JPS6085439A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS6085439A
JPS6085439A JP19355183A JP19355183A JPS6085439A JP S6085439 A JPS6085439 A JP S6085439A JP 19355183 A JP19355183 A JP 19355183A JP 19355183 A JP19355183 A JP 19355183A JP S6085439 A JPS6085439 A JP S6085439A
Authority
JP
Japan
Prior art keywords
thin film
iron
magnetic recording
vacuum deposition
nitrogen ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19355183A
Other languages
Japanese (ja)
Inventor
Kazuo Oki
大木 和雄
Koichi Nakayama
中山 恒一
Kenichi Uehara
健一 上原
Akira Kano
彰 狩野
Tatsuji Shimizu
達司 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP19355183A priority Critical patent/JPS6085439A/en
Publication of JPS6085439A publication Critical patent/JPS6085439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce a magnetic recording medium consisting of the single phase of an Fe8N superior to pure iron in magnetic characteristics, by implanting a prescribed amount of nitrogen ions simultaneously with vacuum deposition when an iron thin film is formed on a nonmagnetic substrate by the vacuum deposition method. CONSTITUTION:When the iron thin film is formed on the nonmagnetic substrate by the vacuum deposition method, a prescribed amount of nitrogen ions is implanted simultaneously with vacuum deposition. Since the thickness of the formed iron thin film is the base for determination of the quantity of implanted nitrogen ions, it is necessary to control exactly the deposition speed. It is desirable that deposition conditions are determined to attain finally <=2,000Angstrom , preferably, <=1,000Angstrom thickness of the iron thin film. Since a crystal lattice of the thin film formed by ion implantation is disturbed normally, it is desirable that this disturbance is corrected by heat treatment at a low temperature. It is desirable that the temperature of treatment is <=300 deg.C. There is a probability that an Fe4N or the like is produced locally if the temperature is higher, and a higher temperature is undesirable.

Description

【発明の詳細な説明】 本発明は、Pe1N薄膜層を磁気記録層とする磁気記録
媒体の製造法に関する亀のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium using a Pe1N thin film layer as a magnetic recording layer.

近年、高密度記録への要求の高tυと共K。In recent years, the demand for high-density recording has increased along with high tυ.

従来の塗布型の磁気記録媒体に比べて、真空蒸着法、ス
パッタ法、メッキ法等を用いて記録層を薄くしたCo 
−Ni、、 Co−0r等の強磁性金属薄膜を磁気記録
層とする非バインダー型磁気記録媒体が注目されており
一部実用化も行われている。
Compared to conventional coated magnetic recording media, Co has a thinner recording layer using vacuum evaporation, sputtering, plating, etc.
BACKGROUND ART Binder-free magnetic recording media in which a magnetic recording layer is a ferromagnetic metal thin film such as -Ni or Co-0r are attracting attention, and some of them have been put into practical use.

一方、材料的な面から、純鉄以上の飽和磁化を持つ、鉄
の窒化物であるFeIN(これはFe□INIとも表記
されるが0本文中では、以下Fe、Nと称する。)が注
目されている。
On the other hand, from a material standpoint, FeIN (also written as Fe□INI, but hereinafter referred to as Fe and N in this text), which is an iron nitride, has a saturation magnetization higher than that of pure iron. has been done.

すなわち、純鉄の飽和磁化がσsw 218 emu/
gr(単位重量当たりの飽和磁化) 、Msw 171
7Gauss(単位体積尚たυの飽和磁化)であるのに
対しFe、Nは、σ、wt 298emu/gr、 M
s= 2200Gaussとさらに高い飽和磁化を持つ
In other words, the saturation magnetization of pure iron is σsw 218 emu/
gr (saturation magnetization per unit weight), Msw 171
7 Gauss (saturation magnetization of unit volume and υ), whereas for Fe and N, σ, wt 298 emu/gr, M
It has a higher saturation magnetization of s=2200 Gauss.

これまでIFe、Hの生成方法として、 (1) Fe
4Nの低温熱処理法、 (2) 1[、またはN、中で
の鉄のPVD(Physical Vapor Dep
osition)法等が知られている。
Until now, methods for producing IFe and H have been as follows: (1) Fe
(2) PVD (Physical Vapor Dep.
position) method and the like are known.

(1)の方法は、純鉄を高温でNH,またはN8ガスを
用いて窒化し、急冷してFe4Nを得、その後。
In method (1), pure iron is nitrided using NH or N8 gas at high temperature, rapidly cooled to obtain Fe4N, and then.

120℃前後に加熱し、 Pa4NをIFeとFe、’
Nに分解する方法である。
Heating to around 120℃, Pa4N was combined with IFe and Fe,'
This is a method of decomposing into N.

(2)の方法は、微量の窒化性ガスを含む真空中で、真
空蒸着法あるいはスパッタ法で純鉄を蒸気化し、基板上
で付着した鉄原子と窒素原子とを反応させ窒化鉄を生成
する。
Method (2) involves vaporizing pure iron using vacuum evaporation or sputtering in a vacuum containing a trace amount of nitriding gas, and then reacting the iron atoms attached to the substrate with nitrogen atoms to produce iron nitride. .

窒化性ガスの導入量、鉄蒸気の量と運動エネルギーおよ
び基板温度により、窒化鉄の種類と量がある程度制御で
きる。
The type and amount of iron nitride can be controlled to some extent by the amount of nitriding gas introduced, the amount and kinetic energy of iron vapor, and the substrate temperature.

しかしながら、上記従来法では、安定なFe、N相を単
−相として得ることが困難であり、その他の窒化鉄(例
えば、 Fe、N、 Fe5N、 Fe、N等)との混
合状態でしか合成できないという問題があった。
However, with the above conventional method, it is difficult to obtain stable Fe and N phases as a single phase, and synthesis is possible only in a mixed state with other iron nitrides (e.g., Fe, N, Fe5N, Fe, N, etc.). The problem was that I couldn't do it.

特に、磁気特性を著しく劣化させるFe4N(σ8x2
01emu/gr、Ms=1583Gause )が多
量に混入することは、磁気記録媒体として大きな問題で
ある。
In particular, Fe4N (σ8x2
01 emu/gr, Ms=1583 Gauss) is a major problem for magnetic recording media.

上記問題点は、従来法では鉄原子と窒素原子の組成を厳
密に制御できないととに起因している。
The above problem is caused by the inability to precisely control the composition of iron atoms and nitrogen atoms in the conventional method.

本発明は8以上のよう力点を考慮し上記従来法の問題点
を解決した高密度磁気記録媒体として有用なFe、N薄
膜の製法を提供するものである。
The present invention takes into consideration the above-mentioned points and provides a method for producing Fe, N thin films useful as high-density magnetic recording media, which solves the problems of the conventional methods described above.

本発明は、非磁性基板上に真空蒸着法により鉄の薄膜を
形成する際、真空蒸着と同時に所定量の窒素イオンを注
入することによりFe8Nの薄膜を形成することを特徴
とする磁気記録媒体の製造方法に関するものである。
The present invention provides a magnetic recording medium characterized in that when forming a thin iron film on a non-magnetic substrate by vacuum evaporation, a thin film of Fe8N is formed by implanting a predetermined amount of nitrogen ions at the same time as the vacuum evaporation. This relates to a manufacturing method.

強磁性薄膜にイオン注入を施す方法は、すでにいくつか
開示されている。例えば、特公昭57−5615S、特
開昭56−148753.特開昭54−140505等
がある。
Several methods for implanting ions into ferromagnetic thin films have already been disclosed. For example, JP 57-5615S, JP 56-148753. There is JP-A-54-140505, etc.

特公昭57−57+153は、非磁性基板上に形成され
た強磁性金属薄膜に、イオン注入により周期律表の第y
、 V、 M族の金属元素並びに炭素および窒素などを
打込むことを特徴としている。
Japanese Patent Publication No. 57-57+153 proposed the y-th column of the periodic table by ion implantation into a ferromagnetic metal thin film formed on a non-magnetic substrate.
, V, M group metal elements, as well as carbon and nitrogen.

これにより、磁気記録媒体の耐候性、耐摩耗性、出力安
定性の向上管意図している。
This is intended to improve the weather resistance, wear resistance, and output stability of magnetic recording media.

特開昭56−148735は、非磁性基板上に形成した
磁性薄膜表面K Or+、 Ni+等の金属原子のイオ
ンと、Pl九B+、st+等のメタロイド元素のイオン
を同時注入して前記磁性薄膜の表面付近に非晶質金属層
を形成することを特徴としている。
Japanese Patent Application Laid-Open No. 56-148735 discloses that the surface of a magnetic thin film formed on a non-magnetic substrate is formed by simultaneously implanting ions of metal atoms such as K Or+ and Ni+ and ions of metalloid elements such as Pl9B+ and st+. It is characterized by the formation of an amorphous metal layer near the surface.

とれにより、磁気記録媒体の耐蝕性向上を意図している
This removal is intended to improve the corrosion resistance of magnetic recording media.

特開昭54−140505は、非磁性基板上に磁性薄膜
を形成し、との表面にOr九Ta+、 B”、 Mo+
JP-A-54-140505 discloses that a magnetic thin film is formed on a non-magnetic substrate, and Or9 Ta+, B'', Mo+ are formed on the surface of the magnetic thin film.
.

ム1九工n九Bi”、 Zn+等の非磁性イオンを注入
することを特徴としている。この磁性薄膜の表面処理に
より、電磁変換特性を低下させることなくその耐蝕性、
耐久性の向上を意図している。
It is characterized by implanting non-magnetic ions such as Zn+ and Zn+.The surface treatment of this magnetic thin film improves its corrosion resistance without deteriorating its electromagnetic conversion characteristics.
Intended to improve durability.

しかし表から上記発明は、いずれも磁気記録層の劣化を
防止するため磁気記録層表面部の改質な目的としている
点で本発明とは本質的に異表る。すなわち0本発明は、
非磁性基板上に鉄性の優れたFe、Hの単−相を形成す
ることを特徴としており、記録層の表面のみならず、全
体を該We、Nに変換して、電磁変換特性のよp一層の
向上を図った点において記録層表面のみの改質を目的と
した上記先行発明とは異なる。さらに。
However, as can be seen from the table, the above-mentioned inventions are essentially different from the present invention in that the purpose of both of them is to modify the surface portion of the magnetic recording layer in order to prevent deterioration of the magnetic recording layer. That is, the present invention is
It is characterized by forming a single phase of Fe and H with excellent iron properties on a non-magnetic substrate, converting not only the surface of the recording layer but the entire recording layer into We and N, resulting in similar electromagnetic conversion characteristics. This invention differs from the above-described prior invention, which aims to modify only the surface of the recording layer, in that it aims to further improve p. moreover.

イオン注入により薄膜の一部が基板中にも打ち込まれる
ため、基板との付着力、密着性が大巾に向上する効果も
得られる。
Because a portion of the thin film is implanted into the substrate by ion implantation, it is also possible to greatly improve the adhesion and adhesion with the substrate.

以下1本発明を具体的に説明する。The present invention will be specifically explained below.

本発明で用いる非磁性基板としては、非磁性金属、ある
いはプラスチック、セラオツク、ガラスのような非金属
いずれでも良い。非磁性金属としては1例えばアルミニ
ウム、黄銅尋がある。プラスチックとしては、酢酸セル
ローズ;硝酸セルローズ;エチルセルローズ;メチルセ
ルローズ、ポリアミド;ポリメチルメタクリレート1ポ
リテトラフルオルエチレン;ポリトリフルオルエチレン
;エチレン、プロピレンのよりなα−オレフィンの重合
体あるいは共重合体;塩化ビニルの重合体あるいは共重
合体;ポリ塩化ビニルデン;ポリカーボネート;ポリイ
ミド;ポリエチレン、テレフタレートのようなポリエス
テル類が用いられる。
The nonmagnetic substrate used in the present invention may be any nonmagnetic metal or nonmetal such as plastic, ceramic, or glass. Examples of non-magnetic metals include aluminum and brass. Plastics include cellulose acetate; cellulose nitrate; ethyl cellulose; methyl cellulose, polyamide; polymethyl methacrylate 1 polytetrafluoroethylene; polytrifluoroethylene; polymers or copolymers of α-olefins such as ethylene and propylene; Polymers or copolymers of vinyl chloride; polyvinylidene chloride; polycarbonate; polyimide; polyesters such as polyethylene and terephthalate are used.

上記非磁性基板上に、鉄の薄膜を形成する方法として公
知の方法である真空蒸着法を用いる。
A vacuum evaporation method, which is a known method, is used to form a thin iron film on the nonmagnetic substrate.

この場合、形成する鉄薄膜の厚さは、注入窒素イオン量
を決定する際の基礎となるため、蒸着速度を厳密に制御
する必要がある。鉄薄膜の厚以下にするよう蒸着条件を
定めることが望ましい。
In this case, since the thickness of the iron thin film to be formed is the basis for determining the amount of nitrogen ions to be implanted, it is necessary to strictly control the deposition rate. It is desirable to set the deposition conditions so that the thickness is equal to or less than that of the iron thin film.

上記所定の厚さに薄膜形成を行っている際。When forming a thin film to the above-mentioned predetermined thickness.

同時にイオン注入(工on Imp’1antatio
n ) Kより所定量の窒素イオンを注入する。イオン
注入技術籠は、半導体工業における半導体基板中への不
純物元素のドーピング等、材料の極く表面に近い部分の
改質等に一般的に用いられている。
At the same time, ion implantation
n) A predetermined amount of nitrogen ions are implanted from K. Ion implantation technology is commonly used in the semiconductor industry for doping of impurity elements into semiconductor substrates and for modifying parts very close to the surface of materials.

この場合、形成した鉄薄膜の厚さをT (cI4)とす
ればWe、Nを形成するために必要な注入窒素イオン量
Q(単位面積当たりのイオン数)は1次式でめられる。
In this case, if the thickness of the formed iron thin film is T (cI4), the amount Q (number of ions per unit area) of implanted nitrogen ions required to form We and N can be determined by a linear equation.

Q = 1.06X10”XT (ions/cj) 
+++・+(1)上式でめられた注入窒素イオン量に応
じてイオン注入装置のビームエネルギー、ビーム電流、
注入時間等の諸条件を適宜設定すると良い。
Q = 1.06X10”XT (ions/cj)
+++・+(1) The beam energy, beam current, and
It is preferable to set various conditions such as injection time as appropriate.

この隙、薄膜製造の連続化、あるいは薄膜の温度上昇等
を考慮して注入時間をできるだけ短くする方向で上記諸
条件を決定すると良い。
It is preferable to determine the above conditions in such a way as to shorten the injection time as much as possible, taking into consideration this gap, continuous production of thin films, or rise in temperature of the thin film.

また、イオン打込み深さも、窒素イオンが膜内で均一に
分布するように工夫することが膜内でのガス層の発生防
止や均一なFe、N膜の形成には有効である。
Furthermore, adjusting the ion implantation depth so that nitrogen ions are uniformly distributed within the film is effective in preventing the formation of a gas layer within the film and forming a uniform Fe, N film.

上記イオン注入により形成された薄膜の結晶格子には通
常乱れが生ずるので、この乱れを矯正するための一つの
方法として例えば低温熱処理を行うと良い。
Since the crystal lattice of the thin film formed by the ion implantation is usually disturbed, one method for correcting this disturbance is, for example, low-temperature heat treatment.

処理温度としては300℃以下、好ましくは200℃以
下が望ましい。温度が高過ぎると局部的JICFe2N
等が生成する可能性があり、好ましくない。
The treatment temperature is desirably 300°C or lower, preferably 200°C or lower. If the temperature is too high, local JICFe2N
etc. may be generated, which is not desirable.

以下1本発明を実施例に基づき詳細に説明する。The present invention will be explained in detail below based on examples.

実施例 =7− 非磁性基板としてガラス(20mx50−)を用いた。Example =7- Glass (20 m x 50 -) was used as a nonmagnetic substrate.

また鉄を蒸着源とし窒素を注入イオン源として、真空蒸
着条件を真空度10−TOrr r蒸着速度10A/秒
、蒸着時間50秒間とし、またイオン注入条件をビーム
電流10+esム、注入窒素イオン貴重3 X 10”
1ons/alIとし、真空蒸着とイオン注入を同時に
行った。
In addition, iron was used as the evaporation source and nitrogen was used as the implantation ion source, and the vacuum evaporation conditions were a vacuum degree of 10-Torr, a deposition rate of 10A/sec, and a deposition time of 50 seconds.The ion implantation conditions were a beam current of 10+esm, and an implanted nitrogen ion precious metal. X 10"
Vacuum deposition and ion implantation were performed simultaneously at 1 ons/alI.

次いで、上記により形成された薄膜を180℃で8分間
熱処理した。この結果、ガラス基板上に500Aの厚さ
の薄膜が形成された。(厚さの均一性は、±1.5jで
あった。) こうして得られた薄膜をX線回折およびオージェ電子分
光法によりその組成を分析したところ、Fe、Nの単−
相が形成されていることが確認された。
Next, the thin film formed as described above was heat-treated at 180° C. for 8 minutes. As a result, a thin film with a thickness of 500 A was formed on the glass substrate. (The uniformity of the thickness was ±1.5j.) When the composition of the thus obtained thin film was analyzed by X-ray diffraction and Auger electron spectroscopy, it was found that Fe, N mono-
It was confirmed that a phase was formed.

以上の説明から明らかなように本発明によれば2次のよ
う表効果が期待される。
As is clear from the above description, according to the present invention, a quadratic table effect is expected.

(1) これまで不可能とされていた純鉄よりも磁気特
性の優れた78−を単−相とする磁気記録媒体の製造が
可能となった。
(1) It has become possible to manufacture a magnetic recording medium with a single phase of 78-, which has better magnetic properties than pure iron, which was previously considered impossible.

録媒体として適用可能である。It is applicable as a recording medium.

(3) 耐蝕性・耐久性等の表面改善処理が不要であり
、工程が簡略化されるとともに薄膜形成とイオン注入を
同時に行えるため装置が簡単で連続量産に適しており、
工業的生産法として有望である。
(3) Surface improvement treatments such as corrosion resistance and durability are not required, and the process is simplified and thin film formation and ion implantation can be performed simultaneously, making the equipment simple and suitable for continuous mass production.
It is promising as an industrial production method.

(4) イオン注入により膜の一部が基板中に押し込め
られるため、従来の真空蒸着法等による薄膜よりも基板
に対する膜の付着力が向上する。
(4) Because part of the film is pushed into the substrate by ion implantation, the adhesion of the film to the substrate is improved compared to thin films formed by conventional vacuum evaporation methods.

特許出願人 日本鉱業株式会社 代理人 弁理士(7569)並川啓志Patent applicant: Japan Mining Co., Ltd. Agent: Patent attorney (7569) Keishi Namikawa

Claims (2)

【特許請求の範囲】[Claims] (1) 非磁性基板上に真空蒸着法により鉄の薄膜を形
成する際、真空蒸着と同時に所定量の窒素イオンを注入
することKより Fe、Hの薄膜を形成することを特徴
とする磁気記録媒体の製造方法。
(1) Magnetic recording characterized in that when forming a thin film of iron on a non-magnetic substrate by vacuum evaporation, a predetermined amount of nitrogen ions are implanted simultaneously with the vacuum evaporation to form a thin film of Fe or H. Method of manufacturing media.
(2) 非磁性基板上に真空蒸着法によシ鉄の薄膜を形
成する際、真空蒸着と同時に所定量の窒素イオンを注入
し1次いで上記により形成された窒素含有鉄薄膜に低温
熱処理を施すことKよりFe、Hの薄膜を形成すること
を特徴とする磁気記録媒体の製造方法。
(2) When forming a thin iron film on a nonmagnetic substrate by vacuum evaporation, a predetermined amount of nitrogen ions are implanted simultaneously with the vacuum evaporation, and then the nitrogen-containing iron thin film formed as described above is subjected to low-temperature heat treatment. A method for manufacturing a magnetic recording medium, characterized by forming a thin film of Fe or H rather than K.
JP19355183A 1983-10-18 1983-10-18 Production of magnetic recording medium Pending JPS6085439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19355183A JPS6085439A (en) 1983-10-18 1983-10-18 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19355183A JPS6085439A (en) 1983-10-18 1983-10-18 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6085439A true JPS6085439A (en) 1985-05-14

Family

ID=16309933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19355183A Pending JPS6085439A (en) 1983-10-18 1983-10-18 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6085439A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385404A (en) * 1977-01-07 1978-07-27 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS5690432A (en) * 1979-12-22 1981-07-22 Hitachi Maxell Ltd Production of magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5385404A (en) * 1977-01-07 1978-07-27 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium
JPS5690432A (en) * 1979-12-22 1981-07-22 Hitachi Maxell Ltd Production of magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2001176715A (en) HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL
US5154983A (en) Magnetic alloy
Grundy et al. The magnetic and microstructural properties of Co-Cr thin films with perpendicular anisotropy
JPS6085439A (en) Production of magnetic recording medium
EP0367030B1 (en) Process for forming thin films of metastable binary compounds
Ding et al. Synthesis and magnetic properties of iron nitride films deposited on Ge (100) by reactive ion beam sputtering
Smith et al. Uniaxial‐Anisotropy Spectrum in Nonmagnetostrictive Permalloy Films
JPS6076021A (en) Production of magnetic recording and reproducing medium
JP3201763B2 (en) Soft magnetic thin film
JP2504255B2 (en) Method of forming boron nitride thin film
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
JPS5836908A (en) Manufacture of magnetic body of thin nitride film
US5059337A (en) Soft magnetic materials comprising 9 to 15 atomic percent carbon atoms
JP2518424B2 (en) Magnetic head and manufacturing method thereof
JPH03265104A (en) Soft magnetic alloy film
JPH03101202A (en) Soft magnetic thin film and manufacture thereof
JP2675178B2 (en) Soft magnetic alloy film
Wang et al. The effect of Ti addition on the thermal stability of
JPH03265105A (en) Soft magnetic laminate film
KR920008436B1 (en) Magnetic medium
RU2122243C1 (en) Method for production of magnetically soft heat-resistant amorphous condensate of 3d metals
JPS62284071A (en) Formation of permalloy layer on surface of nickel base material
JPS6095729A (en) Production of magnetic recording medium
JP3236277B2 (en) Method for manufacturing soft magnetic alloy film
JPH07192264A (en) Manufacture of perpendicular magnetic recording medium