JPS5836413B2 - Magnetic recording medium manufacturing method and its manufacturing device - Google Patents

Magnetic recording medium manufacturing method and its manufacturing device

Info

Publication number
JPS5836413B2
JPS5836413B2 JP53049561A JP4956178A JPS5836413B2 JP S5836413 B2 JPS5836413 B2 JP S5836413B2 JP 53049561 A JP53049561 A JP 53049561A JP 4956178 A JP4956178 A JP 4956178A JP S5836413 B2 JPS5836413 B2 JP S5836413B2
Authority
JP
Japan
Prior art keywords
electron beam
beam evaporation
recording medium
magnetic recording
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53049561A
Other languages
Japanese (ja)
Other versions
JPS54141111A (en
Inventor
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53049561A priority Critical patent/JPS5836413B2/en
Publication of JPS54141111A publication Critical patent/JPS54141111A/en
Publication of JPS5836413B2 publication Critical patent/JPS5836413B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は金属薄膜形の磁気記録媒体の製造方法およびそ
の製造装置の改良に関し、磁気録音、録画に用いられる
長尺の磁気テープとしてすぐれた特性を与えることを目
的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal thin film type magnetic recording medium and an improvement in its manufacturing apparatus, and an object of the present invention is to provide excellent characteristics as a long magnetic tape used for magnetic recording. This is what I did.

従来、7−Fe203 , Cr02等の強磁性粉末を
結合剤とともに混合、塗布、硬化させたいわゆる塗布形
テープにおいては、結合剤中に磁性粉末を分散させると
いう、原理的に結合剤を除けないことから、磁気記録の
高密度化指向に対しての対応に限界がみえ始め、本質的
に結合剤を必要としない金属薄膜形磁気記録媒体への期
待が高まっている。
Conventionally, in so-called coated tapes in which ferromagnetic powder such as 7-Fe203, Cr02, etc. is mixed with a binder, applied, and cured, the magnetic powder is dispersed in the binder, and the binder cannot be removed in principle. Since then, there has begun to be a limit to the ability to respond to the trend toward higher densities in magnetic recording, and expectations are increasing for metal thin film magnetic recording media that essentially do not require binders.

強磁性金属薄膜を基材上に形成する方法は、特別のもの
ではなく、公知の薄膜技術である、電解メッキ、無電解
メッキ、真空蒸着、スパッタリング、イオンブレーテイ
ング、気相法等のいずれを用いることもできる。
The method for forming a ferromagnetic metal thin film on a base material is not special, and any known thin film technology such as electrolytic plating, electroless plating, vacuum evaporation, sputtering, ion blating, or vapor phase method may be used. It can also be used.

しかし、優れた磁性膜として得られるCo−Pに代表さ
れるメッキ膜は実験室規模を脱しきれないでいる。
However, the plating film typified by Co--P, which can be obtained as an excellent magnetic film, has not reached the laboratory scale.

即ち、長尺の基材上に均一に形成し、かつ現行磁気記録
再生機器の如き磁気ヘッドと記録媒体が摺動運動する時
の機械的圧力に耐える付着強度を有することができない
という工業化ヘノ大きな壁に当っている。
In other words, it is difficult to form a uniform layer on a long base material and has an adhesive strength that can withstand the mechanical pressure generated when the magnetic head and recording medium slide in the current magnetic recording and reproducing equipment. It's hitting the wall.

他の方法にしてもバッチ式の域を出ていないため、高い
抗磁力の薄膜を得たとの報告も多いが、長尺基材上に再
現性良くかつ工業規模で高速に磁気記録媒体を得る方法
は見当らない。
Other methods are only batch-type, and there are many reports of obtaining thin films with high coercive force, but magnetic recording media can be obtained on long substrates with good reproducibility and at high speed on an industrial scale. I can't find a way.

本発明はこのような実状に鑑み、先に従来の斜方蒸着法
に代る高速で高い抗磁力の薄膜をうる方法を提供した〔
特願昭51−116932号←特公昭57−29770
号公報参照〕〕ものに改良を加え、短波長域での雑音を
減少しかつ損失の小さな磁気記録媒体をうる方法を見出
したものであるそれと同時に製造に適し、かつ実用上の
効果をあげることのできる製造装置についてもあわせて
提供しようとするものである。
In view of these circumstances, the present invention has provided a method for producing a thin film with high coercive force at high speed in place of the conventional oblique evaporation method [
Patent Application No. 1982-116932←Special Publication No. 57-29770
[Refer to the publication]] We have discovered a method of improving the magnetic recording medium to reduce noise in the short wavelength range and to obtain a magnetic recording medium with small loss, and at the same time, it is suitable for manufacturing and has practical effects. We also intend to provide manufacturing equipment that can do this.

本発明で取扱う金属薄膜形磁気記録媒体は第1図に示す
断酊構造に代表される。
The thin metal film type magnetic recording medium used in the present invention is typified by the structure shown in FIG.

即ち、基材1上に非磁性層2、磁性層3、非磁性層4、
磁性層5を重ねて配設したものであり、他の変形として
、同様な手順で更に多層の磁性層を配したもの、必要に
応じて保護層を配したもの磁性層が単層のみのもの等に
おいても適用できるものであるが、説明の便宜上第1図
の構成を例として説明する。
That is, on the base material 1, a non-magnetic layer 2, a magnetic layer 3, a non-magnetic layer 4,
The magnetic layer 5 is arranged one on top of the other, and other variations include those in which multiple magnetic layers are arranged in the same manner, those in which a protective layer is arranged as necessary, and those in which the magnetic layer is only a single layer. However, for convenience of explanation, the configuration shown in FIG. 1 will be described as an example.

本発明は非磁性層の形成において適用しても後述する如
き効果を有するが、磁気記録媒体にとって重要な磁気特
性を著しく改良する効果を有するものであるから、以下
磁性層の形成について説明する。
Although the present invention has the effects described below even when applied to the formation of a nonmagnetic layer, it has the effect of significantly improving the magnetic properties important for a magnetic recording medium, so the formation of the magnetic layer will be explained below.

磁性層の形成は真空雰囲気で行われるのが前提であるが
、ここでいう真空雰囲気とは、真空排気系で排気されて
いる状態、並びに酸素ガス等のガスを強制的に導入して
いる状態も含み、工業的にはIXIQ”−3Tor4r
?.・〜lX10−6Torrの範囲を意味している。
It is assumed that the formation of the magnetic layer is performed in a vacuum atmosphere, but the vacuum atmosphere here refers to a state where the material is evacuated by a vacuum evacuation system, or a state where gas such as oxygen gas is forcibly introduced. Also included, industrially IXIQ"-3Tor4r
? ..・It means the range of ~1X10-6 Torr.

第3図、第4図、第6図で本発明を実施するための製造
装置を示すが、これにより理解されるように、蒸気流の
高入射角或分を含む前半の部分(基材に対して)のみが
加速されたイオンを含む蒸気流で構成されることが重要
であり、円筒状キャンの周側面に沿って移動する基材に
差し向けられるその蒸気流の加速イオンを含む部分が、
より斜方蒸着効果の強調される高入射角成分を含むこと
が必要である。
3, 4, and 6 show a manufacturing apparatus for carrying out the present invention. As can be understood from these figures, the first half of the vapor flow containing a high incident angle (on the base material) It is important that only the vapor stream containing accelerated ions (as opposed to ,
It is necessary to include a high incident angle component that further emphasizes the oblique deposition effect.

これを非磁性層の形或に適用した場合は、前述したメッ
キ膜で問題であった膜の付着強度が全く問題ないまでに
改良されるし、磁性層形成(非磁性層の形成と併用して
も同様である。
If this is applied to the form of a non-magnetic layer, the adhesion strength of the film, which was a problem with the plated film described above, will be improved to the point where there is no problem at all, and the formation of the magnetic layer (combined with the formation of the non-magnetic layer) will be improved. The same applies.

)に適用した場合は、第2図、第5図、第7図に示すよ
うに、高密度記録にとって重要な高い抗磁力、良好な角
形性を得ることができるとともに、微細構造的な均一性
に根ざしていると想像される、短波長域での低雑音化に
対し著しい効果を発揮するものであり、次にこの点を詳
述する。
), as shown in Figures 2, 5, and 7, it is possible to obtain high coercive force and good squareness, which are important for high-density recording, as well as fine structural uniformity. This has a remarkable effect on reducing noise in the short wavelength range, which is thought to be based on

第3図に本発明の製造装置の一例を示した。FIG. 3 shows an example of the manufacturing apparatus of the present invention.

真空槽6内に円筒状のキャン7,9と対向した電子ビー
ム蒸発源を対向して配設する。
An electron beam evaporation source facing cylindrical cans 7 and 9 is disposed in a vacuum chamber 6 to face each other.

電子ビーム蒸発源は水冷銅ハース1γ,18と夫々にチ
ャージされた蒸発材料8,10と電子発生源19.20
とで模式的に示されている。
The electron beam evaporation source includes water-cooled copper hearths 1γ and 18, evaporation materials 8 and 10 charged respectively, and an electron source 19 and 20.
This is schematically shown.

8は非磁性材料であり10は強磁性材料である。8 is a non-magnetic material and 10 is a ferromagnetic material.

基材14は捲き出し軸15、捲き取り軸16、金属ロー
ラ24等で構成される捲き取り系により、前記キャン1
,9の周側面に沿って移動するよう配設される。
The base material 14 is rolled up into the can 1 by a winding system consisting of a winding shaft 15, a winding shaft 16, a metal roller 24, etc.
.

強磁性材料10を加熱気化して得た蒸気流11の高入射
角或分を含む前半の部分のみを、加速イオンを含む蒸気
流とするために、加速電極12が、キャン9と蒸発源の
中間の適当な位置に配設される。
In order to convert only the first half of the vapor flow 11 obtained by heating and vaporizing the ferromagnetic material 10 into a vapor flow containing accelerated ions, an acceleration electrode 12 is connected between the can 9 and the evaporation source. It is placed at an appropriate position in the middle.

この加速電極12は絶縁導入端子25を介して直流電源
13に接続される。
This accelerating electrode 12 is connected to a DC power source 13 via an insulated introduction terminal 25.

もちろん、直流電源13を交流電源、更に高周波電源に
代えて接続しても同様の効果をうることができるもので
ある。
Of course, the same effect can be obtained even if the DC power source 13 is connected to an AC power source or even a high frequency power source instead.

電子ビーム蒸発源は本質的にイオンの発生を伴うことが
知られており、前記構成により蒸気流11の斜線を入れ
た部分はイオンプレーテイングが実施されたことになる
It is known that an electron beam evaporation source essentially involves the generation of ions, and with the above configuration, ion plating is performed in the shaded portion of the vapor flow 11.

更に積極的なイオン化機構を配設することも町能で、そ
の構成例は後述する。
It is also possible to provide a more active ionization mechanism, and an example of its configuration will be described later.

加速電極12は殆んどの場合メッシュ状で構成されるが
、場合によっては、一本の線であっても良い。
In most cases, the accelerating electrode 12 is configured in the form of a mesh, but in some cases, it may be configured as a single wire.

全面を電極で覆い蒸気流11全てをイオンプレーテイン
グ化することと基本的lこ異なるのは、後述する雑音と
関連する点で重要であり、本発明の重要な点である。
This is fundamentally different from covering the entire surface with electrodes and converting the entire vapor flow 11 into ion plating, which is important in relation to noise, which will be described later, and is an important point of the present invention.

真空槽6内は排気装置21によって連続的に排気され、
必要に応じて、酸素等の気体を外部より、可変リーク弁
23を調節して導入することにより適当な真空度に保持
されるよう構成されている。
The inside of the vacuum chamber 6 is continuously evacuated by an exhaust device 21,
If necessary, a suitable degree of vacuum is maintained by introducing gas such as oxygen from the outside by adjusting the variable leak valve 23.

22は防着板と仕切板を兼ねたものである。Reference numeral 22 serves as both an anti-adhesion plate and a partition plate.

本装置によって第1図の記録媒体をうるには、A方向に
基材14を移動しながら、蒸着し、反転し捲き戻した後
再度A方向で蒸着をくり返せば良い。
In order to obtain the recording medium shown in FIG. 1 using this apparatus, the substrate 14 may be deposited while being moved in the direction A, and after being reversed and rolled back, the deposition may be repeated again in the direction A.

非磁性材料8をCrとA7,強磁性材料10をCo(S
i )[Co 9 8%Si 1.8%,0.2%は他
の不純物]とし、酸素2 X 1 0 −’Torr
中で、電子ビームパワー、1 01(V, 1 6kW
で夫々蒸発させ加速電極12への印加電圧をOV〜−5
00Vの範囲で町変し、ポリエチレンテレフタレートフ
イルム(厚さ10μ)を基材14とし、Cr,AA層を
0.03〜0.05μ,Co(Si)層を0.05〜0
.08μの範囲に制御し第1図の構或の磁気記録媒体を
製造し、抗磁力を測定した。
The nonmagnetic material 8 is made of Cr and A7, and the ferromagnetic material 10 is made of Co(S).
i) [Co 9 8%Si 1.8%, 0.2% is other impurities], oxygen 2
Among them, the electron beam power is 101 (V, 16 kW)
The voltage applied to the accelerating electrode 12 is OV~-5.
00V, polyethylene terephthalate film (thickness 10μ) is used as the base material 14, Cr, AA layer is 0.03 to 0.05μ, Co (Si) layer is 0.05 to 0.
.. A magnetic recording medium having the structure shown in FIG. 1 was manufactured by controlling the coercive force within the range of 0.08 μm, and the coercive force was measured.

その結果下地材料(非磁性材料)により抗磁力が若干異
なるが、本発明によらない(即ち第2図でOv)ものと
比べ40%強の抗磁力の増加があることが第2図により
理解される。
As a result, although the coercive force differs slightly depending on the underlying material (non-magnetic material), it can be understood from Fig. 2 that the coercive force increases by over 40% compared to the one not based on the present invention (that is, Ov in Fig. 2). be done.

これは他の鉄族元素、それらの組み合わせ等、公知の磁
性材料のいくつかについて確認をすませ非磁性材料、基
材材料についても同様の確認をとった。
This has been confirmed for several known magnetic materials, such as other iron group elements and their combinations, and the same confirmation has been made for non-magnetic materials and base materials.

又加速電極12への印加電圧も商用周波数の交流電圧、
1’3.56MHzの高周波電圧についても実施し、い
ずれも30〜50%強の抗磁力増加効果を確認した。
The voltage applied to the accelerating electrode 12 is also a commercial frequency AC voltage,
A high frequency voltage of 1'3.56 MHz was also applied, and in each case, a coercive force increasing effect of over 30 to 50% was confirmed.

基材14とし、平滑度の高い基材を用いて本発明により
得た磁気記録媒体は、記録波長5μ以下の短波長域で雑
音レベルが市販の塗布形の最高品質品に比べて数dB低
く、高密度指向への期待に充分こたえうるものであるこ
とを物語っている。
The magnetic recording medium obtained according to the present invention using a highly smooth base material as the base material 14 has a noise level several dB lower than that of the highest quality commercially available coated type products in the short wavelength range of 5 μ or less. This shows that it can fully meet expectations for high-density orientation.

抗磁力増加に関して、あるいは後述する角形性の改良に
関して前述したような全域イオンプレーテイングをして
得た膜は粒子サイズが大きい傾向を示し、かつ粒子サイ
ズ分散が大きいため、雑音で本発明品に劣り、特に消去
雑音レベルで、はっきりした差があり、本発明の優位性
を示している。
With regard to increasing coercive force or improving squareness, which will be discussed later, films obtained by the above-mentioned area-wide ion plating tend to have large particle sizes, and because the particle size dispersion is large, it is difficult to use the products of the present invention due to noise. There is a clear difference, especially in the cancellation noise level, indicating the superiority of the present invention.

本発明を実施するための装置として第4図に要部断面を
示した構成も同一の効果をもたらし得るものとして挙げ
ることができる。
As an apparatus for carrying out the present invention, the configuration shown in FIG. 4 as a cross section of the main part can also be mentioned as one that can bring about the same effect.

第3図と同一部位には同一番号を付してある。The same parts as in FIG. 3 are given the same numbers.

キャン9と対向し二組の電子ビーム蒸発源を配設し矢印
方向に基材14が移動した時初期の斜方蒸着効果の高い
領域で加速イオンを含んだ蒸気流が基材14に向うよう
第4図の如き配置をとる。
Two sets of electron beam evaporation sources are arranged facing the can 9, so that when the substrate 14 moves in the direction of the arrow, a vapor flow containing accelerated ions is directed toward the substrate 14 in a region where the initial oblique evaporation effect is high. The arrangement is as shown in Figure 4.

28.29は水冷銅ハース、26,2γは同一強磁性材
料、30,31は電子発生源を示し、第3図と同様であ
る。
28 and 29 are water-cooled copper hearths, 26 and 2γ are the same ferromagnetic material, and 30 and 31 are electron generating sources, which are the same as in FIG.

25は防着板である。32は高周波電極であり、図示せ
ぬ高周波電源に接続される。
25 is an anti-adhesion plate. 32 is a high frequency electrode, which is connected to a high frequency power source (not shown).

この構成を第3図に当てはめて、Cr/Co(Si)A
A/Co(Si )を製潰した。
Applying this configuration to Fig. 3, Cr/Co(Si)A
A/Co(Si 2 ) was milled.

高周波電力と得られた磁気記録媒体の角形化の関係を示
した第5図より理解できるように、150W以上で10
0%という最高の角形性を得ることができた。
As can be understood from Fig. 5, which shows the relationship between high frequency power and the squareness of the obtained magnetic recording medium, at 150 W or more, 10
The highest squareness of 0% could be obtained.

他の実施例、抗磁力、雑音についても前述の場合と同様
の改良がなされていた。
Improvements similar to those in the above case were made in other embodiments with respect to coercive force and noise.

なお、本発明と類似の効果を期待しうる方法として別々
のキャンを利用して、イオンプレーテイングと電子ビー
ム蒸着を実施する方法が考えられるが、同一キャンで連
続して薄膜形或を行う本発明と本質的に異なるものであ
る。
Note that a method that can be expected to produce effects similar to those of the present invention is to use separate cans to perform ion plating and electron beam evaporation, but this method involves continuously performing thin film deposition in the same can. It is essentially different from the invention.

即ち、高速で基材14を移動してもある時間遅れがあり
、同一材料であっても別蒸着となってしまい、物性が異
なるものとなる。
That is, even if the base material 14 is moved at high speed, there is a certain time delay, and even if the material is the same, it will be deposited separately, resulting in different physical properties.

磁気記録媒体としても、従って前述した雑音面で本発明
を陵駕することができないものであり、本発明の価値は
やはり大きい。
Even as a magnetic recording medium, the present invention cannot be surpassed in terms of the above-mentioned noise, and the present invention is still of great value.

第4図の構或で雑音面を考慮すると、第3図の例で類推
できるように、加速イオンを含む蒸気流による磁性層の
厚さは薄い程よく、本発明の効果は0.005〜0.0
1μあれば充分である。
Considering the noise aspect in the structure shown in FIG. 4, as can be inferred from the example shown in FIG. .0
1μ is sufficient.

この数値は本発明を限定するものではなく、更に薄くす
ることも又、もう少し厚くすることも高周波電極形状、
キャンと電極、蒸発源の相対配置関係により町能である
This value does not limit the present invention, and the high frequency electrode shape may be made thinner or a little thicker.
It is a town function due to the relative arrangement of the can, electrode, and evaporation source.

更に本発明を実施する別の装置について説明する。Further, another apparatus for carrying out the present invention will be explained.

これは、キャンと対向する電子ビーム蒸発源が一つの場
合で前述した第3図より更に加速イオン量を多くする工
夫をなしたものである。
This is a contrivance to increase the amount of accelerated ions even more than that shown in FIG. 3 described above in the case where there is only one electron beam evaporation source facing the can.

第6図の構成がそれで、9,14,24は前述の通りで
ある。
The configuration shown in FIG. 6 is the same, and 9, 14, and 24 are as described above.

電子ビーム蒸発源は、水冷銅ハース35、蒸発材料34
、電子発生源36で示されているのは前述の例と同様で
ある。
The electron beam evaporation source is a water-cooled copper hearth 35 and an evaporation material 34.
, an electron source 36 is shown as in the previous example.

第6図は熱陰極プラズマを利用して蒸気流33の前半の
部分のみをイオン化する方式を模式的に示している。
FIG. 6 schematically shows a method of ionizing only the first half of the vapor flow 33 using hot cathode plasma.

即ち、広巾の基材14が工業的には用いられるので、紙
面に垂直な方向に伸びた平行平板電極38.39を配設
する。
That is, since a wide base material 14 is used industrially, parallel plate electrodes 38 and 39 extending in a direction perpendicular to the plane of the paper are provided.

巾方向の均一化をはかるための工夫は当然なされるもの
であり省略するが、最も簡単なのは基材14の巾をW。
Efforts to make the width uniform in the width direction are naturally made and will be omitted here, but the simplest method is to set the width of the base material 14 to W.

とすれば、1.4Wo以上この平行平板電極38,39
の巾をとれば目的は達することができる。
If 1.4Wo or more, these parallel plate electrodes 38, 39
You can reach your goal if you take the time to do so.

この平行平板電極対の一方38は熱電子を通過せしめる
横長(当然巾方向に伸びた)の孔を有しており、熱陰極
3γよりの熱電子を通過させることで1 0 ’ T
orr台、条件次第では10−5Torr台でもプラズ
マ状態を作りうる効果を持つ。
One side 38 of this pair of parallel plate electrodes has a horizontally elongated (obviously extending in the width direction) hole through which thermionic electrons pass.
It has the effect of creating a plasma state even at 10-5 Torr level depending on the conditions.

40は加速電極で、常に必要ではなく、プラズマの電位
によっては、これを配設しなくても本発明の効果を得る
ことができるが、制御性、安定性の面で配設する方が好
ましい。
Reference numeral 40 denotes an accelerating electrode, which is not always necessary, and depending on the potential of the plasma, the effect of the present invention can be obtained even without this, but it is preferable to provide it in terms of controllability and stability. .

ただし、ここに印加する電圧(負である場合が多い)は
高ければ良い訳ではなく、第γ図の加速電圧400v←
特性a)IOOOV(特性b)の例で理解できるように
相対配置関係等により適正条件を見出すことが必要であ
る。
However, the voltage applied here (often negative) is not necessarily as high as it should be, and the acceleration voltage of 400V in Fig.
As can be understood from the example of characteristic a) IOOOV (characteristic b), it is necessary to find appropriate conditions based on relative arrangement relationships, etc.

第6図において破線で囲んだ部分は外部に置かれる電源
配置であり熱陰極加熱電源(交直いずれでも良い)42
と、この一端と同電位に有孔平行平板電極38を配し、
この平行平板電極38に対して正の電位に他方の平行乎
板電極39を置くための直流電源41とで構成される。
In Fig. 6, the part surrounded by a broken line is the power supply arrangement placed outside, and the hot cathode heating power supply (either AC or DC may be used) 42
A perforated parallel plate electrode 38 is arranged at the same potential as this one end,
It is composed of a DC power source 41 for placing the other parallel plate electrode 39 at a positive potential with respect to the parallel plate electrode 38.

第1図は、Cr/Co(Si),AA’/Co(Si)
の例であり、放電電流をパラメータに抗磁力の変化を描
いた図であり、本発明により倍加せしめる程の効果をこ
こにみることができる。
Figure 1 shows Cr/Co(Si), AA'/Co(Si)
This is a diagram depicting the change in coercive force using the discharge current as a parameter, and the effect that can be doubled by the present invention can be seen here.

平行平板電極間の電圧は150V一定とし、熱陰極用電
源電圧を変えることで放電電流を変えたデータである。
The data shows that the voltage between the parallel plate electrodes was constant at 150 V, and the discharge current was changed by changing the hot cathode power supply voltage.

以上の実施例から明らかなように本発明は、基材に差し
向ける磁性材料の蒸気流の高入射角成分を含む前半の部
分(基材に対して)のみを加速されたイオンを含む状態
にして基材に磁性層を形成するものであり、このように
することにより高抗磁力の、良好な角形性の、しかも短
波長域で雑音が少なくかつ損失の小さな磁気記録媒体を
生産規模で製造できるようになったものであり、高密度
記録指向の磁気記録分野への貢献度は極めて高いといえ
る工業的価値の大なるものである。
As is clear from the above embodiments, the present invention makes only the first half (relative to the base material) containing the high incidence angle component of the vapor flow of the magnetic material directed toward the base material into a state containing accelerated ions. By doing this, it is possible to manufacture magnetic recording media with high coercive force, good squareness, low noise in the short wavelength range, and low loss on a production scale. It is of great industrial value and can be said to have made an extremely high contribution to the field of magnetic recording, which is oriented toward high-density recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明6こよって得られる磁気記録媒体の一実
施例を示す断面図、第2図は同磁気記録媒体の抗磁力特
性図、第3図は同製造装置の一実施例を示す概略構成図
′、第4図は他の実施例における製造装置の要部の概略
構成図、第5図は同装置によって得た磁気記録媒体の角
形比を示す特性図、第6図はさらに他の実施例の製造装
置の要部の概略構成図、第T図は同装置によって得た磁
気記録媒体の抗磁力を示す特性図である。 1・・・・・・基材、2,4・・・・・・非磁性層、3
,5・・・・・・磁性層、6・・・・・・真空槽、γ,
9・・・・・・円筒状キャン、8,10,26,2γ,
34・・・・・・蒸発材料、11,33・・・・・・蒸
気流、12,40・・・・・・加速電極、14・・・・
・・基材、32・・・・・・高周波電極、31・・・・
・・熱陰極、3B,39・・・・・・平行平板電極・
FIG. 1 is a sectional view showing an embodiment of the magnetic recording medium obtained by the present invention 6, FIG. 2 is a coercive force characteristic diagram of the magnetic recording medium, and FIG. 3 is an embodiment of the manufacturing apparatus. 4 is a schematic configuration diagram of the main parts of a manufacturing apparatus in another embodiment, FIG. 5 is a characteristic diagram showing the squareness ratio of a magnetic recording medium obtained by the same apparatus, and FIG. 6 is a diagram showing another example. Fig. T is a characteristic diagram showing the coercive force of a magnetic recording medium obtained by the apparatus. 1...Base material, 2, 4...Nonmagnetic layer, 3
, 5...Magnetic layer, 6...Vacuum chamber, γ,
9... Cylindrical can, 8, 10, 26, 2γ,
34... Evaporation material, 11,33... Vapor flow, 12,40... Accelerating electrode, 14...
... Base material, 32 ... High frequency electrode, 31 ...
・・Hot cathode, 3B, 39・・・Parallel plate electrode・

Claims (1)

【特許請求の範囲】 1 真空雰囲気内で円筒状キャンの周側面に沿って移動
する基材に磁性材料を加熱気化して得た蒸気流を差し向
けることにより前記基材の表面に磁性層を形成するに際
し、前記蒸気流の高入射角成分を含む前半の部分のみが
加速されたイオンを含む状態にあることん特徴とする磁
気記録媒体の製造方法。 2 真空槽内に移動する基材をガイドする円筒状キャン
を設けるとともに、前記円筒状キャンに対向して磁性材
料を加熱気化する電子ビーム蒸発源を設け、この電子ビ
ーム蒸発源と前記円筒状キャンの間に前記電子ビーム蒸
発源からの蒸気流の高入射角成分を含む前半の部分のみ
を加速されたイオンを含む状態とするイオン化手段を配
置したことを特徴とする磁気記録媒体の製造装置。 3 電子ビーム蒸発源を1個の円筒状キャンに対向して
二組配設し、一方はイオンプレーテイングを、他方は電
子ビーム蒸着を叶能なように構或したことを特徴とする
特許請求の範囲第2項記載の磁気記録媒体の製造装置。 4 電子ビーム蒸発源を2個の円筒状キャンに対向して
それぞれ配設し、前記各電子ビーム蒸発源より放射され
る蒸気流の前半の部分をイオンプレーテイング、後半の
部分を電子ビーム蒸着可能なように構成したことを特徴
とする特許請求の範囲第2項記載の磁気記録媒体の製造
装置。
[Claims] 1. A magnetic layer is formed on the surface of the base material by directing a vapor flow obtained by heating and vaporizing a magnetic material to the base material moving along the circumferential side of a cylindrical can in a vacuum atmosphere. A method for manufacturing a magnetic recording medium, characterized in that, during formation, only the first half of the vapor flow containing high incident angle components contains accelerated ions. 2. A cylindrical can is provided to guide the substrate moving in the vacuum chamber, and an electron beam evaporation source for heating and vaporizing the magnetic material is provided opposite to the cylindrical can, and the electron beam evaporation source and the cylindrical can An apparatus for manufacturing a magnetic recording medium, characterized in that an ionization means is disposed between the electron beam evaporation source and the ionization means for making only the first half of the vapor flow from the electron beam evaporation source containing accelerated ions into a state containing accelerated ions. 3. A patent claim characterized in that two sets of electron beam evaporation sources are arranged facing each other in one cylindrical can, one of which is capable of performing ion plating and the other capable of performing electron beam evaporation. An apparatus for manufacturing a magnetic recording medium according to item 2. 4 Electron beam evaporation sources are arranged facing each other in two cylindrical cans, and the first half of the vapor flow emitted from each electron beam evaporation source can be ion plated, and the second half can be electron beam evaporated. An apparatus for manufacturing a magnetic recording medium according to claim 2, characterized in that it is configured as follows.
JP53049561A 1978-04-25 1978-04-25 Magnetic recording medium manufacturing method and its manufacturing device Expired JPS5836413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53049561A JPS5836413B2 (en) 1978-04-25 1978-04-25 Magnetic recording medium manufacturing method and its manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53049561A JPS5836413B2 (en) 1978-04-25 1978-04-25 Magnetic recording medium manufacturing method and its manufacturing device

Publications (2)

Publication Number Publication Date
JPS54141111A JPS54141111A (en) 1979-11-02
JPS5836413B2 true JPS5836413B2 (en) 1983-08-09

Family

ID=12834606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53049561A Expired JPS5836413B2 (en) 1978-04-25 1978-04-25 Magnetic recording medium manufacturing method and its manufacturing device

Country Status (1)

Country Link
JP (1) JPS5836413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984615U (en) * 1982-11-29 1984-06-07 ソニー株式会社 power protection circuit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736434A (en) * 1980-08-13 1982-02-27 Sekisui Chem Co Ltd Magnetic recording medium and its production
JPS57137462A (en) * 1981-02-17 1982-08-25 Matsushita Electric Ind Co Ltd Vacuum depositing method
JPH062939B2 (en) * 1982-03-16 1994-01-12 松下電器産業株式会社 Thin film generation method
JPS59148137A (en) * 1983-02-14 1984-08-24 Fuji Photo Film Co Ltd Production of magnetic recording medium
US4622271A (en) * 1984-04-20 1986-11-11 Fuji Photo Film Co., Ltd. Magnetic recording medium
JPH02129362A (en) * 1988-11-07 1990-05-17 Matsushita Electric Ind Co Ltd Production of highly functional thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033811A (en) * 1973-07-25 1975-04-01
JPS51149008A (en) * 1975-05-23 1976-12-21 Fuji Photo Film Co Ltd Magnetic recording medium manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033811A (en) * 1973-07-25 1975-04-01
JPS51149008A (en) * 1975-05-23 1976-12-21 Fuji Photo Film Co Ltd Magnetic recording medium manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984615U (en) * 1982-11-29 1984-06-07 ソニー株式会社 power protection circuit

Also Published As

Publication number Publication date
JPS54141111A (en) 1979-11-02

Similar Documents

Publication Publication Date Title
EP0015692B1 (en) A process for producing a magnetic recording medium
US4511594A (en) System of manufacturing magnetic recording media
JPS5836413B2 (en) Magnetic recording medium manufacturing method and its manufacturing device
US4002546A (en) Method for producing a magnetic recording medium
US4990361A (en) Method for producing magnetic recording medium
EP0035894A1 (en) Process for producing a magnetic recording medium
JPH033369B2 (en)
JPH0352136B2 (en)
JPS58199862A (en) Magnetron type sputtering device
JPS5948450B2 (en) Method for manufacturing magnetic recording media
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JP2987406B2 (en) Film forming method and film forming apparatus
JPH0334619B2 (en)
JPS59129944A (en) Method and device for manufacturing magnetic recording medium
JPS6151336B2 (en)
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JPH0334621B2 (en)
JPS6045943A (en) Production of magnetic recording medium
JPS61273738A (en) Production of magnetic recording medium
JPS6236285B2 (en)
JPH06264218A (en) Sputtering target
JPH06306602A (en) Production of thin film
JPS6288314A (en) Forming method for iron-copper system magnetic thin film
JPH0341896B2 (en)
JPS60217531A (en) Production of magnetic recording medium