JPS6151336B2 - - Google Patents

Info

Publication number
JPS6151336B2
JPS6151336B2 JP11611880A JP11611880A JPS6151336B2 JP S6151336 B2 JPS6151336 B2 JP S6151336B2 JP 11611880 A JP11611880 A JP 11611880A JP 11611880 A JP11611880 A JP 11611880A JP S6151336 B2 JPS6151336 B2 JP S6151336B2
Authority
JP
Japan
Prior art keywords
crucible
base material
slit
vapor
ferromagnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11611880A
Other languages
Japanese (ja)
Other versions
JPS5740758A (en
Inventor
Masahiro Hotsuta
Yoshuki Fukumoto
Yoichi Mikami
Yoji Kono
Shinsaku Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11611880A priority Critical patent/JPS5740758A/en
Publication of JPS5740758A publication Critical patent/JPS5740758A/en
Publication of JPS6151336B2 publication Critical patent/JPS6151336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は、基材の幅方向に均質な磁気特性を有
する磁気層が形成された磁気記録媒体の製造方法
及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for manufacturing a magnetic recording medium in which a magnetic layer having uniform magnetic properties is formed in the width direction of a base material.

従来、磁気記録媒体としては、酸化鉄、酸化ク
ロム等の針状磁性粉あるいは、強磁性体金属の超
微粉末を樹脂バインダー中に分散し、これを非磁
性基材上に塗布した磁気記録媒体が広く用いられ
てきた。
Conventionally, magnetic recording media have been made by dispersing acicular magnetic powder such as iron oxide or chromium oxide or ultrafine powder of ferromagnetic metal in a resin binder and coating this on a non-magnetic base material. has been widely used.

しかしながら、近年、該磁気記録媒体に対して
も情報の高密度記録化という要請が強くなり、
種々改良がなされてきたが、上記従来の塗布型の
磁気記録媒体では、用いる強磁性粉末の粒子の大
きさが、記録要素の最小単位としての限界に来て
おり、これ以上に記録密度を高めることが、原理
的に不可能であるため、この高密度記録化という
要請に答え難かつた。
However, in recent years, there has been a strong demand for high-density recording of information on magnetic recording media.
Various improvements have been made, but in the conventional coating-type magnetic recording media mentioned above, the particle size of the ferromagnetic powder used has reached its limit as the smallest unit of the recording element, and it is necessary to further increase the recording density. Since this is impossible in principle, it has been difficult to meet the demand for higher density recording.

このため最近、記録密度の飛躍的増大を目的と
して、樹脂バインダーを使用しない、磁性層が
100%強磁性体からなる薄膜(蒸着)型の磁気記
録媒体が、湿式メツキ法、真空蒸着法、スパツタ
リング法、イオンプレーテイング法等の薄膜形成
法を用いて精力的に研究開発され、一部は実用に
供されている。
For this reason, recently, with the aim of dramatically increasing recording density, magnetic layers that do not use resin binders have been developed.
Thin-film (vapor-deposited) magnetic recording media made of 100% ferromagnetic material have been actively researched and developed using thin-film formation methods such as wet plating, vacuum evaporation, sputtering, and ion plating. is in practical use.

しかしながら、上記各薄膜形成法によつて得ら
れる磁気記録媒体は、それぞれに欠点があり実用
上、種々の問題点を有していた。
However, the magnetic recording media obtained by each of the above-mentioned thin film forming methods have their own drawbacks and have various practical problems.

即ち、湿式メツキ、真空蒸着によつて形成され
た薄膜型の磁気記録媒体は磁性層と基材との密着
強度が極めて低いため、記録―再生時に於て、磁
気ヘツドとの接触走査による機械的摩擦によつ
て、磁性層が剥離したり、摩擦、損傷等を生じ易
いという欠点があつた。
In other words, thin-film magnetic recording media formed by wet plating or vacuum evaporation have extremely low adhesion strength between the magnetic layer and the base material. The disadvantage is that the magnetic layer is likely to peel off due to friction, or be easily damaged by friction.

又、スパツタリング法、イオンプレーテイング
法によつて形成された薄膜型の磁気記録媒体は、
磁性層と基材との密着強度は改善されるものの、
10-3トール以上の低真空中での直流グロー放電又
は高周波プラズマを利用して薄膜形成を行なう方
法であるため、残留ガスの取り込み、不純物の混
入などによつて、強磁性体薄膜層の結晶性に悪影
響を及ぼし、角形比が小さくなるほど磁気特性上
に欠点があつた。又放電状態の不均一性に起因す
る膜品質及び磁気特性上のバラツキ、不均一性な
どの難点を有し、高性能高密度記録用の磁気記録
媒体としては、いまだ解決しなければならない問
題点を多く残していた。
In addition, thin film magnetic recording media formed by sputtering method or ion plating method are
Although the adhesion strength between the magnetic layer and the base material is improved,
Since this method uses DC glow discharge or high-frequency plasma in a low vacuum of 10 -3 Torr or more to form a thin film, the crystals of the ferromagnetic thin film layer may deteriorate due to the incorporation of residual gas or the mixing of impurities. The smaller the squareness ratio, the more disadvantageous the magnetic properties were. Furthermore, it has drawbacks such as variations and non-uniformity in film quality and magnetic properties due to non-uniformity of the discharge state, and these problems still need to be solved as a magnetic recording medium for high-performance, high-density recording. I left a lot of.

又、イオンプレーテイング法等により薄膜型の
磁気記録媒体を製造する場合には、広巾の長尺フ
イルム状基材に磁気層を蒸着形成し、その後所望
の巾に裁断するのが製造効率の点で好ましいが、
従来においては広巾フイルムの巾方向に均質な磁
気特性を有する強磁性薄膜層を形成するのは困難
であつた。
In addition, when manufacturing thin-film magnetic recording media by ion plating or the like, it is important to form a magnetic layer on a wide long film substrate by vapor deposition, and then cut it to the desired width, in terms of manufacturing efficiency. is preferable, but
Conventionally, it has been difficult to form a ferromagnetic thin film layer having uniform magnetic properties in the width direction of a wide film.

本発明は上記の如き従来の薄膜型磁気記録媒体
の製造法の現状にかんがみ、高密度記録に適した
磁気特性を有するとともに、耐摩耗性等の実用特
性にすぐれた強磁性体薄膜層を広巾な基材上に均
一に、特に巾方向に均質な磁気特性となる様に蒸
着形成することの出来る磁気記録媒体の製造方法
及びその装置を提供することを目的としてなされ
たものであり、その要旨は高真空下において、長
尺のスリツトを有する密閉型のルツボを加熱し、
ルツボ内に供給された強磁性体金属を蒸気化して
該ルツボのスリツトより噴出させて帯状の蒸気流
を発生させ、該帯状蒸気流に対して加速電子を照
射することで該蒸気流中の蒸気粒子をイオン化す
ると共に、該イオン化蒸気粒子を電界加速して長
尺フイルム状の基材表面の巾方向全域に入射せし
めて該基材表面に強磁性体金属の薄膜層を形成さ
せることを特徴とする磁気記録媒体の製造方法及
び気圧8×10-4トール以下の高真空に排気し得る
真空槽内に、強磁性体金属の薄膜層を形成せんと
する長尺フイルム状の基材の巾よりも長い蒸気噴
出用のスリツトを有し、該スリツトの深さが該ス
リツトの間隙よりも大きくなされた密閉型のルツ
ボ、該ルツボの加熱手段、熱電子放出用フイラメ
ント及び電子加速用板状電極から構成される加速
電子照射装置、長尺フイルム状の基材を移動させ
るための基材移送装置及び強磁性体金属の蒸気粒
子が上記加速電子照射装置による加速電子照射に
よりイオン化されたイオン化されたイオン化蒸気
粒子を電界加速するための電極が設けられてなる
ことを特徴とする磁気記録媒体の製造装置に存す
る。
In view of the current state of manufacturing methods for conventional thin-film magnetic recording media as described above, the present invention has developed a wide ferromagnetic thin-film layer that has magnetic properties suitable for high-density recording and has excellent practical properties such as wear resistance. The purpose of this invention is to provide a method and apparatus for manufacturing a magnetic recording medium that can be deposited uniformly on a base material, particularly in a manner that the magnetic properties are uniform in the width direction. heats a closed crucible with a long slit under high vacuum,
The ferromagnetic metal supplied into the crucible is vaporized and ejected from the slit of the crucible to generate a band-shaped vapor flow, and by irradiating the band-shaped vapor flow with accelerated electrons, the vapor in the vapor flow is It is characterized by ionizing the particles and accelerating the ionized vapor particles in an electric field so that they are incident on the entire width direction of the surface of a long film-like base material to form a thin film layer of ferromagnetic metal on the surface of the base material. A method for producing a magnetic recording medium and a width of a long film-like base material in which a thin film layer of ferromagnetic metal is to be formed in a vacuum chamber that can be evacuated to a high vacuum of 8×10 -4 Torr or less A closed crucible having a long slit for steam ejection, the depth of which is greater than the gap between the slits, a heating means for the crucible, a filament for emitting thermionic electrons, and a plate-shaped electrode for accelerating electrons. An accelerated electron irradiation device comprising an accelerated electron irradiation device, a substrate transfer device for moving a long film-like substrate, and ionization in which ferromagnetic metal vapor particles are ionized by accelerated electron irradiation by the accelerated electron irradiation device. An apparatus for manufacturing a magnetic recording medium is characterized in that it is provided with an electrode for accelerating vapor particles with an electric field.

以下本発明について図面を参照しながら説明す
る。
The present invention will be described below with reference to the drawings.

第1図は本発明の磁気記録媒体の製造方法に用
いられる装置の一例を示す模型図であり、これら
の装置は、高真空に排気可能になされた真空槽
(図示されていない)内に配置されている。ここ
で本発明に云う高真空とは1×10-3トールよりも
真空度が高度になされた真空状態を意味し、通常
8×10-4〜1×1010トールの真空度が採用され得
る。
FIG. 1 is a schematic diagram showing an example of an apparatus used in the method of manufacturing a magnetic recording medium of the present invention, and these apparatuses are placed in a vacuum chamber (not shown) that can be evacuated to a high vacuum. has been done. Here, the high vacuum referred to in the present invention means a vacuum state with a degree of vacuum higher than 1×10 -3 Torr, and usually a vacuum degree of 8×10 -4 to 1×10 10 Torr may be adopted. .

図中1は長尺のスリツトを有する密閉型のルツ
ボであり、該ルツボ1内には強磁性体金属11が
供給されている。該強磁性体金属11としては
鉄、ニツケル、コバルトの単体金属やこれらの金
属の他の金属との合金若しくは混合物が使用出来
る。
In the figure, 1 is a closed crucible having a long slit, and a ferromagnetic metal 11 is supplied into the crucible 1. As the ferromagnetic metal 11, single metals such as iron, nickel, and cobalt, and alloys or mixtures of these metals with other metals can be used.

又、2は熱電子放出用フイラメント、3は電子
加速用電極であり、該フイラメント2及び該電極
3により加速電子照射装置が構成されている。
Further, 2 is a filament for emitting thermionic electrons, and 3 is an electrode for accelerating electrons, and the filament 2 and the electrode 3 constitute an accelerated electron irradiation device.

又、4は広巾な長尺フイルム状の基材であり、
該基材4は供給ロール5、ガイドロール6,7及
び巻取りロール8により構成される基材移送装置
により該基材4の長尺方向の矢印で示される方向
に連続的に移送される様になされている。ただし
これらロール5,8等の駆動装置は図示されてい
ない。上記基材4の材質としては可撓性を有する
フイルム状物に形成され得る非磁性材料であれば
使用可能であるが、ポリエチレンテレフタレート
などの有機高分子材料が好適に使用される。又、
9はイオン化蒸気粒子を電界加速するための電極
であり、該電極9はイオン化蒸気粒子を電界加速
させる作用を有すると共に、基材4を背面より支
持する作用も有する。
Further, 4 is a wide long film-like base material,
The base material 4 is continuously transported in the direction indicated by the arrow in the longitudinal direction of the base material 4 by a base material transfer device composed of a supply roll 5, guide rolls 6 and 7, and a take-up roll 8. is being done. However, driving devices for these rolls 5, 8, etc. are not shown. As the material for the base material 4, any non-magnetic material that can be formed into a flexible film-like material can be used, but organic polymeric materials such as polyethylene terephthalate are preferably used. or,
Reference numeral 9 denotes an electrode for accelerating ionized vapor particles with an electric field, and the electrode 9 has the function of accelerating the ionized vapor particles with an electric field, and also has the function of supporting the base material 4 from the back side.

第2図は第1図中のルツボ1を取り出して示す
一部切欠針視図であり、図中Lは密閉型のルツボ
1の上部に設けられた長尺のスリツトの開口部の
長さ、Wはスリツト開口部の巾、Dはスリツトの
深さを示す。
FIG. 2 is a partially cutaway view showing the crucible 1 in FIG. W indicates the width of the slit opening, and D indicates the depth of the slit.

なお上記スリツトの深さDとは密閉型ルツボ上
部に開口せるスリツトのルツボ内部開口端D1
外部開口端D2との最短距離を意味する。
The depth D of the slit means the shortest distance between the crucible inner open end D1 and the outer open end D2 of the slit opened at the top of the closed crucible.

しかして本発明においては、上記スリツトの長
さLが使用する基材4の巾よりも長くなされた長
尺スリツトを有するルツボ1が用いられるのであ
り、又、通常該ルツボ1のスリツトの深さDの寸
法をスリツトの巾Wの寸法よりも大きく、かつ、
ルツボ1内の蒸気粒子の平均自由行程より大とす
るのが、該スリツトより噴出される強磁性体金属
蒸気粒子の蒸気流を方向性を有して帯状に揃つた
蒸気流とするうえで好ましい。
Therefore, in the present invention, a crucible 1 having a long slit in which the length L of the slit is longer than the width of the base material 4 used is used, and the depth of the slit of the crucible 1 is usually The dimension D is larger than the width W of the slit, and
It is preferable that the mean free path of the vapor particles in the crucible 1 be larger than the mean free path of the vapor particles in the crucible 1 in order to make the vapor flow of the ferromagnetic metal vapor particles ejected from the slit into a band-shaped vapor flow with directionality. .

又、該ルツボ1を構成する材料としては、グラ
フアイト、窒化ボロン、アルミナ、マグネシア、
ベリリア、ジルコニア等が好適に用いられる。
Further, the materials constituting the crucible 1 include graphite, boron nitride, alumina, magnesia,
Beryllium, zirconia, etc. are preferably used.

次に本発明方法により磁気記録媒体を製造する
には、第1図に示される装置のルツボ1に蒸着せ
んとする強磁性体金属11を供給し、基材4を図
示される様に供給ロール4、巻取にロール8等に
セツトし、真空槽を高真空、好ましくは気圧8×
10-4トール以下の高真空に保たれる様に排気し、
高真空下においてルツボ1を加熱して強磁性体金
属11を蒸気化する。該加熱は図示されていない
ルツボ加熱手段によつて行われるのであり、該加
熱手段としては通常加熱、誘導加熱、電子ボンバ
ード加熱等の手段が好適に採用される。
Next, in order to manufacture a magnetic recording medium by the method of the present invention, the ferromagnetic metal 11 to be deposited is supplied to the crucible 1 of the apparatus shown in FIG. 4. Set on roll 8 etc. for winding, and keep the vacuum chamber under high vacuum, preferably at an atmospheric pressure of 8×
Evacuate to maintain a high vacuum of 10 -4 Torr or less,
The crucible 1 is heated under high vacuum to vaporize the ferromagnetic metal 11. The heating is performed by a crucible heating means (not shown), and means such as ordinary heating, induction heating, and electronic bombardment heating are preferably employed as the heating means.

加熱され、蒸気化した上記金属11の蒸気はル
ツボ1のスリツトより噴出され蒸気流となるが、
該蒸気流はルツボ1のスリツト寸法に応じた巾を
有する帯状の蒸気流となる。
The vapor of the heated and vaporized metal 11 is ejected from the slit of the crucible 1 and becomes a vapor flow,
The vapor flow becomes a band-shaped vapor flow having a width corresponding to the slit size of the crucible 1.

加速電子照射装置における熱電子放出用フイラ
メント2の両端に接続される導線21,22に交
流電流を通電してフイラメント2を加熱すること
により熱電子を放出させ、該フイラメント2に.
100V〜800Vの負の直流電圧を印加し、電子加速
用電極3を導線31を通じて接地することで、放
出された上記熱電子は電界加速される。
In the accelerated electron irradiation device, an alternating current is applied to the conducting wires 21 and 22 connected to both ends of the filament 2 for emitting thermionic electrons to heat the filament 2, thereby emitting thermionic electrons.
By applying a negative DC voltage of 100 V to 800 V and grounding the electron acceleration electrode 3 through a conductive wire 31, the emitted thermoelectrons are accelerated by an electric field.

ルツボ1のスリツトから噴出された前記帯状蒸
気流は上記加速電子照射装置に到り、ここで蒸気
粒子が電界加速された熱電子と衝突してイオン化
されるのである。このときのイオン化のためにフ
イラメント2から放出される電子電流は10mAか
ら500mAの範囲が好ましい。
The band-shaped vapor stream ejected from the slit of the crucible 1 reaches the accelerated electron irradiation device, where the vapor particles collide with thermionic electrons accelerated by the electric field and are ionized. The electron current emitted from the filament 2 for ionization at this time is preferably in the range of 10 mA to 500 mA.

かくしてイオン化された帯状蒸気流を構成する
蒸気粒子は、その前方に配置される電極9に導線
91を通じて−100Vから−10KVの負の直流電圧
を印加することにより高運動エネルギーが付与さ
れ電界加速されて、基材4表面の巾方向全域に均
一に入射するのであり、かくして、イオン化され
なかつた中性の金属蒸気と共に基材4表面に蒸着
して強磁性体の薄膜を形成するのである。なお、
基材4は上記動作中に連動的に定速度で移送され
るのが一般的であるが、必要に応じ一定巾で間け
つ的に移送されることも可能である。
The vapor particles constituting the ionized band-shaped vapor flow are given high kinetic energy and accelerated by an electric field by applying a negative DC voltage of -100V to -10KV to the electrode 9 placed in front of them through the conductor 91. As a result, it is uniformly incident on the entire width of the surface of the base material 4, and is deposited on the surface of the base material 4 together with non-ionized neutral metal vapor to form a thin ferromagnetic film. In addition,
Generally, the base material 4 is transported at a constant speed in conjunction with the above operation, but it is also possible to transport the base material 4 intermittently over a constant width if necessary.

又、本発明におけるルツボ1と基材4との位置
関係については、イオン化された帯状蒸気流が基
材4表面の巾方向全域に均一に入射される様に、
長尺スリツトの長手方向と基材4の長手方向が略
直交する様に配置されればよいのであり、そして
第1図に示される様に基材4表面を進行方向に傾
けてイオン化蒸気粒子の入射が斜め方向からなさ
れる様にすると角形比などの磁気特性がとくにす
ぐれた記録媒体を得ることが出来るのである。
In addition, the positional relationship between the crucible 1 and the base material 4 in the present invention is such that the ionized band-shaped vapor flow is uniformly incident on the entire surface of the base material 4 in the width direction.
It is only necessary to arrange the long slits so that the longitudinal direction of the long slits and the longitudinal direction of the base material 4 are substantially perpendicular to each other, and as shown in FIG. By making the incidence oblique, it is possible to obtain a recording medium with particularly excellent magnetic properties such as squareness ratio.

本発明は上述の通りの製造方法であり、とくに
長尺のスリツトを有する密閉型のルツボが用いら
れ該ルツボによつて発生し、イオン化された方向
のよく揃つた帯状蒸気流が基材表面の巾方向全域
に入射せしめられるため、形成される薄膜の結晶
性が良好で、基材の巾方向に均質なものとなるの
で、広巾の長尺フイルムを基材として形成された
記録媒体を更に小さい巾のテープ状に裁断して
も、得られる複数后のテープ状記録媒体において
品質のバラツキが少ないのであり、従つて本発明
によれば効率よく蒸気記録媒体を製造し得るので
ある。
The present invention is a manufacturing method as described above, in which a closed crucible having a long slit is used, and the crucible generates a band-shaped vapor flow with well-aligned ionized directions on the surface of the base material. Since the light is incident over the entire width direction, the formed thin film has good crystallinity and is uniform in the width direction of the base material, making it possible to make a recording medium formed using a wide long film as a base material even smaller. Even when cut into wide tapes, there is little variation in quality among the resulting tape-shaped recording media, and therefore, according to the present invention, vapor recording media can be efficiently produced.

さらに本発明においては、高真空下において蒸
気粒子をイオン化し、これを電界加速して基材面
に射突させる手法が採用されるので、従来のイオ
ンプレーテイング蒸着法等における残留ガスの取
り込み、不純物の混入、放電状態の不均一性等に
起因する蒸気特性上の性能低下や品質上のバラツ
キ、不均一性等の問題が解消され、高密度記録に
適する蒸気特性を有すると共に耐摩耗性等の実用
特性にもすぐれた記録媒体を製造することが出来
るのである。
Furthermore, in the present invention, a method is adopted in which vapor particles are ionized in a high vacuum, accelerated by an electric field, and made to impinge on the substrate surface. Problems such as performance deterioration, quality variations, and non-uniformity in steam characteristics caused by contamination of impurities and non-uniform discharge conditions have been resolved, and the product has steam characteristics suitable for high-density recording, as well as wear resistance. It is therefore possible to manufacture a recording medium with excellent practical characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される装置の一例を示す
模型図であり、第2図は本発明に使用されるルツ
ボの一例を示す一部切欠斜視図である。 1……ルツボ、2……熱電子放出用フイラメン
ト、3……電子加速用電極、4……長尺フイルム
状の基材、5……供給ロール、6,7……ガイド
ロール、8……巻取りロール、9……イオン化蒸
気粒子を電界加速するための電極、L……スリツ
ト長さ、W……スリツト巾、D……スリツト深
さ。
FIG. 1 is a model diagram showing an example of an apparatus used in the present invention, and FIG. 2 is a partially cutaway perspective view showing an example of a crucible used in the present invention. DESCRIPTION OF SYMBOLS 1... Crucible, 2... Filament for thermionic emission, 3... Electrode for electron acceleration, 4... Long film-shaped base material, 5... Supply roll, 6, 7... Guide roll, 8... Winding roll, 9... Electrode for accelerating ionized vapor particles in an electric field, L... Slit length, W... Slit width, D... Slit depth.

Claims (1)

【特許請求の範囲】 1 高真空下において、長尺のスリツトを有する
密閉型のルツボを加熱し、ルツボ内に供給された
強磁性体金属を蒸気化して該ルツボのスリツトよ
り噴出させて帯状の蒸気流を発生させ、該帯状蒸
気流に対して加速電子を照射することで該蒸気流
中の蒸気粒子をイオン化すると共に、該イオン化
蒸気粒子を電界加速して長尺フイルム状の基材表
面の巾方向全域に入射せしめて該基材表面に強磁
性体金属の薄膜層を形成させることを特徴とする
磁気記録媒体の製造方法。 2 気圧8×10-4トール以下の高真空に排気し得
る真空槽内に、強磁性体金属の薄膜層を形成せん
とする長尺フイルム状の基材の巾よりも長い蒸気
噴出用のスリツトを有し、該スリツトの深さが該
スリツトの間隙より大きくなされた密閉型のルツ
ボ、該ルツボの加熱手段、熱電子放出用フイラメ
ント及び電子加速用板状電極から構成される加速
電子照射装置、長尺フイルム状の基材を移動させ
るための基材移送装置及び強磁性体金属の蒸気粒
子が上記加速電子照射装置による加速電子照射に
よりイオン化されたイオン化蒸気粒子を電界加速
するための電極が設けられてなることを特徴とす
る磁気記録媒体の製造装置。
[Claims] 1. Under high vacuum, a closed crucible with a long slit is heated, and the ferromagnetic metal supplied into the crucible is vaporized and ejected from the slit of the crucible to form a band-shaped crucible. A vapor flow is generated, and the band-shaped vapor flow is irradiated with accelerated electrons to ionize the vapor particles in the vapor flow, and the ionized vapor particles are accelerated by an electric field to form a surface of a long film-like base material. 1. A method for manufacturing a magnetic recording medium, comprising forming a thin film layer of ferromagnetic metal on the surface of the base material by making it incident over the entire width direction. 2. A slit for steam ejection that is longer than the width of the long film-like base material on which a thin film layer of ferromagnetic metal is to be formed, in a vacuum chamber that can be evacuated to a high vacuum of 8 × 10 -4 Torr or less. an accelerated electron irradiation device comprising a closed crucible in which the depth of the slit is larger than the gap between the slits, a heating means for the crucible, a filament for emitting thermionic electrons, and a plate-shaped electrode for accelerating electrons; A base material transfer device for moving a long film-shaped base material and an electrode for accelerating ionized vapor particles in which ferromagnetic metal vapor particles are ionized by the accelerated electron irradiation by the accelerated electron irradiation device with an electric field are provided. 1. An apparatus for manufacturing a magnetic recording medium, characterized in that:
JP11611880A 1980-08-22 1980-08-22 Method and device for manufacturing magnetic recording medium Granted JPS5740758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11611880A JPS5740758A (en) 1980-08-22 1980-08-22 Method and device for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11611880A JPS5740758A (en) 1980-08-22 1980-08-22 Method and device for manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5740758A JPS5740758A (en) 1982-03-06
JPS6151336B2 true JPS6151336B2 (en) 1986-11-08

Family

ID=14679130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11611880A Granted JPS5740758A (en) 1980-08-22 1980-08-22 Method and device for manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5740758A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236273A (en) * 1989-03-08 1990-09-19 Matsushita Electric Ind Co Ltd Electron beam vapor deposition method and electron beam vapor deposition device
JPH10312536A (en) * 1997-05-13 1998-11-24 Victor Co Of Japan Ltd Magnetic recording medium manufacturing apparatus and crucible for the same apparatus
EP1902152B1 (en) * 2005-05-31 2010-06-23 Corus Technology BV Apparatus and method for coating a substrate

Also Published As

Publication number Publication date
JPS5740758A (en) 1982-03-06

Similar Documents

Publication Publication Date Title
US4382110A (en) Magnetic recording medium
EP0046090B1 (en) Process fpr producing a magnetic recording medium
US4399013A (en) Method of producing a magnetic recording medium
EP0035894B1 (en) Process for producing a magnetic recording medium
JPS6151336B2 (en)
JPH0318253B2 (en)
JPS5836413B2 (en) Magnetic recording medium manufacturing method and its manufacturing device
JPH059849B2 (en)
JPH0120490B2 (en)
JPS6037526B2 (en) Method for manufacturing magnetic recording media
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JPH0121539B2 (en)
JPS6237454B2 (en)
JPH0120495B2 (en)
JP2686139B2 (en) Magnetic recording medium and method of manufacturing the same
JPS6037525B2 (en) Method for manufacturing magnetic recording media
JPS6131529B2 (en)
JPS6236285B2 (en)
JPH11161947A (en) Production of magnetic recording medium
JPS6237453B2 (en)
JP2830478B2 (en) Vacuum deposition equipment
JPS6037524B2 (en) Method for manufacturing magnetic recording media
JPH0121540B2 (en)
JPH0221052B2 (en)
JPH0221051B2 (en)