JP2830478B2 - Vacuum deposition equipment - Google Patents

Vacuum deposition equipment

Info

Publication number
JP2830478B2
JP2830478B2 JP40276390A JP40276390A JP2830478B2 JP 2830478 B2 JP2830478 B2 JP 2830478B2 JP 40276390 A JP40276390 A JP 40276390A JP 40276390 A JP40276390 A JP 40276390A JP 2830478 B2 JP2830478 B2 JP 2830478B2
Authority
JP
Japan
Prior art keywords
gas
evaporation
film
nozzle
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP40276390A
Other languages
Japanese (ja)
Other versions
JPH04216320A (en
Inventor
敏明 国枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP40276390A priority Critical patent/JP2830478B2/en
Publication of JPH04216320A publication Critical patent/JPH04216320A/en
Application granted granted Critical
Publication of JP2830478B2 publication Critical patent/JP2830478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薄膜製造用の真空蒸着
装置に係り、特に高密度磁気記録に適した強磁性金属薄
膜媒体を製造するのに好適な真空蒸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum deposition apparatus for producing a thin film, and more particularly to a vacuum deposition apparatus suitable for producing a ferromagnetic metal thin film medium suitable for high density magnetic recording.

【0002】[0002]

【従来の技術】近年、磁気記録媒体の記録密度の向上が
著しい。それらの媒体のうち、強磁性金属薄膜型の媒体
は最も有望視されている。この強磁性金属薄膜を真空蒸
着で製造する場合、米国特許第3,342,632号明
細書、同第3,342,633号明細書等に述べられて
いる斜め蒸着法や、日本国特許第1,377,434号
等に記載されている酸素雰囲気中蒸着法を採用すると、
特性の良好な磁性薄膜が得られることが明らかになって
いる。
2. Description of the Related Art In recent years, the recording density of magnetic recording media has been significantly improved. Among these media, a ferromagnetic metal thin film type medium is considered most promising. When this ferromagnetic metal thin film is manufactured by vacuum evaporation, an oblique evaporation method described in U.S. Pat. Nos. 3,342,632 and 3,342,633, and the like, and Japanese Patent No. 3,342,633. When the vapor deposition method in an oxygen atmosphere described in US Pat.
It has been found that a magnetic thin film having good characteristics can be obtained.

【0003】一方、ディジタル信号記録や高品位TV信
号記録の分野では、軽薄短小のトレンドと相まってさら
なる記録の高密度化の要求が高まってきており、この実
現のためには強磁性金属薄膜媒体においても一層の磁気
特性の向上が求められている。
On the other hand, in the field of digital signal recording and high-definition TV signal recording, the demand for further higher recording density has been increasing in conjunction with the trend of lightness, thinness and small size. Further improvement in magnetic properties is required.

【0004】[0004]

【発明が解決しようとする課題】高密度化のためには媒
体側としては、磁気特性、特に抗磁力と残留磁束密度を
高くすることが求められる。高抗磁力化を図る従来技術
としては、第一に斜め蒸着の入射角を大きくすることが
あげられる。しかし、入射角を大きくすると蒸着のため
に利用できる蒸発原子が減少するため蒸着効率が低下
し、量産性やコストパフォーマンスが著しく損なわれる
という問題点が発生する。次に、酸素導入量を増加させ
ることによっても抗磁力を高くすることができるが、こ
の時は残留磁束密度が低下し、その結果、エネルギー積
はある領域までは改善できるものの最終的には頭打ちに
なる傾向を示す。
In order to increase the recording density, it is required for the medium to increase the magnetic properties, particularly the coercive force and the residual magnetic flux density. As a conventional technique for achieving a high coercive force, first, an incident angle of oblique deposition is increased. However, when the incident angle is increased, evaporation atoms available for vapor deposition are reduced, so that vapor deposition efficiency is reduced, and mass productivity and cost performance are significantly impaired. Next, the coercive force can also be increased by increasing the amount of oxygen introduced, but at this time, the residual magnetic flux density decreases, and as a result, the energy product can be improved up to a certain area, but eventually reaches a plateau Shows a tendency to become

【0005】本発明は上記問題点に鑑み、磁気特性が良
く、かつ蒸着効率の高い真空蒸着装置を提供するもので
ある。
The present invention has been made in view of the above problems, and provides a vacuum evaporation apparatus having good magnetic properties and high evaporation efficiency.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の真空蒸着装置は、斜め蒸着のためのしゃへい
板を設け、かつその裏側の空間(クーリングキャンとし
ゃへい板の間)に、電気的に周囲から絶縁され電圧が印
加できるような材質からなるガス導入のための多孔性の
ノズルを設けたものである。
In order to achieve the above-mentioned object, a vacuum evaporation apparatus according to the present invention is provided with a shield plate for oblique evaporation, and an electric space is provided in a space behind the shield plate (between the cooling can and the shield plate). And a porous nozzle for introducing gas made of a material which is insulated from the surroundings and to which a voltage can be applied.

【0007】[0007]

【作用】薄膜の磁気特性はその内部構造に強く依存し、
優れた特性を得るためには構成している微結晶が小さく
て、その粒径や結晶配向が揃っていること、さらにはそ
れらが磁気的に分離していること(微小マグネット化)
が必要条件である。
[Function] The magnetic properties of a thin film strongly depend on its internal structure.
In order to obtain excellent characteristics, the microcrystals must be small, have the same grain size and crystal orientation, and must be magnetically separated (micromagnetization).
Is a necessary condition.

【0008】本発明は上記した構成によって、フィルム
状の基板に強磁性金属原子が付着する際に、ガスノズル
から噴出するガス分子は励起,解離あるいはイオン化さ
れて高いエネルギーを保有した状態で供給されることに
なる。活性な高エネルギーガスの導入は、その反応性が
高いことから上記の微小マグネット化を少ないガス量で
効率よく促進する作用をし、したがって磁束密度や抗磁
力の向上が図られ、磁気特性が改善される。
According to the present invention, when the ferromagnetic metal atoms adhere to the film-like substrate, the gas molecules ejected from the gas nozzle are excited, dissociated, or ionized and supplied in a state of retaining high energy. Will be. The introduction of an active high-energy gas has the effect of promoting the above-mentioned micro-magnetization efficiently with a small amount of gas due to its high reactivity, thus improving magnetic flux density and coercive force and improving magnetic properties. Is done.

【0009】[0009]

【実施例】以下本発明の一実施例を図面を参照しながら
説明する。図1,図2はそれぞれ本発明の実施例に用い
た真空蒸着装置の基本構成図とノズルの説明図である。
An embodiment of the present invention will be described below with reference to the drawings. 1 and 2 are a basic configuration diagram of a vacuum evaporation apparatus used in an embodiment of the present invention and an explanatory view of a nozzle, respectively.

【0010】図1において、巻出しロール1より供給さ
れる高分子フィルム4はクーリングキャン2に沿って搬
送され、巻取りロール3に巻き上げられる。クーリング
キャン2の下方には蒸発材料5を収納したハースあるい
はるつぼからなる蒸発源6が、さらにこれらの中間の位
置には斜め蒸着のためのしゃへい板7とガス導入のため
の多孔性のノズル8が配置されており、これらの構成要
素全体は10-3〜10 -6torrの真空雰囲気内で作動
する。
[0010] In FIG.
Polymer film 4 to be transported along the cooling can 2
It is fed and wound up on the take-up roll 3. Cooling
A hearth or evaporating material 5 is stored below the can 2
The evaporation source 6 composed of a crucible is further positioned between the two.
There is a shielding plate 7 for oblique deposition and a gas introduction
Porous nozzles 8 are arranged.
The whole element is 10-3-10 -6Operates in a torr vacuum atmosphere
I do.

【0011】真空蒸着は、先ず巻出しロール1に捲回さ
れた5〜20μmの高分子フィルム4(主に材質はポリ
エチレンテレフタレート)が供給され、続いてクーリン
グキャン2に沿って走行しながら、その下方に位置する
蒸発源6からCo,Ni,Fe等の強磁性金属からなる
蒸発材料5の蒸気の入射を受け、磁性層が形成された
後、巻取りロール3に巻取られて完了する。しゃへい板
7は最小蒸気入射角θminを規定するもので必要とな
る磁気特性(特に抗磁力)を考慮して設定されるが、で
きるだけθminを小さくすることが望ましい。しゃへ
い板7はこのように重要な位置決めの役割を果たすた
め、熱変形などしないように冷却をする。しゃへい板7
の前では、蒸発原子が高分子フィルム4に付着する際
に、O2,NH3,N2,H2O等の反応性ガスをノズル8
から付着領域の方向に噴出する。この時、単にガスを噴
出するだけではなく、図2に示しているように、金属製
のノズル8を絶縁碍子9やプラスチックホース10で電
気的に絶縁し、かつこのノズル8に放電用電源11(直
流,商用交流,高周波いずれも可)を印加し、放電させ
て反応性ガスを吹き付ける。放電はノズル形状,周囲状
況に依存するが、電圧が200〜800V、電流が50
〜300mA程度のグロー放電領域が安定している。な
お反応性ガスの導入量が少ない時は、放電が不安定にな
りがちであるが、高周波放電あるいは不活性ガス(例え
ばAr)との混合などにより、安定化が図れる。
In the vacuum deposition, first, a 5 to 20 μm polymer film 4 (mainly made of polyethylene terephthalate) wound on an unwinding roll 1 is supplied. After the vapor of the evaporation material 5 made of a ferromagnetic metal such as Co, Ni, or Fe is received from the evaporation source 6 located below, the magnetic layer is formed, and then the winding is completed by the winding roll 3. The shielding plate 7 defines the minimum steam incident angle θmin and is set in consideration of necessary magnetic characteristics (particularly coercive force), but it is desirable to make θmin as small as possible. Since the shielding plate 7 plays such an important role of positioning, it is cooled so as not to be thermally deformed. Shield plate 7
Before the evaporation, when the evaporated atoms adhere to the polymer film 4, a reactive gas such as O 2 , NH 3 , N 2 , H 2 O is supplied to the nozzle 8.
From the direction of the adhesion area. At this time, not only the gas is simply blown out, but also, as shown in FIG. (DC, commercial AC, and high frequency are all applicable), discharge, and blow a reactive gas. The discharge depends on the nozzle shape and surrounding conditions, but the voltage is 200 to 800 V and the current is 50
A glow discharge region of about 300 mA is stable. When the amount of the reactive gas introduced is small, the discharge tends to be unstable. However, stabilization can be achieved by high-frequency discharge or mixing with an inert gas (eg, Ar).

【0012】また、ガスの放射分布の均一性や放電安定
性の面から、ノズル8には複数個の小径の吹出し口を設
けたほうが良好である。
Further, it is better to provide the nozzle 8 with a plurality of small-diameter air outlets from the viewpoints of uniformity of gas radiation distribution and discharge stability.

【0013】次に代表的な実験例とその結果について説
明する。実験の主な条件を列記すると、(1)蒸発材料
はCo、(2)最小蒸気入射角θmin=30°、
(3)導入ガスはO2,導入量はa,b,c,dの順に
0.1,0.2,0.3,0.4l/min、(4)放
電は電圧が300〜400V、放電電流が50〜100
mAの直流放電、(5)基板は10μm厚のポリエチレ
ンテレフタレールフィルム、(6)フィルム走行速度は
20m/min、(7)強磁性金属薄膜の膜厚は0.2
μmである。比較例として従来装置でのガス導入による
試料も作製した。
Next, typical experimental examples and their results will be described. The main conditions of the experiment are listed as follows: (1) Co was evaporating material, (2) minimum vapor incident angle θmin = 30 °,
(3) The introduced gas is O 2 , the introduced amounts are 0.1, 0.2, 0.3, 0.4 l / min in the order of a, b, c, d. Discharge current is 50-100
mA discharge, (5) substrate is a 10 μm thick polyethylene terephthalate film, (6) film running speed is 20 m / min, (7) ferromagnetic metal thin film has a thickness of 0.2
μm. As a comparative example, a sample obtained by gas introduction in a conventional apparatus was also prepared.

【0014】磁気特性の測定は振動試料型磁力計(VS
M)で行い、磁束密度を求める上で必要な薄膜の膜厚測
定は、走査型電子顕微鏡(SEM)で行った。
The measurement of the magnetic properties is performed by using a vibrating sample magnetometer (VS).
M), and the measurement of the film thickness of the thin film necessary for obtaining the magnetic flux density was performed with a scanning electron microscope (SEM).

【0015】図3はこれらの結果をまとめたもので、○
印内の記号は比較例のデータを、◎印内の記号は本発明
の装置による試料のデータを示し、酸素導入量は同一記
号で対応している。この図からも明らかなように、同じ
最小蒸気入射角においても、本発明の装置によると、磁
気特性が改善されることがわかる。
FIG. 3 summarizes these results.
The symbols in the symbols indicate the data of the comparative examples, the symbols in the symbols ◎ indicate the data of the samples obtained by the apparatus of the present invention, and the oxygen introduction amounts correspond to the same symbols. As is clear from this figure, it is understood that the magnetic characteristics are improved according to the apparatus of the present invention even at the same minimum steam incident angle.

【0016】以上斜め蒸着について詳しく述べてきた
が、Co−O垂直磁化膜の製造に適用した場合も、上記
とほぼ同様に、垂直抗磁力が1,000(Oe)〜2,
000(Oe)の範囲で、従来法に比べて、1.2〜
1.7倍の飽和磁束密度の高い膜が得られることも確か
めた。
Although the oblique deposition has been described in detail above, when applied to the production of a Co—O perpendicular magnetic film, the perpendicular coercive force is from 1,000 (Oe) to 2,
2,000 (Oe) in the range of 1.2 to
It was also confirmed that a film having a 1.7 times higher saturation magnetic flux density could be obtained.

【0017】[0017]

【発明の効果】以上のように本発明の真空蒸着装置によ
れば、反対性ガスを放電励起により高エネルギー化し有
効に活用しているため、蒸着効率の高い入射角領域にお
いても磁気特性が改善できるという優れた実用的効果を
得ることができる。
As described above, according to the vacuum vapor deposition apparatus of the present invention, the opposite gas is increased in energy by discharge excitation and effectively used, so that the magnetic characteristics are improved even in the incident angle region where the vapor deposition efficiency is high. An excellent practical effect that it can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の真空蒸着装置の一実施例の要部の基本
構成図
FIG. 1 is a basic configuration diagram of a main part of an embodiment of a vacuum deposition apparatus of the present invention.

【図2】同装置におけるノズル部分の斜視図FIG. 2 is a perspective view of a nozzle portion of the apparatus.

【図3】本発明の装置によって得られた磁気記録媒体の
効果を示す磁気特性図
FIG. 3 is a magnetic characteristic diagram showing the effect of the magnetic recording medium obtained by the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

4 高分子フィルム(フィルム状の基板) 5 蒸発材料 6 蒸発源 7 しゃへい板 8 多孔性のノズル Reference Signs List 4 polymer film (film-like substrate) 5 evaporation material 6 evaporation source 7 shielding plate 8 porous nozzle

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フィルム状の基板の上に蒸発源から発生
させた金属の蒸気を付着させて薄膜を製造する装置にお
いて、入射角限定のためのしゃへい板とそのしゃへい板
に隣接し電気的に周囲から絶縁され電圧が印加できるよ
うにしたガス導入のための多孔性のノズルを設けたこと
を特徴とする真空蒸着装置。
An apparatus for producing a thin film by depositing metal vapor generated from an evaporation source on a film-like substrate, comprising: a shielding plate for limiting an incident angle; A vacuum vapor deposition apparatus comprising a porous nozzle for introducing a gas which is insulated from the surroundings so that a voltage can be applied.
【請求項2】 ノズルのガス吹出しの方向が蒸発源から
の蒸発金属の付着領域に向いていることを特徴とする請
求項1記載の真空蒸着装置。
2. The vacuum evaporation apparatus according to claim 1, wherein the direction of gas blowing from the nozzle is directed to a region where the evaporated metal from the evaporation source is attached.
JP40276390A 1990-12-17 1990-12-17 Vacuum deposition equipment Expired - Fee Related JP2830478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40276390A JP2830478B2 (en) 1990-12-17 1990-12-17 Vacuum deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40276390A JP2830478B2 (en) 1990-12-17 1990-12-17 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JPH04216320A JPH04216320A (en) 1992-08-06
JP2830478B2 true JP2830478B2 (en) 1998-12-02

Family

ID=18512555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40276390A Expired - Fee Related JP2830478B2 (en) 1990-12-17 1990-12-17 Vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JP2830478B2 (en)

Also Published As

Publication number Publication date
JPH04216320A (en) 1992-08-06

Similar Documents

Publication Publication Date Title
US4511594A (en) System of manufacturing magnetic recording media
US4990361A (en) Method for producing magnetic recording medium
JP2830478B2 (en) Vacuum deposition equipment
JPH0721560A (en) Production of magnetic recording medium
JPH0318253B2 (en)
JPH0863732A (en) Production of magnetic recording medium and thin film and apparatus for production of thin film
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JPH05255840A (en) Vacuum deposition device
JPS6297133A (en) Production of magnetic recording medium
JP2987406B2 (en) Film forming method and film forming apparatus
JPH01107319A (en) Production of magnetic recording medium
JPS6151336B2 (en)
JPS6131529B2 (en)
JPH04259204A (en) Manufacture of magnetic recording medium
JPH07192259A (en) Production of magnetic recording medium
JPH06116729A (en) Production of magnetic recording medium
JPH0442730B2 (en)
JPH07113162A (en) Method and device for manufacturing thin film
JPH09212858A (en) Production of magnetic recording medium and producing device therefor
JPH10251843A (en) Vacuum evaporation apparatus
JPH04206033A (en) Manufacture of magnetic recording medium
JPH01189030A (en) Production of magnetic recording medium
JPH0853755A (en) Production of highly functional thin film
JPH02177122A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees