JPS5948450B2 - Method for manufacturing magnetic recording media - Google Patents

Method for manufacturing magnetic recording media

Info

Publication number
JPS5948450B2
JPS5948450B2 JP16731579A JP16731579A JPS5948450B2 JP S5948450 B2 JPS5948450 B2 JP S5948450B2 JP 16731579 A JP16731579 A JP 16731579A JP 16731579 A JP16731579 A JP 16731579A JP S5948450 B2 JPS5948450 B2 JP S5948450B2
Authority
JP
Japan
Prior art keywords
substrate
gas
ion source
ionized
ferromagnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16731579A
Other languages
Japanese (ja)
Other versions
JPS5690432A (en
Inventor
恒美 大岩
倉一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP16731579A priority Critical patent/JPS5948450B2/en
Publication of JPS5690432A publication Critical patent/JPS5690432A/en
Publication of JPS5948450B2 publication Critical patent/JPS5948450B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thin Magnetic Films (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 この発明は強磁性金属薄膜層を記録層とする強磁性金属
薄膜型磁気記録媒体の製造方法に関し、その目的とする
ところは特に磁気特性に優れた強磁性金属薄膜型磁気記
録媒体の製造方法を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ferromagnetic metal thin film type magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer, and its object is to produce a ferromagnetic metal thin film type magnetic recording medium having particularly excellent magnetic properties. An object of the present invention is to provide a method for manufacturing a magnetic recording medium.

強磁性金属薄膜型磁気記録媒体は、通常、プラスチック
フィルムまたは非磁性金属フィルムなどのフィルム状の
基板を真空蒸着装置内に取りつけた円筒状キヤンの周側
面に沿つて移動させ、この基板に強磁性材料を真空蒸着
することによつてつ5 くられており、磁気特性に優れ
た強磁性金属薄膜型磁気記録媒体を製造する場合には、
真空槽内に防着板等を設けて強磁性材料の蒸気を基板に
対して斜め方向に差し向ける斜め入射蒸着が行なわれて
いる。
A ferromagnetic metal thin film type magnetic recording medium is usually produced by moving a film-like substrate such as a plastic film or a non-magnetic metal film along the circumferential side of a cylindrical can installed in a vacuum evaporation apparatus. When manufacturing a ferromagnetic metal thin film magnetic recording medium that is made by vacuum evaporating materials and has excellent magnetic properties,
Oblique incidence deposition is performed in which a deposition prevention plate or the like is provided in a vacuum chamber and the vapor of the ferromagnetic material is directed obliquely to the substrate.

10ところが、このような斜め入射蒸着法では、磁気特
性が向上する反面蒸着効率が極めて悪く、強磁性材料の
蒸発源より発生する蒸気流のごく一部しか利用できない
難点がある。
However, although such oblique incidence evaporation methods improve magnetic properties, the evaporation efficiency is extremely poor, and only a small portion of the vapor flow generated from the ferromagnetic material evaporation source can be used.

このためこれを改善する方法として、真空槽内に荷電粒
子源を配設置5 し、この荷電粒子源でもつて真空槽内
のガス等をイオン化して荷電粒子とするとともにこの荷
電粒子を強磁性材料の蒸気流とともに基板に差し向け、
蒸着する際の強磁性材料の蒸気流の入射方向をコントロ
ールして効率よくかつ強磁性材料の磁化容20易軸がで
きるだけ膜面と平行になるように蒸着する方法が提案さ
れているが、この方法では真空槽内の真空度が10−3
程度であればともかく、真空蒸着が可能な高真空雰囲気
下で、しかも荷電粒子漂白に導入されたガスではなく真
空槽全体に拡散25されたガス等をイオン化しているた
めこのイオン化効率が極めて悪く、従つて強磁性材料の
蒸気流の入射方向をコントロールする荷電粒子のエネル
ギーが不充分となり、得られる磁気記録媒体の磁気特性
をいまひとつ向上させることができない。30又、イオ
ン化されていないアルゴンガス等のガスを用いて前記方
法と同様に強磁性材料の蒸気流の入射方向をコントロー
ルする方法もあるが、イオン化されていないガスはエネ
ルギーが非常に小さいため、強磁性材料の蒸気流の入射
方向のコント35ロールが前記方法よりさらに劣り、従
つてこの方法では得られる磁気記録媒体の磁気特性をそ
れほど向上できない。
Therefore, as a method to improve this, a charged particle source is installed in the vacuum chamber5, and this charged particle source ionizes the gas, etc. in the vacuum chamber into charged particles, and the charged particles are transferred to a ferromagnetic material. Directed to the substrate with a vapor flow of
A method has been proposed in which the direction of incidence of the vapor flow of the ferromagnetic material is controlled during vapor deposition to efficiently deposit the material so that the easy axis of magnetization capacity 20 of the ferromagnetic material is as parallel to the film surface as possible. In this method, the degree of vacuum in the vacuum chamber is 10-3.
Regardless of the degree of ionization, the ionization efficiency is extremely poor because it is performed under a high vacuum atmosphere that allows vacuum evaporation, and because the gas diffused throughout the vacuum chamber is ionized, rather than the gas introduced for charged particle bleaching. Therefore, the energy of the charged particles that control the direction of incidence of the vapor flow of the ferromagnetic material is insufficient, making it impossible to improve the magnetic properties of the resulting magnetic recording medium. 30Also, there is a method of controlling the incident direction of the vapor flow of the ferromagnetic material in the same way as the above method using a non-ionized gas such as argon gas, but since the non-ionized gas has very low energy, The control 35 of the direction of incidence of the vapor flow of the ferromagnetic material is even worse than in the previous method, and therefore this method cannot significantly improve the magnetic properties of the resulting magnetic recording medium.

この発明はかかる欠点を改善するため種々検討した結果
なされたもので、真空槽内に、円筒状キヤンの周側面に
沿つて移動する基板と、この基板の移動方向に沿つて順
次に基板と対向する強磁性材料蒸発源と真空槽外からガ
スをイオン化して導入するイオン源とを配設するととも
に、イオン源と前記基板間にイオン化されたガスを収束
して基板に導く電極を配設し、真空雰囲気下で強磁性材
料の蒸気流とイオン源からの高エネルギーのイオン化さ
れたガスとを同時に前記基板に差し向けることによつて
蒸着効率を向上するとともに得られる磁気記録媒体の磁
気特性を向上させたものである。
This invention was made as a result of various studies to improve this drawback, and includes a substrate that moves along the circumferential side of a cylindrical can in a vacuum chamber, and a substrate that faces the substrate sequentially along the direction of movement of the substrate. An ion source that ionizes and introduces gas from outside the vacuum chamber is provided, and an electrode is provided between the ion source and the substrate to converge the ionized gas and guide it to the substrate. , by simultaneously directing a vapor flow of a ferromagnetic material and a high-energy ionized gas from an ion source onto the substrate in a vacuum atmosphere, the deposition efficiency is improved and the magnetic properties of the resulting magnetic recording medium are improved. It has been improved.

この発明によれば、電極等を内設することによつて内部
に導入されたガスを高真空雰囲気下でイオン化すること
のできるイオン源を真空槽内に配設し、このイオン源に
よつて真空槽外から供給されるガスをイオン化して円筒
状キヤンの周側面務こ沿つて移動する基板に差し向けて
いるため、真空槽内のガス等をイオン化する従来の方法
とは異なり、イオン源によつて得られた高エネルギーの
イオン化されたガスが基板に差し向けられ、この高エネ
ルギーのイオン化されたガスによつて蒸着する際の強磁
性材料の蒸気流の入射方向がコントロールされる。
According to this invention, an ion source that can ionize gas introduced into the interior in a high vacuum atmosphere by installing an electrode or the like is provided in the vacuum chamber, and the ion source Unlike the conventional method of ionizing gas inside the vacuum chamber, the ion source The high-energy ionized gas obtained by the method is directed toward the substrate, and the direction of incidence of the vapor flow of the ferromagnetic material during deposition is controlled by this high-energy ionized gas.

そしてさらにイオン源と円筒状キヤンの周側面に沿つて
移動する基板との間に、イオン化されたガスを収束して
基板に導く電極が配設されているため、強磁性材料の蒸
気流の入射方向は一段と良好にコントロールされる。従
つて強磁性材料の蒸気流の入射方向は容易かつ充分にコ
ントロールされ、強磁性材料の磁化容易軸をできるだけ
膜面と平行になるように蒸着することができるばかりで
なく蒸着効率も向上し、得られる磁気記録媒体の磁気特
性を一段と向上することができる。以下、図面を参照し
ながらこの発明について説明する。
Further, between the ion source and the substrate moving along the circumferential side of the cylindrical can, an electrode is arranged to converge the ionized gas and guide it to the substrate, so that the vapor flow of the ferromagnetic material is incident. Direction is better controlled. Therefore, the direction of incidence of the vapor flow of the ferromagnetic material can be easily and sufficiently controlled, and not only can the axis of easy magnetization of the ferromagnetic material be made parallel to the film surface as much as possible, but also the deposition efficiency can be improved. The magnetic properties of the resulting magnetic recording medium can be further improved. The present invention will be described below with reference to the drawings.

第1図は真空蒸着装置の断面図を示したものであり、1
は真空槽でこの真空槽1の内部は排気系2により真空に
保持される。
Figure 1 shows a cross-sectional view of the vacuum evaporation apparatus,
is a vacuum chamber, and the inside of this vacuum chamber 1 is maintained in a vacuum by an exhaust system 2.

3は真空槽1の中央部6こ配設された円筒状キヤンであ
り、プラスチツクフイルム等の基板4は原反ロール5よ
りガイドローラ6を介してこの円筒状キヤン3の周側面
に沿つて移動し、ガイドローラ7を介して捲き取りロー
ル8tこ捲き取られる。
Reference numeral 3 denotes six cylindrical cans disposed in the center of the vacuum chamber 1, and a substrate 4 such as a plastic film is moved along the circumferential side of the cylindrical can 3 from an original roll 5 via a guide roller 6. Then, the sheet is wound up by a winding roll 8t via a guide roller 7.

この間円筒状キヤン3の周側面に沿つて移動する基板4
に対向して真空槽1の鴇ζ配設された強磁性材料蒸発源
9で強磁性材料10が加熱蒸発され、蒸気流Aが基板4
fζ差し向けられて蒸着されるが、このとき同時に円筒
状キヤン3の周側面に沿つて移動する基板4に対向して
真空槽1の左側内壁に配設されたイオン源11からガス
がイオン化されて導入され、イオン源11と基板4間に
配設されたリング状電極12により収束されて矢印Bで
示されるように基板4に差し向けられる。なお13は絶
縁導入端子、14はリング状電極12の電源である。イ
オン源11は第2図に示すように、カソード15を内装
しかつコイル16を外周に配設したゲート17と、ゲー
ト17のノズル状先端に近接して配設されたプラズマ拡
張口18を有するアノード19と、さらにアノード19
の前方に配設された案内用電極20とから構成されて成
り、ゲート17の後端に取りつけたガス導入口21から
ガスが導入されると、このガスを高真空雰囲気下でカソ
ード15のフイラメントでもつてイオン化し、アノード
19で引き出して矢印Bに示すように案内用電極20を
介して真空槽1内に導入する。このようなイオン源11
によつてイオン化されたガスは数百エレクトロンボルト
の高エネルギーを有し、これが前記したようにリング状
電極12により収束されて矢印Bで示されるように基板
4fζ差し向けられるため、0.1エレクトロンボルト
程度の蒸着エネルギーを有する強磁性材料の蒸気流Aの
入射方向は容易かつ充分にコントロールされる。なおイ
オン化されたガスを収束する電極12はリング状のもの
に限らず網状のものを使用してもよい。このような収束
用電極12がイオン源11と基板4間に配設されている
と、イオン源11によつて導入されるイオン化されたガ
スが収束されてイオン密度が高くなるため、蒸気流Aの
入射方向のコントロールは一段と容易になる。このよう
にこの発明においては、イオン源11によつて真空槽1
外からガスがイオン化されて導入され、このイオン化さ
れたガスによつて強磁性材料の蒸気流Aの入射方向をコ
ントロールしているため、従来の斜め入射蒸着法よりも
はるかに効率のよい真空蒸着を行なうことができ、また
蒸気流Aの入射方向のコントロールは高エネルギーのイ
オン化されたガスによつて行なわれ、しかも収束用電極
により、イオン化されたガスが収束されてイオン密度の
高いガスが差し向けられるため充分にコントロールされ
て磁気特性に優れた強磁性金属薄膜型磁気記録媒体が得
られる。
During this time, the substrate 4 moves along the circumferential side of the cylindrical can 3.
The ferromagnetic material 10 is heated and evaporated in the ferromagnetic material evaporation source 9 disposed in the vacuum chamber 1 opposite to the substrate 4, and the vapor flow A is directed to the substrate 4.
At the same time, the gas is ionized from the ion source 11 disposed on the left inner wall of the vacuum chamber 1, facing the substrate 4 moving along the circumferential side of the cylindrical can 3. The ion beam is introduced by the ion source 11 and is focused by the ring-shaped electrode 12 disposed between the ion source 11 and the substrate 4, and is directed toward the substrate 4 as shown by arrow B. Note that 13 is an insulation introduction terminal, and 14 is a power source for the ring-shaped electrode 12. As shown in FIG. 2, the ion source 11 has a gate 17 in which a cathode 15 is housed and a coil 16 disposed on the outer periphery, and a plasma expansion port 18 disposed close to the nozzle-shaped tip of the gate 17. Anode 19 and further anode 19
When gas is introduced from the gas inlet 21 attached to the rear end of the gate 17, the gas is transferred to the filament of the cathode 15 under a high vacuum atmosphere. It is then ionized, drawn out by the anode 19, and introduced into the vacuum chamber 1 via the guide electrode 20 as shown by arrow B. Such an ion source 11
The ionized gas has a high energy of several hundred electron volts, and as described above, it is focused by the ring-shaped electrode 12 and directed to the substrate 4fζ as shown by the arrow B, so that the ionized gas has a high energy of several hundred electron volts. The direction of incidence of the vapor flow A of the ferromagnetic material having a deposition energy on the order of volts is easily and well controlled. Note that the electrode 12 for converging the ionized gas is not limited to a ring-shaped electrode, but may be a net-shaped electrode. When such a focusing electrode 12 is disposed between the ion source 11 and the substrate 4, the ionized gas introduced by the ion source 11 is focused and the ion density increases, so that the vapor flow A This makes it easier to control the direction of incidence. In this way, in this invention, the ion source 11 is used to control the vacuum chamber 1.
Vacuum evaporation is much more efficient than the conventional oblique incidence evaporation method because ionized gas is introduced from the outside and this ionized gas controls the direction of incidence of the vapor flow A of the ferromagnetic material. In addition, the direction of incidence of the vapor flow A is controlled by high-energy ionized gas, and the ionized gas is focused by the focusing electrode to create a gas with high ion density. Since the magnetic flux is directed toward the magnetic field, a ferromagnetic metal thin film magnetic recording medium with excellent magnetic properties can be obtained with sufficient control.

イオン源11によつてイオン化され真空槽1内に導入さ
れて基板4に差し向けられるガスとしては、たとえばア
ルゴンガス、ヘリウムガス、ネオンガス、キセノンガス
、窒素ガス等の他アルゴンガスと酸素ガスとの混合ガス
およびアルゴンガスと窒素ガスとの混合ガス等が好適な
ものとして用いられ、特にアルゴンガスと酸素ガスとを
混合したガスは強磁性材料を微粒子化し、粒界に酸化物
を形成することにより、保磁力を所定の値にF5l脚す
る働きがあるためより好適なものとして使用される。
Examples of the gas that is ionized by the ion source 11, introduced into the vacuum chamber 1, and directed toward the substrate 4 include argon gas, helium gas, neon gas, xenon gas, nitrogen gas, as well as argon gas and oxygen gas. A mixed gas and a mixed gas of argon gas and nitrogen gas are preferably used. In particular, a mixed gas of argon gas and oxygen gas makes the ferromagnetic material fine and forms oxides at the grain boundaries. , is used more preferably because it has the function of adjusting the coercive force to a predetermined value.

またイオン源11によつてこれらのガスをイオン化する
際のイオン源11内の真空度は10−3トールより低く
すると、この真空雰囲気下でイオン化されたガスを基板
4に差し向けたとき良好な強磁性金属薄膜を形成するこ
とができず、10−6トールより高くするとガスをイオ
ン化し難いため10−3 〜10− 6トールの範囲内
に保持するのが好ましく、10−5〜10−6トールの
範囲内に保持するのがより好ましい。なお、アルゴンガ
スと酸素ガスとの混合ガスを用いるときは酸素ガスの分
圧を1×10−4トールより低くするのが好ましい。ま
た、イオン源11から基板4に差し向けられるイオン化
されたガスは、強磁性材料10の基板4に対する蒸気線
Cに対しての入射角αが45゜〜90゜の範囲となるよ
うにして差し向けるのが好ましく、入射角αが45゜よ
り小さい場合には所期の効果が得られず、90゜より大
きくなると円筒状キヤンによりイオン化されたガスがさ
えぎられ所定の効果を充分に発揮できなくなる恐れがあ
る。基板としては、ポリエステル、ポリイミド、ポリア
ミド等一般に使用されている高分子成形物からなるプラ
スチツクフイルムおよび銅などの非磁性金属からなる金
属フイルムが使用され、また強磁性金属薄膜層を形成す
る強磁性材料としては、コバルト、ニツケル、鉄などの
金属単体の他、これらの合金あるいは酸化物およびCO
−P,CO一Ni−Pなど一般に真空蒸着に使用される
強磁性材料が使用される。
Furthermore, when the ion source 11 ionizes these gases, the degree of vacuum inside the ion source 11 is set to be lower than 10-3 Torr, so that when the ionized gas is directed to the substrate 4 in this vacuum atmosphere, a good condition is obtained. It is not possible to form a ferromagnetic metal thin film, and if the temperature is higher than 10-6 Torr, it is difficult to ionize the gas, so it is preferable to keep it within the range of 10-3 to 10-6 Torr, and 10-5 to 10-6 Torr. More preferably, it is kept within the range of Note that when using a mixed gas of argon gas and oxygen gas, it is preferable that the partial pressure of the oxygen gas is lower than 1.times.10@-4 Torr. Further, the ionized gas directed from the ion source 11 to the substrate 4 is arranged such that the incident angle α of the ferromagnetic material 10 with respect to the vapor line C with respect to the substrate 4 is in the range of 45° to 90°. If the incident angle α is smaller than 45°, the desired effect will not be obtained, and if it is larger than 90°, the ionized gas will be blocked by the cylindrical can, making it impossible to fully demonstrate the desired effect. There is a fear. As the substrate, plastic films made of commonly used polymer moldings such as polyester, polyimide, polyamide, etc., and metal films made of non-magnetic metals such as copper are used, and ferromagnetic materials forming the ferromagnetic metal thin film layer are used. In addition to single metals such as cobalt, nickel, and iron, alloys or oxides of these and CO
-P, CO-Ni-P, and other ferromagnetic materials commonly used in vacuum deposition are used.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例 1約9μ厚のポリエステルベースフイルムに表
面処理(アルゴンガス、ホンパート処理)を施こした後
、これを第1図に示す真空蒸着装置に装填し、真空蒸着
装置内を約10−Jャgールにまで真空排気した。
Example 1 After surface treatment (argon gas, Honpart treatment) was performed on a polyester base film approximately 9μ thick, it was loaded into the vacuum evaporation apparatus shown in Fig. 1, and the inside of the vacuum evaporation apparatus was heated for approximately 10-J. It was evacuated to 100 g.

次いでコバルト金属の蒸着を開始すると同時に、真空蒸
着装置内に配設したイオン源により1×10−5トール
の真空雰囲気下でイオン化したアルゴンガスを、コバル
トの蒸気線に対して入射角80゜でポリエステルベース
フイルムに差し向け、コバルト金属を0.3μの膜厚に
なるように蒸着して強磁性金属薄膜層を形成し、これを
所定の巾に裁断して磁気テープをつくつた。実施例 2 実施例1において、イオン源でイオン化するガスをアル
ゴンガスからアルゴンガスと酸素ガスとの混合ガス(酸
素ガスの分圧3×10−5トール)に代えた以外は実施
例1と同様にして磁気テープをつくつた。
Next, at the same time as starting the vapor deposition of cobalt metal, ionized argon gas was ionized in a vacuum atmosphere of 1×10-5 Torr by an ion source installed in the vacuum evaporation equipment at an incident angle of 80° with respect to the cobalt vapor line. A ferromagnetic metal thin film layer was formed by depositing cobalt metal on a polyester base film to a thickness of 0.3 μm, and this was cut to a predetermined width to produce a magnetic tape. Example 2 Same as Example 1 except that the gas to be ionized in the ion source in Example 1 was changed from argon gas to a mixed gas of argon gas and oxygen gas (partial pressure of oxygen gas 3 x 10-5 Torr). He used it to make magnetic tape.

実施例 3 実施例1において、イオン源でイオン化するガスをアル
ゴンガスからアルゴンガスと窒素ガスとの混合ガス(窒
素ガスの分圧3×10−5トール)に代えた以外は実施
例1と同様にして磁気テープをつくつた。
Example 3 Same as Example 1 except that the gas to be ionized in the ion source in Example 1 was changed from argon gas to a mixed gas of argon gas and nitrogen gas (partial pressure of nitrogen gas 3 x 10-5 Torr). He used it to make magnetic tape.

比較例 1 実施例1において、イオン源からアルゴンガスをイオン
化せずに真空蒸着装置内に導入した以外は実施例1と同
様にして磁気テープをつくつた。
Comparative Example 1 A magnetic tape was produced in the same manner as in Example 1 except that argon gas was introduced from the ion source into the vacuum evaporation apparatus without being ionized.

比較例 2実施例1において真空蒸着装置内に予めアル
ゴンガスを導入しておき、イオン源に代えて真空蒸着装
置内に荷電粒子源を配設し、この荷電粒子源により真空
蒸着装置内のアルゴンガスをイオン化してポリエステル
ベースフイルムに差し向けた以外は実施例1と同様にし
て磁気テープをつくつた。
Comparative Example 2 In Example 1, argon gas was introduced into the vacuum evaporation apparatus in advance, a charged particle source was provided in the vacuum evaporation apparatus in place of the ion source, and the argon gas inside the vacuum evaporation apparatus was removed by this charged particle source. A magnetic tape was made as in Example 1 except that the gas was ionized and directed onto the polyester base film.

各実施例および各比較例で得られた磁気テープにっいて
保磁力(Hc)および角型(Br/Bm)を測定した。
次表はその結果である。
The coercive force (Hc) and squareness (Br/Bm) of the magnetic tapes obtained in each Example and each Comparative Example were measured.
The following table shows the results.

上表から明らかなように、この発明の製造方法によつて
得られた磁気テープ(実施例1〜3)は、従来の製造方
法lζよつて得られた磁気テープ(比較例1および2)
に比しいずれも保磁カカ塙くて角型も大きく、このこと
からこの発明の製造方法によつて得られた磁気テープは
磁気特性が優れていることがわかる。
As is clear from the above table, the magnetic tapes obtained by the manufacturing method of the present invention (Examples 1 to 3) are higher than the magnetic tapes obtained by the conventional manufacturing method (Comparative Examples 1 and 2).
Compared to the above, all of the magnetic tapes have a larger coercive strength and a larger square shape, which indicates that the magnetic tape obtained by the manufacturing method of the present invention has excellent magnetic properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法を実施するために使用する
蒸着装置の概略断面図、第2図は蒸着装置内に配設した
イオン源の拡大断面図である。 1・・・・・・真空槽、3・・・・・・円筒状キヤン、
4・・・・・・基板、9・・・・・・強磁性材料蒸発源
、10・・・・・・強磁性材料、11・・・・・・イオ
ン源、12・・・・・・電極、A・・・・・・強磁性材
料の蒸気流。
FIG. 1 is a schematic cross-sectional view of a vapor deposition apparatus used to carry out the manufacturing method of the present invention, and FIG. 2 is an enlarged cross-sectional view of an ion source disposed within the vapor deposition apparatus. 1... Vacuum chamber, 3... Cylindrical can,
4...Substrate, 9...Ferromagnetic material evaporation source, 10...Ferromagnetic material, 11...Ion source, 12... Electrode, A... Vapor flow of ferromagnetic material.

Claims (1)

【特許請求の範囲】[Claims] 1 真空槽内に、円筒状キヤンの周側面に沿つて移動す
る基板と、この基板の移動方向に沿つて順次に基板と対
向する強磁性材料蒸発源と真空槽外からガスをイオン化
して導入するイオン源とを配設するとともに、イオン源
と前記基板間にイオン化されたガスを収束して基板に導
く電極を配設し、真空雰囲気下で強磁性材料の蒸気流と
イオン源からのイオン化されたガスとを同時に前記基板
に差し向けて基板上に強磁性金属薄膜層を形成すること
を特徴とする磁気記録媒体の製造方法。
1 Into a vacuum chamber, a substrate moves along the circumferential side of a cylindrical can, a ferromagnetic material evaporation source faces the substrate sequentially along the direction of movement of the substrate, and ionized gas is introduced from outside the vacuum chamber. An ion source is disposed between the ion source and the substrate, and an electrode is disposed between the ion source and the substrate to converge the ionized gas and guide it to the substrate. A method for manufacturing a magnetic recording medium, comprising the step of simultaneously directing the gas to the substrate to form a ferromagnetic metal thin film layer on the substrate.
JP16731579A 1979-12-22 1979-12-22 Method for manufacturing magnetic recording media Expired JPS5948450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16731579A JPS5948450B2 (en) 1979-12-22 1979-12-22 Method for manufacturing magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16731579A JPS5948450B2 (en) 1979-12-22 1979-12-22 Method for manufacturing magnetic recording media

Publications (2)

Publication Number Publication Date
JPS5690432A JPS5690432A (en) 1981-07-22
JPS5948450B2 true JPS5948450B2 (en) 1984-11-27

Family

ID=15847463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16731579A Expired JPS5948450B2 (en) 1979-12-22 1979-12-22 Method for manufacturing magnetic recording media

Country Status (1)

Country Link
JP (1) JPS5948450B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812317A (en) * 1981-07-15 1983-01-24 Sony Corp Manufacture of thin film magnetic medium
JPS59213033A (en) * 1983-05-18 1984-12-01 Ulvac Corp Manufacture of vertical magnetic recording body
JPS59201228A (en) * 1983-04-28 1984-11-14 Tdk Corp Manufacture of magnetic recording medium
JPS6085439A (en) * 1983-10-18 1985-05-14 Nippon Mining Co Ltd Production of magnetic recording medium

Also Published As

Publication number Publication date
JPS5690432A (en) 1981-07-22

Similar Documents

Publication Publication Date Title
US4511594A (en) System of manufacturing magnetic recording media
US4767516A (en) Method for making magnetic recording media
US4673610A (en) Magnetic recording medium having iron nitride recording layer
JPH0318254B2 (en)
US4990361A (en) Method for producing magnetic recording medium
JPS5948450B2 (en) Method for manufacturing magnetic recording media
EP0035894B1 (en) Process for producing a magnetic recording medium
JPH033369B2 (en)
JPS5836413B2 (en) Magnetic recording medium manufacturing method and its manufacturing device
JPH0318253B2 (en)
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JPH053052B2 (en)
JPS5849927B2 (en) Method for manufacturing magnetic recording media
JPH0646456B2 (en) Magnetic recording medium manufacturing equipment
JPS59172163A (en) Production of vertical magnetic recording medium
JP2987406B2 (en) Film forming method and film forming apparatus
JPS58161138A (en) Manufacture of magnetic recording medium
JPH01107319A (en) Production of magnetic recording medium
JPH0328045B2 (en)
JPS6236285B2 (en)
JPH0341896B2 (en)
JPH0528487A (en) Production of magnetic recording medium
JPH07192259A (en) Production of magnetic recording medium
JPH01133219A (en) Production of magnetic recording medium
JPS61133030A (en) Production of magnetic recording medium