JPH07113162A - Method and device for manufacturing thin film - Google Patents

Method and device for manufacturing thin film

Info

Publication number
JPH07113162A
JPH07113162A JP25817093A JP25817093A JPH07113162A JP H07113162 A JPH07113162 A JP H07113162A JP 25817093 A JP25817093 A JP 25817093A JP 25817093 A JP25817093 A JP 25817093A JP H07113162 A JPH07113162 A JP H07113162A
Authority
JP
Japan
Prior art keywords
thin film
opening
manufacturing apparatus
electron beam
polymer substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25817093A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Honda
和義 本田
Kaji Maezawa
可治 前澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25817093A priority Critical patent/JPH07113162A/en
Publication of JPH07113162A publication Critical patent/JPH07113162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To stably manufacture the thin film by the method and device for manufacturing the thin film. CONSTITUTION:In the device and method for manufacturing the thin film where the thin film is formed on a polymer substrate 4 which moves along the surface of a cylindrical can 5 in the vacuum by the electron beam deposition method, two or more opening parts of a buffle plate 9 to limit the angle of incidence of the vapor in forming the thin film are provided, the thickness of the thin film to be formed at a first opening part 13 provided on the initial side in forming the film is set to be over 0nm to 3nm inclusive, and the substrate is closely adhered to the cylindrical can be the reflected electron of the electron beam at the first opening part. By this constitution, the thin film with excellent properties can stably be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜の製造方法及び製造
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film manufacturing method and manufacturing apparatus.

【0002】[0002]

【従来の技術】現代社会に於て薄膜の果たす役割は非常
に広範囲であり、日常生活の様々な部分において薄膜が
利用されている。磁気テープの分野においても記録媒体
の高密度化を目指し、薄膜磁気記録媒体の研究開発が盛
んである。高密度薄膜磁気記録媒体の中でも、Co系酸
化物薄膜は既にビデオテープとして商品化されており、
注目を集めている。
2. Description of the Related Art The role of thin films in modern society is extremely widespread, and thin films are used in various parts of daily life. Also in the field of magnetic tapes, research and development of thin film magnetic recording media have been actively conducted with the aim of increasing the density of recording media. Among high-density thin film magnetic recording media, Co-based oxide thin films have already been commercialized as video tapes.
It is getting attention.

【0003】テープ状のCo酸化物系薄膜磁気記録媒体
を製造する方法としては、連続巻き取り電子ビーム蒸着
法が特にその生産性において他を凌いでいる。即ち(図
2)のように長尺の高分子基板が円筒状キャンの周面に
沿って走行中に磁性層を電子ビーム蒸着することによっ
て磁気記録媒体の量産が出来る。磁性体としてCo、ま
たはCo−Niを用い、酸素雰囲気蒸着を行う事によっ
て長尺の磁気テープが生産できる。
As a method for producing a tape-shaped Co oxide thin film magnetic recording medium, the continuous winding electron beam vapor deposition method is particularly superior in productivity. That is, magnetic recording media can be mass-produced by electron beam evaporation of a magnetic layer while a long polymer substrate is running along the circumferential surface of a cylindrical can as shown in FIG. A long magnetic tape can be produced by using Co or Co—Ni as a magnetic material and performing vapor deposition in an oxygen atmosphere.

【0004】[0004]

【発明が解決しようとする課題】高分子基板上に電子ビ
ーム蒸着法によって薄膜を形成するにあたっては高分子
基板の熱損傷防止が必須である。薄膜を高速成膜すれば
するほど電子ビーム蒸発源への投入パワーを高くする必
要があり、蒸発源からの熱輻射および高堆積速度で飛来
する蒸着原子の凝縮熱はますます増加する。そのため高
分子基板を円筒状キャンに密着させて、膜形成時の熱負
荷をキャンに逃がす手段として、電子ビームの照射が行
われている。すなわち(図3)の様に、高分子基板がキ
ャンに接した後に張り付け用電子銃からの電子ビームを
高分子基板の表面に照射すると高分子基板がキャンに密
着して、その後引き続いて行われる蒸着時の基板熱損傷
を防止することが出来る。
In forming a thin film on a polymer substrate by electron beam evaporation, it is essential to prevent thermal damage to the polymer substrate. The higher the speed of forming the thin film, the higher the input power to the electron beam evaporation source, and the heat radiation from the evaporation source and the heat of condensation of vapor deposition atoms flying at a high deposition rate increase more and more. Therefore, electron beam irradiation is performed as a means for closely contacting a polymer substrate with a cylindrical can to release the heat load during film formation to the can. That is, as shown in (FIG. 3), when the surface of the polymer substrate is irradiated with an electron beam from the attachment electron gun after the polymer substrate is in contact with the can, the polymer substrate comes into close contact with the can, and then the process is continued. It is possible to prevent thermal damage to the substrate during vapor deposition.

【0005】しかしながら張り付け用に独立した電子銃
を設置すると、設備が大がかりになってしまい、設備投
資及び運転費用が増加してしまう。
However, if an independent electron gun for attachment is installed, the equipment becomes large-scale, and the equipment investment and operating cost increase.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
本発明は、真空中で円筒状キャンの表面に沿って移動す
る高分子基板上に直接あるいは下地層を介して電子ビー
ム蒸着法によって薄膜を形成する薄膜の製造方法におい
て、前記薄膜を形成する際の蒸気入射角を制限する遮蔽
板の開口部を2カ所以上設け、膜形成初期側に設けた第
1の開口部に於いて形成される前記薄膜の厚みを0を越
えて3nm以内とし、前記第1の開口部に於て前記電子
ビームの反射電子によって前記基板を前記円筒状キャン
に密着させることを特徴とするもの、及び真空中で円筒
状キャンの表面に沿って走行する高分子基板上に直接あ
るいは下地層を介して電子ビーム蒸着法によって薄膜を
形成する薄膜の製造装置において、前記薄膜を形成する
際の蒸気入射角を制限する遮蔽板の開口部を2カ所以上
設け、第1の開口部を膜形成初期側かつ前記電子ビーム
蒸発源からの反射電子が飛来する領域に設け、さらに前
記第1の開口部に於て形成される前記薄膜の厚みを0を
越えて3nm以内になる様に定めることを特徴とするも
のである。
In order to solve this problem, the present invention provides a thin film by electron beam vapor deposition on a polymer substrate which moves along the surface of a cylindrical can in vacuum, either directly or through an underlayer. In the method of manufacturing a thin film for forming a thin film, two or more openings of a shielding plate for limiting the vapor incident angle when the thin film is formed are formed in the first opening provided on the initial side of film formation. Wherein the thickness of the thin film is more than 0 and within 3 nm, and the substrate is brought into close contact with the cylindrical can by reflected electrons of the electron beam at the first opening, and in a vacuum. In a thin film manufacturing apparatus for forming a thin film on a polymer substrate running along the surface of a cylindrical can by an electron beam evaporation method directly or through an underlayer, the vapor incident angle at the time of forming the thin film is The opening of the shielding plate is limited to two or more places, and the first opening is provided on the initial side of the film formation and in the area where the reflected electrons from the electron beam evaporation source fly. Further, in the first opening. It is characterized in that the thickness of the thin film formed is determined so as to exceed 0 and be within 3 nm.

【0007】[0007]

【作用】張り付け用に独立した電子銃を設けなくとも、
蒸着初期部分に設けた第1の開口部に入った蒸発源から
の反射電子によって高分子基板を円筒状キャンに密着さ
せることが出来るので高分子基板の熱損傷を防止するこ
とができる。また、第1の開口部で形成される薄膜の厚
さは薄いので、薄膜全体の特性に及ぼす影響はほとんど
ない。
[Function] Even if an independent electron gun is not provided for pasting,
Since the polymer substrate can be brought into close contact with the cylindrical can by the backscattered electrons from the evaporation source that has entered the first opening provided in the initial portion of vapor deposition, heat damage to the polymer substrate can be prevented. Further, since the thin film formed in the first opening has a small thickness, it has almost no effect on the characteristics of the entire thin film.

【0008】[0008]

【実施例】以下、本発明の実施例について(図1)を用
いて説明する。排気系1によって真空排気された真空槽
2の中で巻き出しロール3から回転方向12に沿って巻
出された長尺の高分子基板4はガイドロール11及び円
筒状キャン5の表面に沿って走行中に電子銃18より電
子ビーム6を照射されている電子ビーム蒸発源7より遮
蔽板9の開口部13、14において蒸着を受けた後に、
巻き取りロール10に巻きとられる。高分子基板は円筒
状キャン周面に沿った後、蒸着初期部分に設けられた第
1の開口部において、蒸発源7から反射した反射電子を
照射される。反射電子は真空槽壁面などに衝突を繰り返
しながら運動し、第1の開口部13に達した高分子基板
に様々な入射角で照射される。反射電子の照射によって
高分子基板とキャンの静電引力による密着性が高まり、
薄膜の形成が基板の熱損傷無しに行われる。
EXAMPLE An example of the present invention will be described below with reference to FIG. The long polymer substrate 4 unwound from the unwinding roll 3 along the rotation direction 12 in the vacuum chamber 2 evacuated by the evacuation system 1 extends along the surfaces of the guide roll 11 and the cylindrical can 5. After being subjected to vapor deposition in the openings 13 and 14 of the shield plate 9 from the electron beam evaporation source 7 which is irradiated with the electron beam 6 from the electron gun 18 during traveling,
It is wound around the take-up roll 10. The polymer substrate is irradiated with the backscattered electrons reflected from the evaporation source 7 in the first opening provided in the initial portion of the vapor deposition after the polymer substrate is provided along the circumferential surface of the cylindrical can. The backscattered electrons move while repeatedly colliding with the wall surface of the vacuum chamber, and are irradiated onto the polymer substrate reaching the first opening 13 at various incident angles. By the irradiation of backscattered electrons, the adhesion of the polymer substrate and the electrostatic attraction of the can is increased,
The thin film is formed without thermal damage to the substrate.

【0009】第1の開口部13の開口幅が広い方が、当
然反射電子の量は増加するが、開口幅が広くなるにつれ
て、第1の開口部で形成される薄膜の厚さも厚くなる。
従って第1の開口部で形成される薄膜の膜厚は薄膜全体
の特性に与える影響の小さい範囲にする必要があり、基
板の密着性と膜特性の兼ね合いで第1の開口部の開口幅
が決まる。
Although the amount of backscattered electrons naturally increases as the opening width of the first opening 13 increases, the thickness of the thin film formed in the first opening also increases as the opening width increases.
Therefore, the film thickness of the thin film formed in the first opening must be within a range that has a small effect on the characteristics of the entire thin film, and the opening width of the first opening is determined by the balance between the adhesion of the substrate and the film characteristics. Decided.

【0010】高分子基板としてポリエチレンテレフタレ
ート(PET)及びポリエチレンナフタレート(PE
N)基板を用い、酸素雰囲気での蒸着材料としてCoを
用いて膜厚50nm〜200nmのCo酸化物薄膜を電
子ビーム蒸着法によって形成した。先に(図3)で説明
したような張り付け用電子銃は用いていない。蒸気遮蔽
板の開口部は2カ所設け、第2の開口部での蒸気入射角
を高分子基板法線から70度から50度で一定として第
1の開口部の幅を変化させた。第1の開口部で形成され
た薄膜の膜厚は第2の開口部を塞いで第1の開口部のみ
で薄膜を形成することによって求めた。第1の開口部で
形成される薄膜の膜厚は破断面の透過電子顕微鏡像から
求めたが、膜厚が非常に薄い場合、高分子基板の搬送速
度を遅くして蒸着を行い、膜厚が搬送速度に反比例する
ものとして膜厚を算出した。(表1)に成膜条件と蒸着
結果について示す。蒸着結果は基板熱損傷の有無と膜面
内磁化曲線の印加磁界ゼロでの残留磁化と飽和磁化の比
を表す角型比で評価した。また、(表1)で第1開口部
の膜厚が0となっているのは第1開口部を完全に塞いだ
場合である。
Polyethylene terephthalate (PET) and polyethylene naphthalate (PE) as polymer substrates
N) Using a substrate, Co was used as a vapor deposition material in an oxygen atmosphere to form a Co oxide thin film with a film thickness of 50 nm to 200 nm by an electron beam vapor deposition method. The sticking electron gun as described above (FIG. 3) is not used. The opening of the vapor shielding plate was provided at two places, and the width of the first opening was changed by keeping the vapor incident angle at the second opening constant at 70 to 50 degrees from the normal to the polymer substrate. The film thickness of the thin film formed in the first opening was determined by closing the second opening and forming the thin film only in the first opening. The film thickness of the thin film formed in the first opening was obtained from the transmission electron microscope image of the fracture surface. When the film thickness is very thin, the transport speed of the polymer substrate was slowed to perform vapor deposition. Was calculated to be inversely proportional to the transport speed. Table 1 shows film forming conditions and vapor deposition results. The vapor deposition results were evaluated by the squareness ratio, which indicates the ratio of the residual magnetization to the saturation magnetization of the in-plane magnetization curve of the film and the applied magnetic field of zero, with respect to the substrate thermal damage. Further, in Table 1, the thickness of the first opening is 0 when the first opening is completely closed.

【0011】[0011]

【表1】 [Table 1]

【0012】(表1)から分かるように、張り付け用電
子銃を用いなくとも、第1開口部を設けることによって
高分子基板の熱損傷を防ぐことが出来る。また、第1開
口部で形成する薄膜の厚さが3nm以下の場合には角型
比が0.90以上であり、第1開口部を設けない場合と
同等以上の角型比が得られている。なお、張り付け用電
子銃を用い、第1開口部を設けない場合の角型比は0.
90であった。張り付け用電子銃を用いない(表1)の
結果で第1開口部を塞いだ場合の角型比が0.9より幾
分小さいのは、高分子基板の熱損傷によってガスが発生
し、これによって膜成長が乱れ、角型比が低下したもの
と思われる。
As can be seen from (Table 1), the thermal damage to the polymer substrate can be prevented by providing the first opening without using the attachment electron gun. Further, when the thickness of the thin film formed in the first opening is 3 nm or less, the squareness ratio is 0.90 or more, and the squareness ratio equal to or higher than that in the case where the first opening is not provided is obtained. There is. It should be noted that the squareness ratio when the attachment electron gun is used and the first opening is not provided is 0.
It was 90. As a result of not using the attachment electron gun (Table 1), the squareness ratio when the first opening is closed is slightly smaller than 0.9 because gas is generated due to thermal damage of the polymer substrate. It seems that the film growth was disturbed by this and the squareness ratio was lowered.

【0013】(図4)は本発明で蒸着に先立って基板に
イオン照射を行った場合を示す図である。イオン照射は
カウフマン型イオン源を用い、イオン照射部分を通過す
る間にビーム電圧400V、加速電圧200Vのアルゴ
ンイオンが中和電子と共に1平方cmあたり1mA照射
される様にした。形成する薄膜の膜厚は200nmとし
た。(表2)にイオン照射のある場合とない場合につい
ての(表1)と同様の実験結果について示す。
FIG. 4 is a diagram showing a case where the substrate is irradiated with ions prior to vapor deposition in the present invention. A Kauffman type ion source was used for ion irradiation, and argon ions with a beam voltage of 400 V and an acceleration voltage of 200 V were irradiated with 1 mA per 1 cm 2 together with neutralizing electrons while passing through the ion irradiation portion. The thickness of the thin film to be formed was 200 nm. (Table 2) shows the same experimental results as in (Table 1) with and without ion irradiation.

【0014】[0014]

【表2】 [Table 2]

【0015】(表2)から分かるように、イオン照射を
行った場合の方が、イオン照射を行わない場合よりも高
い基板温度(キャン温度)まで基板の熱損傷が起きな
い。これは基板がキャンに接してからイオン照射を行う
ことによって基板の除電並びに、脱ガスが行われ、これ
によって反射電子が照射されたときの基板とキャンの密
着性が高まるためと思われる。
As can be seen from Table 2, when the ion irradiation is performed, the substrate is not thermally damaged up to a higher substrate temperature (can temperature) than when the ion irradiation is not performed. It is considered that this is because the ion irradiation is performed after the substrate comes into contact with the can to remove the charge and degas the substrate, thereby increasing the adhesion between the substrate and the can when the reflected electrons are irradiated.

【0016】これまで述べた実験結果から、第1開口部
では反射電子をできるだけ多く取り込み、かつ蒸発原子
はあまり取り込まないことが基板の熱損傷防止と薄膜特
性の確保の両立のために重要である。従ってこうした観
点から第1の開口部の前記基板走行方向の開口幅が、開
口部全体の開口幅合計に占める割合が、前記第1の開口
部に於て形成される前記薄膜の厚みが前記薄膜全体の厚
みに占める割合よりも大きくすることや、第1の開口部
が、前記電子ビームを照射されている蒸発源の蒸発中心
から前記遮蔽板の開口部端部を直線で結んで規定される
蒸発源直視域を含まないようにすることは本発明の効果
を増加させる。また、第1の開口部付近の前記反射電子
を、前記第1の開口部に向けて旋回させるための電場発
生装置や、磁場発生装置を設ける事によっても本発明の
効果を増加させることが出来る。(表3)は、電場発生
装置や、磁場発生装置を設ける事によっても本発明の効
果が増加することを示す実験結果である。形成する薄膜
の膜厚は200nmとした。電場の発生は第1開口部近
傍にー10kVの電極を設けることによって行い、磁場
の発生は第1開口部近傍に水冷したサマリウムーコバル
ト系の永久磁石を設置して行った。なお、(表3)に示
した実験はイオン照射無しで行った。
From the experimental results described so far, it is important for the first opening to take in as many reflected electrons as possible and not take in a lot of evaporated atoms in order to prevent thermal damage to the substrate and secure the thin film characteristics at the same time. . Therefore, from this viewpoint, the ratio of the opening width of the first opening in the substrate traveling direction to the total opening width of the entire opening is such that the thickness of the thin film formed in the first opening is the thin film. The first opening is defined by connecting the end of the opening of the shield plate with a straight line from the evaporation center of the evaporation source irradiated with the electron beam. Eliminating the direct source area of the evaporation source increases the effect of the present invention. Further, the effect of the present invention can be increased by providing an electric field generator or a magnetic field generator for causing the backscattered electrons near the first opening to swirl toward the first opening. . Table 3 is an experimental result showing that the effect of the present invention is increased by providing an electric field generator and a magnetic field generator. The thickness of the thin film to be formed was 200 nm. The electric field was generated by providing an electrode of −10 kV near the first opening, and the magnetic field was generated by installing a water-cooled samarium-cobalt permanent magnet near the first opening. The experiment shown in (Table 3) was performed without ion irradiation.

【0017】[0017]

【表3】 [Table 3]

【0018】(表3)に示したように、電場発生装置あ
るいは磁場発生装置を用いることにより、高い基板温度
まで高分子基板の熱損傷が発生しない。これはさきに述
べたように、第1の開口部付近の前記反射電子を、前記
第1の開口部に向けて旋回させるための電場発生装置
や、磁場発生装置を設ける事によって、第1開口部に取
り込まれる反射電子が増加したために基板と円筒状キャ
ンの間の密着性が増したものと思われる。
As shown in (Table 3), the use of the electric field generator or the magnetic field generator prevents thermal damage to the polymer substrate up to a high substrate temperature. As described above, by providing an electric field generator or a magnetic field generator for causing the backscattered electrons near the first opening to swirl toward the first opening, the first opening is provided. It is considered that the adhesiveness between the substrate and the cylindrical can increased due to the increase of backscattered electrons taken in the part.

【0019】これまで、実施例の中で基板としてポリエ
チレンテレフタレート及びポリエチレンナフタレートを
用いた場合についてのみ述べたが、ポリエステル、ポリ
アミド、ポリイミドその他の高分子基板をはじめ、円筒
状キャンに沿って走行させることの出来る基板材料であ
ればこれを用いることが出来る。さらに、実施例として
は薄膜としてCo−O磁性層を形成する場合についての
み述べたが、磁性層としてCo−NiーOをはじめとす
る他の酸化物薄膜を用いる場合、Fe系その他磁性金属
材料を用いる場合、磁性層の形成に先立って下地層を形
成した後に磁性層を形成する場合や、磁性層以外の薄膜
を形成する場合についても本発明が有効であることは言
うまでもない。
Although only the case of using polyethylene terephthalate and polyethylene naphthalate as the substrate in the examples has been described above, the polymer substrate such as polyester, polyamide, polyimide or the like is made to run along the cylindrical can. Any substrate material that can be used can be used. Further, although only the case of forming a Co—O magnetic layer as a thin film has been described as an example, when another oxide thin film such as Co—Ni—O is used as a magnetic layer, an Fe-based or other magnetic metal material is used. It is needless to say that the present invention is also effective in the case of using, when the magnetic layer is formed after the underlayer is formed prior to the formation of the magnetic layer, or when a thin film other than the magnetic layer is formed.

【0020】[0020]

【発明の効果】以上の様に本発明の薄膜の製造方法及び
製造装置によれば、優れた特性を有する薄膜が安定に得
られる。
As described above, according to the method and apparatus for manufacturing a thin film of the present invention, a thin film having excellent characteristics can be stably obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜の製造方法の一例を示す図FIG. 1 is a diagram showing an example of a method for producing a thin film of the present invention.

【図2】従来の薄膜磁気記録媒体の製造方法の一例を示
す図
FIG. 2 is a diagram showing an example of a conventional method of manufacturing a thin film magnetic recording medium.

【図3】従来の薄膜磁気記録媒体の製造方法の一般的な
例を示す図
FIG. 3 is a diagram showing a general example of a conventional method for manufacturing a thin film magnetic recording medium.

【図4】本発明の薄膜の製造方法の一例を示す図FIG. 4 is a diagram showing an example of a method for producing a thin film of the present invention.

【符号の説明】[Explanation of symbols]

1 排気系 2 真空槽 3 巻き出しロール 4 高分子基板 5 円筒状キャン 6 電子ビーム 7 電子ビーム蒸発源 8 ガス導入ノズル 9 遮蔽板 10 巻き取りロール 11 ガイドロール 12 回転方向 13 第1の開口部 14 第2の開口部 16 密着用電子銃 17 密着用電子ビーム 18 電子銃 DESCRIPTION OF SYMBOLS 1 Exhaust system 2 Vacuum tank 3 Unwinding roll 4 Polymer substrate 5 Cylindrical can 6 Electron beam 7 Electron beam evaporation source 8 Gas introduction nozzle 9 Shielding plate 10 Winding roll 11 Guide roll 12 Rotation direction 13 First opening 14 Second opening 16 Contact electron gun 17 Contact electron beam 18 Electron gun

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】真空中で円筒状キャンの表面に沿って移動
する高分子基板上に直接あるいは下地層を介して電子ビ
ーム蒸着法によって薄膜を形成する薄膜の製造方法にお
いて、前記薄膜を形成する際の蒸気入射角を制限する遮
蔽板の開口部を2カ所以上設け、膜形成初期側に設けた
第1の開口部に於いて形成される前記薄膜の厚みを0を
越えて3nm以内とし、前記第1の開口部に於て前記電
子ビームの反射電子によって前記基板を前記円筒状キャ
ンに密着させることを特徴とする薄膜の製造方法。
1. A method for producing a thin film, which comprises forming a thin film on a polymer substrate moving along the surface of a cylindrical can in a vacuum by an electron beam evaporation method directly or through an underlayer, wherein the thin film is formed. In this case, two or more openings of the shielding plate for limiting the vapor incident angle are provided, and the thickness of the thin film formed in the first opening provided on the initial side of film formation is more than 0 and within 3 nm, A method of manufacturing a thin film, wherein the substrate is brought into close contact with the cylindrical can by reflected electrons of the electron beam in the first opening.
【請求項2】前記高分子基板が前記円筒状キャンに沿い
始めてより後に前記高分子基板にイオン流を照射し、そ
の後に前記第1の開口部に前記高分子基板を導くことを
特徴とする請求項1記載の薄膜の製造方法。
2. The polymer substrate starts along the cylindrical can, and the polymer substrate is irradiated with an ion current after that, and then the polymer substrate is guided to the first opening. The method for producing a thin film according to claim 1.
【請求項3】真空中で円筒状キャンの表面に沿って走行
する高分子基板上に直接あるいは下地層を介して電子ビ
ーム蒸着法によって薄膜を形成する薄膜の製造装置にお
いて、前記薄膜を形成する際の蒸気入射角を制限する遮
蔽板の開口部を2カ所以上設け、第1の開口部を膜形成
初期側かつ前記電子ビーム蒸発源からの反射電子が飛来
する領域に設け、さらに前記第1の開口部に於て形成さ
れる前記薄膜の厚みが0を越えて3nm以内になる様に
前記第1の開口部の開口幅を定めることを特徴とする薄
膜の製造装置。
3. A thin film manufacturing apparatus for forming a thin film by a electron beam vapor deposition method on a polymer substrate running along the surface of a cylindrical can in a vacuum, directly or through an underlayer. In this case, two or more openings are formed in the shielding plate for limiting the vapor incident angle, and the first openings are provided in the initial side of film formation and in the area where the reflected electrons from the electron beam evaporation source fly. 2. The thin film manufacturing apparatus, wherein the opening width of the first opening is determined so that the thickness of the thin film formed in the opening is more than 0 and within 3 nm.
【請求項4】前記第1の開口部の前記基板走行方向の開
口幅が、開口部全体の開口幅合計に占める割合が、前記
第1の開口部に於て形成される前記薄膜の厚みが前記薄
膜全体の厚みに占める割合よりも大きいことを特徴とす
る請求項3記載の薄膜の製造装置。
4. The ratio of the opening width of the first opening in the substrate traveling direction to the total opening width of the entire opening is such that the thickness of the thin film formed in the first opening is 4. The thin film manufacturing apparatus according to claim 3, wherein the ratio is larger than the ratio of the total thickness of the thin film.
【請求項5】前記第1の開口部が、前記電子ビームを照
射されている蒸発源の蒸発中心から前記遮蔽板の開口部
端部を直線で結んで規定される蒸発源直視域を含まない
ことを特徴とする請求項3または4記載の薄膜の製造装
置。
5. The first opening does not include an evaporation source direct view area defined by connecting a straight line from the evaporation center of the evaporation source irradiated with the electron beam to the end of the opening of the shielding plate. The thin film manufacturing apparatus according to claim 3, wherein the thin film manufacturing apparatus is a thin film manufacturing apparatus.
【請求項6】前記第1の開口部付近の前記反射電子を、
前記第1の開口部に向けて旋回させるための電場発生装
置を設けたことを特徴とする請求項3〜5のいずれかに
記載の薄膜の製造装置。
6. The reflected electrons in the vicinity of the first opening are
The thin-film manufacturing apparatus according to any one of claims 3 to 5, further comprising: an electric field generating device for rotating the electric field toward the first opening.
【請求項7】前記第1の開口部付近の前記反射電子を、
前記第1の開口部に向けて旋回させるための磁場発生装
置を設けたことを特徴とする請求項3〜5のいずれかに
記載の薄膜の製造装置。
7. The reflected electrons in the vicinity of the first opening are
The thin film manufacturing apparatus according to claim 3, further comprising a magnetic field generation device for rotating the magnetic field toward the first opening.
JP25817093A 1993-10-15 1993-10-15 Method and device for manufacturing thin film Pending JPH07113162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25817093A JPH07113162A (en) 1993-10-15 1993-10-15 Method and device for manufacturing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25817093A JPH07113162A (en) 1993-10-15 1993-10-15 Method and device for manufacturing thin film

Publications (1)

Publication Number Publication Date
JPH07113162A true JPH07113162A (en) 1995-05-02

Family

ID=17316504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25817093A Pending JPH07113162A (en) 1993-10-15 1993-10-15 Method and device for manufacturing thin film

Country Status (1)

Country Link
JP (1) JPH07113162A (en)

Similar Documents

Publication Publication Date Title
US4354909A (en) Process for production of magnetic recording medium
JP4234338B2 (en) Film deposition method
JPH07113162A (en) Method and device for manufacturing thin film
JPS61276124A (en) Production of vertical magnetic recording medium
JPH11193460A (en) Winding device in vacuum vessel
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JPH0479065B2 (en)
JP2830478B2 (en) Vacuum deposition equipment
JPH0451888B2 (en)
JPS59172163A (en) Production of vertical magnetic recording medium
JPH07220272A (en) Production of magnetic recording medium and device therefor
JPH0450384B2 (en)
JP3687557B2 (en) Thin film magnetic tape manufacturing equipment
JPH10251843A (en) Vacuum evaporation apparatus
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JPH01243234A (en) Production of magnetic recording medium
JPH057767B2 (en)
JPH0528487A (en) Production of magnetic recording medium
JPH09212858A (en) Production of magnetic recording medium and producing device therefor
JPH11296854A (en) Manufacturing device of magnetic recording medium
JPH02240831A (en) Production of magnetic recording medium
JPH0121540B2 (en)
JPH0221052B2 (en)
JP2001155320A (en) Magnetic recording medium
JPH0742586B2 (en) Thin film manufacturing method