JPS61214130A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS61214130A
JPS61214130A JP5537285A JP5537285A JPS61214130A JP S61214130 A JPS61214130 A JP S61214130A JP 5537285 A JP5537285 A JP 5537285A JP 5537285 A JP5537285 A JP 5537285A JP S61214130 A JPS61214130 A JP S61214130A
Authority
JP
Japan
Prior art keywords
plasma
film layer
protective film
magnetic
polymerized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5537285A
Other languages
Japanese (ja)
Inventor
Fumio Komi
文夫 小海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP5537285A priority Critical patent/JPS61214130A/en
Publication of JPS61214130A publication Critical patent/JPS61214130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of the titled medium by providing a plasma-polymerized protective film layer on the magnetic layer formed on a substrate. CONSTITUTION:A plasma-polymerized protective film layer 9 contg. sulfur is formed on a magnetic layer 8 to form cross linkages with the sulfur atom as a nucleus, hence the cross-linking density of the plasma-polymerized film layer 9 is increased and the corrosion resistance is sufficiently improved. The plasma-polymerized protective film layer 9 is formed by exposing the magnetic layer 8 to the plasma of the gaseous monomer of an org. compd. contg. sulfur or the gaseous mixture of the org. compd. monomer and another org. compd. monomer and performing plasma polymerization. Since the plasma-polymerized protective film layer 9 contains sulfur atoms capable of forming up to 6 linkages per atom, the cross-linking density of the plasma-polymerized film layer 9 is increased, water and air are hardly permeated and the magnetic recording medium with sufficiently improved durability can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体に関し、さらに詳しくは、耐食
性に優れた磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium with excellent corrosion resistance.

〔従来の技術〕[Conventional technology]

金属磁性材を記録素子として使用する磁気記録媒体は、
通常、金属もしくはそれらの合金などからなる強磁性金
属薄膜層を真空蒸着等によって基体上に被着するかある
いは強磁性金属粉末を結合剤樹脂とともに基体上に塗布
、乾燥してつくられ、高密度記録に通した特性を有する
が、反面、磁性層が空気中の酸素や水分によって酸化さ
れ易く、徐々に酸化を受けて最大磁束密度が劣化する4
どの難点がある。
Magnetic recording media that use metallic magnetic materials as recording elements are
It is usually made by depositing a ferromagnetic metal thin film layer made of metals or their alloys on a substrate by vacuum evaporation, or by coating ferromagnetic metal powder with a binder resin on the substrate and drying. Although it has characteristics suitable for recording, on the other hand, the magnetic layer is easily oxidized by oxygen and moisture in the air, and the maximum magnetic flux density deteriorates as a result of gradual oxidation4.
What are the difficulties?

このため、従来から磁性層上に種々の保護膜層を設ける
などして耐食性を改善することが行われており、近年、
たとえば、オクタメチルシクロテトラシロキサンのモノ
マーガスをキャリアガスの窒素ガスとともに使用し、プ
ラズマ重合して、ケイ素系有機化合物のプラズマ重合保
護膜層を強磁性金属薄膜層上に設けること[飯島哲生、
花房賢明、電気通信学会論文誌、J67−C,Nol 
(’84)]が提案されている。
For this reason, efforts have been made to improve corrosion resistance by providing various protective film layers on the magnetic layer, and in recent years,
For example, a monomer gas of octamethylcyclotetrasiloxane is used together with nitrogen gas as a carrier gas, and plasma polymerization is performed to form a plasma-polymerized protective film layer of a silicon-based organic compound on a ferromagnetic metal thin film layer [Tetsuo Iijima,
Ken Hanabusa, Journal of the Institute of Electrical Communication Engineers, J67-C, Nol
('84)] has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この種のケイ素系有機化合物のプラズマ重合
保護膜層は、酸素原子を多く含むために原子間の間隙が
多くなり、空気中の水分がこの保護膜層を容易に透過し
て、この透過した水分により磁性層が腐食されるという
難点があり、未だ耐食性は充分に改善されていない。
However, since this type of plasma-polymerized protective film layer made of silicon-based organic compounds contains many oxygen atoms, there are many gaps between atoms, and moisture in the air easily permeates through this protective film layer. The problem is that the magnetic layer is corroded by the moisture, and corrosion resistance has not yet been sufficiently improved.

C問題点を解決するための手段〕 この発明は、かかる現状に鑑み種々検討を行った結果な
されたもので、磁性層上にイオウを含有するプラズマ重
合保護膜層を形成することによって、イオウ原子を槙と
した架橋結合を形成し、プラズマ重合保護膜層の架橋密
度を高くして耐食性を充分に向上させたものである。
Means for Solving Problem C] The present invention was made as a result of various studies in view of the current situation, and by forming a plasma polymerized protective film layer containing sulfur on the magnetic layer, sulfur atoms can be removed. The corrosion resistance of the plasma-polymerized protective film layer is sufficiently improved by forming cross-linked bonds with a high cross-linking density.

この発明において、磁性層上に形成されるイオウを含有
するプラズマ重合保護膜層は、イオウを含有する有機化
合物のモノマーガス、あるいはイオウを含有する有機化
合物のモノマーガスと他の有機化合物のモノマーガスと
の混合ガスのプラズマ中に、磁性層をさらして、プラズ
マ重合することにより形成される。このプラズマ重合保
護膜層は、一つの原子あたり、最高6個までの結合を形
成できるイオウ原子を含むため、プラズマ重合保護膜層
の架橋密度が向上され、水や空気の透過が困難となって
、耐食性が充分に向上された磁気記録媒体が得られる。
In this invention, the sulfur-containing plasma polymerized protective film layer formed on the magnetic layer is formed using a monomer gas of a sulfur-containing organic compound, or a monomer gas of a sulfur-containing organic compound and a monomer gas of another organic compound. It is formed by exposing the magnetic layer to plasma of a mixed gas with plasma and polymerizing the magnetic layer. This plasma-polymerized protective film layer contains sulfur atoms that can form up to six bonds per atom, which improves the crosslinking density of the plasma-polymerized protective film layer, making it difficult for water and air to pass through. , a magnetic recording medium with sufficiently improved corrosion resistance can be obtained.

このようにして、形成されるプラズマ重合保護膜層中に
おけるイオウの含有量は、プラズマ重合保護膜層を構成
する全構成原子に対して0.1〜20重量%の範囲内で
あることが好ましく、少なすぎては所期の効果が得られ
ず、多すぎるとイオウ単体が析出し耐食性が向上されな
い。
The content of sulfur in the plasma-polymerized protective film layer thus formed is preferably within the range of 0.1 to 20% by weight based on all constituent atoms constituting the plasma-polymerized protective film layer. If it is too small, the desired effect will not be obtained, and if it is too large, sulfur alone will precipitate and corrosion resistance will not be improved.

このようなプラズマ重合に使用するイオウを含有する有
機化合物のモノマーガスとしては、たとえば、チオフェ
ン、チアンスレン、チアナフセン、チオアセトアミドな
どが好適なものとして使用され、この他これらのイオウ
を含有する有機化合物のモノマーガスと池の有機化合物
のモノマーガスとの混合、ガスが好適に使用される。こ
こで、混合して使用される他の有機化合物のモノマーガ
スとしては、たとえば、プロパン、エチレン、プロピレ
ンなどの炭化水素系化合物のモノマーガス、C2F4 
、C3FGなどのフッ素系有機化合物のモノマーガスお
よびテトラメチルシラン、オクタメチルシクロテトラシ
ロキサン、ヘキサメチルジシラザンなどのケイ素系有機
化合物の七ツマーガス等が好ましく使用される。混合割
合は、イオウを含有する有機化合物のモノマーガスと混
合する場合、これらの有機化合物のモノマーガス対イオ
ウを含有する有機化合物のモノマーガスにして、容積比
でO対1〜1対3の範囲内となるようにするのが好まし
く、イオウを含有する有機化合物の七ツマーガスが少な
すぎると所期の効果が得られない。
As the monomer gas of the sulfur-containing organic compound used in such plasma polymerization, for example, thiophene, thianthrene, thianafucene, thioacetamide, etc. are preferably used, and in addition to these sulfur-containing organic compounds, A mixture of the monomer gas and the monomer gas of the organic compound in the pond is preferably used. Here, monomer gases of other organic compounds used in combination include, for example, monomer gases of hydrocarbon compounds such as propane, ethylene, propylene, C2F4
, monomer gas of fluorine-based organic compounds such as C3FG, and monomer gas of silicon-based organic compounds such as tetramethylsilane, octamethylcyclotetrasiloxane, hexamethyldisilazane, etc. are preferably used. When mixing with a monomer gas of an organic compound containing sulfur, the mixing ratio is O:1 to 1:3 in terms of volume ratio of monomer gas of these organic compounds to monomer gas of an organic compound containing sulfur. It is preferable that the amount of sulfur-containing organic compound gas is too small, and the desired effect cannot be obtained.

これらのイオウを含有する有機化合物のモノマーガス、
あるいはイオウを含有する有機化合物のモノマーガスと
他の有機化合物のモノマーガスとの混合ガスなどのモノ
マーガスは、高周波によりプラズマ重合が行われると、
高周波によりラジカルが生成され、この生成されたラジ
カルが反応し重合して被膜となる。このように、これら
のモノマーガスをプラズマ重合する際、アルゴンガスお
よびヘリウムガス等のキャリアガスを併存させると七ツ
マーガスを単独でプラズマ重合する場合に比べて3〜5
倍の速度で析出されるため、これらのキャリアガスを併
存させて行うのが好ましい。
Monomer gas of these sulfur-containing organic compounds,
Alternatively, when a monomer gas such as a mixed gas of a monomer gas of an organic compound containing sulfur and a monomer gas of another organic compound is subjected to plasma polymerization by high frequency,
Radicals are generated by high frequency, and the generated radicals react and polymerize to form a film. In this way, when plasma polymerizing these monomer gases, coexistence of carrier gases such as argon gas and helium gas results in a polymerization rate of 3 to 5
Since the deposition rate is doubled, it is preferable to use these carrier gases together.

これらのキャリアガスと併存させる際、その組成割合は
キャリアガス対前記モノマーガスの容積比にして1対1
〜20対1の範囲内で併存させるのが好ましく、キャリ
アガスが少なすぎると析出速度が低下し、多すぎるとモ
ノマーガスが少なくなってプラズマ重合反応に支障をき
たす。
When coexisting with these carrier gases, the composition ratio is 1:1 in volume ratio of the carrier gas to the monomer gas.
It is preferable that the carrier gas coexist in the range of 20 to 1. If the carrier gas is too small, the deposition rate will be reduced, and if it is too large, the monomer gas will be too small, which will interfere with the plasma polymerization reaction.

このようなプラズマ重合を行う場合のガス圧および高周
波の電力は、ガス圧が高くなるほどプラズマ重合保護膜
層の析出速度が速(なる反面モノマーガスが比較的低い
架橋度でプラズマ重合されて硬い保護膜層が得られず、
また、ガス圧を低くして高周波電力を高くすると析出速
度が遅くなる反面高架橋化された比較的硬い保護膜層が
得られる。ところが、ガス圧を低くして高周波電力を高
くしすぎると、七ツマーガスが粉末化してしまいプラズ
マ重合保護膜層が形成されないため、ガス圧を0.00
3〜5トールの範囲内とし、高周波電力を0.03〜I
W/cJの範囲内とするのが好ましく、ガス圧をo、o
os〜0.1トールとし、高周波電力を0.05〜0.
5W/ctAの範囲内とするのがより好ましい。このよ
うなプラズマ重合保護膜層の膜厚は、20〜1000人
の範囲内であることが好ましく、膜厚が薄すぎるとこの
保護膜層による耐食性の効果が充分に発揮されず、厚す
ぎるとスペーシングロスが大きくなりすぎて電磁変換特
性に悪影響を及ぼす。
When performing such plasma polymerization, the gas pressure and high-frequency power are such that the higher the gas pressure, the faster the deposition rate of the plasma-polymerized protective film layer (on the other hand, the monomer gas is plasma-polymerized with a relatively low degree of crosslinking, resulting in a hard protective film). A membrane layer cannot be obtained,
Further, when the gas pressure is lowered and the high frequency power is increased, the deposition rate becomes slower, but on the other hand, a highly crosslinked and relatively hard protective film layer is obtained. However, if the gas pressure is lowered and the high frequency power is increased too high, the 7-mer gas will turn into powder and the plasma polymerized protective film layer will not be formed.
The high frequency power should be within the range of 3 to 5 torr, and the high frequency power should be within the range of 0.03 to I.
It is preferable to set the gas pressure within the range of W/cJ, and the gas pressure to be within the range of o, o
os ~ 0.1 Torr, and the high frequency power is 0.05~0.
More preferably, it is within the range of 5 W/ctA. The thickness of such a plasma polymerized protective film layer is preferably within the range of 20 to 1000. If the film thickness is too thin, the corrosion resistance effect of this protective film layer will not be fully exhibited, and if it is too thick, Spacing loss becomes too large, which adversely affects electromagnetic conversion characteristics.

金属磁性材を記録素子とする磁性層は、Fe粉末、CO
粉末、Fe−Ni粉末などの金属磁性粉末を、結合剤成
分および有機溶剤等とともに基体上に塗布、乾燥するか
、あるいは、Co、Fe、Ni、Go−Ni−Pなどの
強磁性材を、真空蒸着、イオンブレーティング、スパッ
タリング、メッキ等の手段によって基体上に被着するな
どの方法で形成される。
The magnetic layer, which uses a metal magnetic material as a recording element, is made of Fe powder, CO
A metal magnetic powder such as powder or Fe-Ni powder is coated on a substrate together with a binder component and an organic solvent and dried, or a ferromagnetic material such as Co, Fe, Ni, Go-Ni-P, etc. It is formed by depositing it on a substrate by means such as vacuum evaporation, ion blasting, sputtering, and plating.

また、磁気記録媒体としては、ポリエステルフィルム、
ポリイミドフィルムなどの合成樹脂フィルムを基体とす
る磁気テープ、合成樹脂フィルム、アルミニウム板およ
びガラス板等からなる円盤やドラムを基体とする磁気デ
ィスクや磁気ドラムなど、磁気ヘッドと摺接する構造の
種々の形態を包含する。
In addition, as magnetic recording media, polyester film,
Various types of structures that come into sliding contact with magnetic heads, such as magnetic tapes based on synthetic resin films such as polyimide films, magnetic disks and magnetic drums based on disks and drums made of synthetic resin films, aluminum plates, glass plates, etc. includes.

C実施例〕 次に、この発明の実施例について説明する。C Example] Next, embodiments of the invention will be described.

実施例1 厚さ10μのポリエステルフィルムを真空蒸着装置に装
填し、5xlO−5t−−ルの真空下でコバルト−ニッ
ケル合金(重量比8:2)を加熱蒸発させてポリエステ
ルフィルム上に厚さ1000人のコバルト−ニッケル合
金からなる強磁性金属薄膜層を形成した。次いで、第1
図に示すプラズマ処理装置を使用し、強磁性金属薄膜層
を形成したポリエステルフィルム1を処理槽2内の上部
に配設した基板3の下面にセットし、処理槽2に取りつ
けたガス導入管4からチオフェンのモノマーガスを4Q
sccmの流量で導入してガス圧を0.03 トールと
し、電極5の電力密度0.3W/−でプラズマ重合を行
い、厚さが300人のプラズマ重合保護膜層を形成した
。このプラズマ重合保護膜層中におけるイオウの含有量
は8重量%であった。しかる後、所定の巾に裁断して第
2図に示すようなポリエステルフィルム1上に強磁性金
属薄膜層8およびプラズマ重合保護膜層9を順次に積層
形成した磁気テープAをつくった。なお、図中6は処理
槽2内を減圧するための排気系であり、7は電極5に高
周波を印加するための高周波電源である。
Example 1 A polyester film with a thickness of 10 μm was loaded into a vacuum evaporation apparatus, and a cobalt-nickel alloy (weight ratio 8:2) was heated and evaporated under a vacuum of 5xlO-5t-ole to form a 1000 μm thick polyester film on the polyester film. A ferromagnetic metal thin film layer made of a cobalt-nickel alloy was formed. Then the first
Using the plasma processing apparatus shown in the figure, a polyester film 1 on which a ferromagnetic metal thin film layer is formed is set on the lower surface of a substrate 3 disposed at the upper part of a processing tank 2, and a gas introduction pipe 4 is attached to the processing tank 2. thiophene monomer gas from 4Q
The gas was introduced at a flow rate of sccm, the gas pressure was set to 0.03 Torr, and plasma polymerization was performed at a power density of 0.3 W/- for the electrode 5 to form a plasma polymerized protective film layer with a thickness of 300 mm. The sulfur content in this plasma polymerized protective film layer was 8% by weight. Thereafter, the tape was cut to a predetermined width, and a magnetic tape A was prepared by sequentially laminating a ferromagnetic metal thin film layer 8 and a plasma polymerized protective film layer 9 on a polyester film 1 as shown in FIG. In the figure, 6 is an exhaust system for reducing the pressure inside the processing tank 2, and 7 is a high frequency power source for applying high frequency to the electrode 5.

実施例2 実施例1の強磁性金属薄膜層の形成において、コバルト
−ニッケル合金に代えてコバルトを使用した以外は、実
施例1と同様にしてコバルトからなる強磁性金属薄膜層
を形成し、磁気テープAをつくった。
Example 2 A ferromagnetic metal thin film layer made of cobalt was formed in the same manner as in Example 1, except that cobalt was used instead of the cobalt-nickel alloy in the formation of the ferromagnetic metal thin film layer in Example 1. I made tape A.

実施例3 実施例1におけるプラズマ重合保護膜層の形成において
、チオフェンの七ツマーガスに代えて、チアンスレンの
モノマーガスを同量使用した以外は実施例1と同様にし
て、厚さが300人でイオウの含有量が7重量%のプラ
ズマ重合保護膜層を形成し、磁気テープAをつ(った。
Example 3 In the formation of the plasma-polymerized protective film layer in Example 1, a film was prepared in the same manner as in Example 1 except that the same amount of thianthrene monomer gas was used in place of the thiophene monomer gas. A plasma-polymerized protective film layer having a content of 7% by weight was formed, and magnetic tape A was then used.

実施例4 実施例1におけるプラズマ重合保護膜層の形成において
、チオフェンのモノマーガスの流量を40 secmか
ら33secmに変更するとともにC2F4のモノマー
ガスを10sccn+の流量で導入して全圧を0.02
 )〜ルとし、電力密度を0.3W/cdとじた以外は
、実施例1と同様にして厚さが300人でイオウの含有
量が4重量%のプラズマ重合保護膜層を形成し、磁気テ
ープAをつくった。
Example 4 In forming the plasma-polymerized protective film layer in Example 1, the flow rate of thiophene monomer gas was changed from 40 sec to 33 sec, and C2F4 monomer gas was introduced at a flow rate of 10 scn+ to raise the total pressure to 0.02.
)~L, and a plasma polymerized protective film layer having a thickness of 300 mm and a sulfur content of 4% by weight was formed in the same manner as in Example 1, except that the power density was 0.3 W/cd, and the magnetic I made tape A.

実施例5 α−p’6磁性粉末       600重量部エスレ
ソクCN (種水化学工業  80 〜社製、F化ビニ
ルー酢酸ヒニ ル共重合体) バンデックスT−5250(大  30μ日本インキ社
製、ウレタンエ ラストマー) コロネートしく日本ボリウレタ  10〃ン工業社製、
三官能性低分子 量イソシアネート化合物) メチルイソブチルケトン    400〃トルエン  
         400〃この組成物をボールミル中
で72時間混合分散して磁性塗料を調製し、この磁性塗
料を厚さ10μのポリエステルフィルム上に乾燥厚が4
μとなるように塗布、乾燥して磁性層を形成した。次い
で、この磁性層上に、実施例1と同様にして厚さが30
0人のプラズマ重合保護膜層を形成し、磁気テープAを
つくった。
Example 5 α-p'6 magnetic powder 600 parts by weight Esresoku CN (manufactured by Tanemizu Kagaku Kogyo 80 ~ Co., Ltd., fluorinated vinyl-hinyl acetate copolymer) Bandex T-5250 (large 30μ manufactured by Nippon Ink Co., Ltd., urethane elastomer) Coronate Nippon Boliureta 10 Manufactured by Kogyo Co., Ltd.
Trifunctional low molecular weight isocyanate compound) Methyl isobutyl ketone 400〃Toluene
400 This composition was mixed and dispersed in a ball mill for 72 hours to prepare a magnetic paint, and this magnetic paint was coated on a polyester film with a dry thickness of 4 μm.
A magnetic layer was formed by coating and drying so as to have a thickness of μ. Next, a layer with a thickness of 30 mm was applied on this magnetic layer in the same manner as in Example 1.
Magnetic tape A was produced by forming a plasma polymerized protective film layer.

比較例1 実施例1におけるプラズマ重合保護膜層の形成において
、チオフェンのモノマーガスに代えて、オクタメチルシ
クロテトラシロキサンのモノマーガスを40sccn+
の流量で導入するとともに、窒素ガスをlQsccmの
流量で導入して全圧を0.05 ) −ルとし、電力密
度を0.3W/cjとした以外は、実施例1と同様にし
て厚さが300人のプラズマ重合保護膜層を形成し、磁
気テープをつくった。
Comparative Example 1 In the formation of the plasma polymerized protective film layer in Example 1, 40 scn+ of octamethylcyclotetrasiloxane monomer gas was used instead of thiophene monomer gas.
The thickness was measured in the same manner as in Example 1, except that nitrogen gas was introduced at a flow rate of 300 people formed a plasma polymerized protective film layer and made magnetic tape.

比較例2 実施例1において、プラズマ重合保護膜層の形成を省い
た以外は、実施例1と同様にして磁気テープをつくった
Comparative Example 2 A magnetic tape was produced in the same manner as in Example 1, except that the formation of the plasma polymerized protective film layer was omitted.

各実施例および比較例で得られた磁気テープについて、
耐食性を試験した。耐食性試験は得られた磁気テープを
60℃、90%RHの条件下に7日間放置して最大磁束
密度を測定し、放置前の磁気テープの最大磁束密度を1
00%とし、これと比較した値でその劣化率を調べて行
った。
Regarding the magnetic tapes obtained in each example and comparative example,
Tested for corrosion resistance. In the corrosion resistance test, the obtained magnetic tape was left under conditions of 60°C and 90% RH for 7 days, and the maximum magnetic flux density was measured.
00%, and the deterioration rate was investigated using the value compared with this value.

下表はその結果である。The table below shows the results.

表 上表から明らかなように実施例工ないし5で得られた磁
気テープは、いずれも比較例1および2で得られた磁気
テープに比し、劣化率が小さく、このことからこの発明
によれば、一段と耐食性に優れた磁気記録媒体が得られ
るのがわかる。
As is clear from the table above, the magnetic tapes obtained in Examples 1 to 5 had a lower deterioration rate than the magnetic tapes obtained in Comparative Examples 1 and 2, and from this, the present invention was applied. It can be seen that a magnetic recording medium with even better corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明のプラズマ重合保護膜層を形成する
際に使用するプラズマ処理装置の1例を示す概略断面図
、第2図はこの発明によって得られた磁気テープの部分
拡大断面図である。 1・・・ポリエステルフィルム(基体)、8・・・強磁
性金属薄膜層、9・・・プラズマ重合保護膜層、A・・
・磁気テープ(磁気記録媒体) 特許出願人  日立マクセル株式会社 第1図
FIG. 1 is a schematic sectional view showing an example of a plasma processing apparatus used in forming the plasma polymerized protective film layer of the present invention, and FIG. 2 is a partially enlarged sectional view of a magnetic tape obtained by the present invention. be. DESCRIPTION OF SYMBOLS 1... Polyester film (substrate), 8... Ferromagnetic metal thin film layer, 9... Plasma polymerization protective film layer, A...
・Magnetic tape (magnetic recording medium) Patent applicant Hitachi Maxell Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に磁性層を形成し、この磁性層上に、イオウ
を含有するプラズマ重合保護膜層を設けたことを特徴と
する磁気記録媒体
1. A magnetic recording medium characterized in that a magnetic layer is formed on a substrate, and a plasma polymerized protective film layer containing sulfur is provided on the magnetic layer.
JP5537285A 1985-03-19 1985-03-19 Magnetic recording medium Pending JPS61214130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5537285A JPS61214130A (en) 1985-03-19 1985-03-19 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5537285A JPS61214130A (en) 1985-03-19 1985-03-19 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61214130A true JPS61214130A (en) 1986-09-24

Family

ID=12996649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5537285A Pending JPS61214130A (en) 1985-03-19 1985-03-19 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61214130A (en)

Similar Documents

Publication Publication Date Title
JPS61214130A (en) Magnetic recording medium
JPS6116028A (en) Magnetic recording medium and its production
JPS60237640A (en) Production of magnetic recording medium
JPS6234324A (en) Magnetic recording medium
JPS61104430A (en) Production of magnetic recording medium
JPS61104425A (en) Magnetic recording medium
JPS61214131A (en) Production of magnetic recording medium
JPS6122432A (en) Production of magnetic recording medium
JPS60237639A (en) Production of magnetic recording medium
JPH0576097B2 (en)
JPS62157324A (en) Magnetic recording medium and its production
JP3232948B2 (en) Manufacturing method of magnetic recording medium
JPS6122420A (en) Magnetic recording medium
JPS6057537A (en) Production of magnetic recording medium
JPS6116029A (en) Magnetic recording medium and its production
JPS6122434A (en) Magnetic recording medium and its production
JPS60237627A (en) Magnetic recording medium
JPS61214137A (en) Production of magnetic recording medium
JPS6177132A (en) Magnetic recording medium
JPS61214138A (en) Production of magnetic recording medium
JPS6231022A (en) Magnetic recording medium and its manufacture
JPH0760523B2 (en) Method of manufacturing magnetic recording medium
JPS6116030A (en) Production of magnetic recording medium
JPS63157312A (en) Magnetic recording medium and its production
JPS61216113A (en) Magnetic recording medium and its production