent the gas containing the vapor of the polymerizable monomer from flowing out from both ends of the condensation space in the axial direction of the roll part;
    The shielding mechanism has a shielding member that is arranged to face the end surface of the roll part with a predetermined interval and is rotatably supported by the shaft part,
    Both end portions of the cover in the axial direction of the roll portion are placed on the upper portions of the shielding members of the pair of shielding mechanisms so as to be movable toward and away from each other in the radial direction of the roll portion, and airtightly, and A concave portion extending annularly about the axis of the roll portion is formed on one of the end surface of the roll portion and the end surface of the shielding member facing the end surface, and the other end extends annularly about the axis of the roll portion. A convex portion is formed, and the convex portion enters the concave portion so as to be relatively rotatable, whereby the gas containing the vapor of the polymerizable monomer in the condensing space flows from both end portions of the condensing space to the outside. A condensing apparatus for a polymerizable monomer, characterized in that it is prevented from flowing out in the direction.
  2.  前記遮蔽部材が円板状に形成され、前記一対の遮蔽部材の上部に前記カバーの両端部が載置されることにより、前記カバー及び前記ノズルが前記遮蔽部材によって支持されていることを特徴とする請求項1に記載の重合性モノマーの凝縮装置。 The shielding member is formed in a disc shape, and the cover and the nozzle are supported by the shielding member by placing both ends of the cover on top of the pair of shielding members. The condensing apparatus for polymerizable monomers according to claim 1.
  3.  前記ノズルが前記ロール部の周方向における前記カバーの中間部に配置され、前記ロール部の径方向における前記凝縮空間の間隔が、前記ノズルより前記ロール部の回転方向前方側で広く、回転方向後方側で狭くなっていることを特徴とする請求項1又は2に記載の重合性モノマーの凝縮装置。 The nozzle is disposed in an intermediate portion of the cover in the circumferential direction of the roll portion, and the interval of the condensation space in the radial direction of the roll portion is wider on the front side in the rotation direction of the roll portion than the nozzle, and rearward in the rotation direction. The apparatus for condensing a polymerizable monomer according to claim 1, wherein the condensing apparatus is narrow on the side.
  4.  前記ロール部と協働して一対の電極を構成する電極部材をさらに備え、前記電極部材が前記ロール部の回転方向において前記カバーより前方側に配置され、前記ロール部の外周面と前記電極部材との間にプラズマ放電が行われる処理空間が形成され、この処理空間に前記重合性モノマーが付着した前記樹脂フィルムが通されることを特徴とする請求項1~3のいずれか1項に記載の重合性モノマーの凝縮装置。 An electrode member that constitutes a pair of electrodes in cooperation with the roll portion is further provided, the electrode member being disposed in front of the cover in the rotation direction of the roll portion, and an outer peripheral surface of the roll portion and the electrode member A processing space in which plasma discharge is performed is formed between the resin film and the resin film to which the polymerizable monomer is attached. The processing film is passed through the processing space. Condensing device for polymerizable monomers.
PCT/JP2012/057324 2011-03-25 2012-03-22 Polymerizable monomer-condensing device WO2012133102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507455A JP5866340B2 (en) 2011-03-25 2012-03-22 Polymeric monomer condensing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011067016 2011-03-25
JP2011-067016 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012133102A1 true WO2012133102A1 (en) 2012-10-04

Family

ID=46930830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057324 WO2012133102A1 (en) 2011-03-25 2012-03-22 Polymerizable monomer-condensing device

Country Status (3)

Country Link
JP (1) JP5866340B2 (en)
TW (1) TWI429693B (en)
WO (1) WO2012133102A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104134A (en) * 1983-11-09 1985-06-08 Matsushita Electric Ind Co Ltd Device for plasma polymerization and coating
JPS61216123A (en) * 1985-03-20 1986-09-25 Hitachi Maxell Ltd Production of magnetic recording medium
JPH04116156A (en) * 1990-08-31 1992-04-16 Terumo Corp Method for using functional film producing apparatus
JP2007021871A (en) * 2005-07-15 2007-02-01 Konica Minolta Holdings Inc Barrier film and its production method
JP2009025604A (en) * 2007-07-20 2009-02-05 Konica Minolta Opto Inc Polarizing plate protective film, method and apparatus for manufacturing the same, and polarizing plate, method for manufacturing the same, and display device
JP2010046845A (en) * 2008-08-20 2010-03-04 Toray Ind Inc Method for forming gas-barrier film
JP2010518224A (en) * 2007-02-06 2010-05-27 サイオン パワー コーポレイション Co-flash evaporation of polymerizable monomer and non-polymerizable carrier solvent / salt mixture / solution
WO2010134611A1 (en) * 2009-05-22 2010-11-25 リンテック株式会社 Molded object, process for producing same, member for electronic device, and electronic device
WO2010150551A1 (en) * 2009-06-26 2010-12-29 積水化学工業株式会社 Method and device for treating film surface and method for production of polarising plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080184A (en) * 1998-06-26 2000-03-21 Dainippon Printing Co Ltd Film sheet multi-step surface modifying method and apparatus therefor
JP2010150372A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Method and device for surface treatment of film, and method for manufacturing polarizing plate
JP2010150373A (en) * 2008-12-25 2010-07-08 Sekisui Chem Co Ltd Surface treating method and adhesion method of film, and method of manufacturing polarizing plate
WO2010073626A1 (en) * 2008-12-25 2010-07-01 積水化学工業株式会社 Method and device for treating film surface and process for producing polarizer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104134A (en) * 1983-11-09 1985-06-08 Matsushita Electric Ind Co Ltd Device for plasma polymerization and coating
JPS61216123A (en) * 1985-03-20 1986-09-25 Hitachi Maxell Ltd Production of magnetic recording medium
JPH04116156A (en) * 1990-08-31 1992-04-16 Terumo Corp Method for using functional film producing apparatus
JP2007021871A (en) * 2005-07-15 2007-02-01 Konica Minolta Holdings Inc Barrier film and its production method
JP2010518224A (en) * 2007-02-06 2010-05-27 サイオン パワー コーポレイション Co-flash evaporation of polymerizable monomer and non-polymerizable carrier solvent / salt mixture / solution
JP2009025604A (en) * 2007-07-20 2009-02-05 Konica Minolta Opto Inc Polarizing plate protective film, method and apparatus for manufacturing the same, and polarizing plate, method for manufacturing the same, and display device
JP2010046845A (en) * 2008-08-20 2010-03-04 Toray Ind Inc Method for forming gas-barrier film
WO2010134611A1 (en) * 2009-05-22 2010-11-25 リンテック株式会社 Molded object, process for producing same, member for electronic device, and electronic device
WO2010150551A1 (en) * 2009-06-26 2010-12-29 積水化学工業株式会社 Method and device for treating film surface and method for production of polarising plate

Also Published As

Publication number Publication date
JPWO2012133102A1 (en) 2014-07-28
TWI429693B (en) 2014-03-11
TW201239018A (en) 2012-10-01
JP5866340B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
JP2016097403A (en) Method for producing lamination packets and facility for implementing this method
TW201732981A (en) Substrate attraction stage, substrate treatment device, substrate treatment method
JP2011096616A (en) Plasma surface treatment device
US10906133B2 (en) Method of removing coating from a surface of a wheel
JP5866340B2 (en) Polymeric monomer condensing device
US5662821A (en) Method and device for producing a screen printing stencil
KR101999406B1 (en) Labyrinth seal, cleaning unit and method, and solution film-forming method
JPH0792317A (en) Pattern exposure method and exposure device
WO2019087892A1 (en) Separator film conveyance device for nonaqueous electrolytic-solution secondary battery and method for manufacturing separator film for nonaqueous electrolytic-solution secondary battery
JP5067172B2 (en) Steel pipe inner surface coating equipment
JP2012166539A5 (en)
JP2012201777A (en) Surface treating system for resin film
JP5396535B2 (en) Method for manufacturing electrode composite for forming electrode for spark plug, and method for manufacturing spark plug
CN106660078A (en) System and method for cleaning an object
JP2002343761A (en) Laser cleaning apparatus and method therefor
US8679409B2 (en) Filter device, filter method and trace detector
US20130196058A1 (en) Optical recording medium production device and production method
JP2006036451A (en) Suction roll
JP2004311066A (en) Plasma treatment device
US10913995B2 (en) Pretreatment assembly and method for treating work pieces
CN112171478A (en) Stainless steel pipe and polishing system thereof
KR101621374B1 (en) Rotatable vacuum head of vacuum suction device
JP4561814B2 (en) Milling device
JPH10314987A (en) Cutting jig
JP2007059242A (en) Treated gas discharging device, and surface treatment device equipped therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507455

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763167

Country of ref document: EP

Kind code of ref document: A1