JP2001176715A - HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL - Google Patents

HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL

Info

Publication number
JP2001176715A
JP2001176715A JP36214999A JP36214999A JP2001176715A JP 2001176715 A JP2001176715 A JP 2001176715A JP 36214999 A JP36214999 A JP 36214999A JP 36214999 A JP36214999 A JP 36214999A JP 2001176715 A JP2001176715 A JP 2001176715A
Authority
JP
Japan
Prior art keywords
fe
saturation magnetization
phase
magnetic material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36214999A
Other languages
Japanese (ja)
Inventor
Takeshi Hattori
Nobuo Kamiya
Yoshio Kato
Shin Tajima
Katsunori Yamada
義雄 加藤
勝則 山田
毅 服部
伸 田島
信雄 神谷
Original Assignee
Toyota Central Res & Dev Lab Inc
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central Res & Dev Lab Inc, 株式会社豊田中央研究所 filed Critical Toyota Central Res & Dev Lab Inc
Priority to JP36214999A priority Critical patent/JP2001176715A/en
Publication of JP2001176715A publication Critical patent/JP2001176715A/en
Application status is Pending legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder

Abstract

PROBLEM TO BE SOLVED: To provide high saturation magnetization Fe-N magnetic material of low cost, which exhibits saturation magnetization which is higher than or equal to that of Fe. SOLUTION: This high saturation magnetization Fe-N magnetic material is provided with a mixed phase of an α-Fe phase and a Fe16N2 phase. It is preferable that the formation ratio of the Fe16N2 phase in the mixed phase be 10-90%. This magnetic material is obtained by a method, where material powder such as iron oxide powder and metal iron powder are subjected to hydrogen reduction, nitriding is performed by using a gas containing ammonia, and the Fe16N2 phase is partially formed in the material powder.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、高飽和磁化Fe− BACKGROUND OF THE INVENTION The present invention is, high saturation magnetization Fe-
N系磁性体において、Fe以上の飽和磁化を有するバルク体(粉末、板等)に関する。 In N based magnetic material, the bulk material having a saturation magnetization of more than Fe related (powder, plate or the like).

【0002】 [0002]

【従来の技術】Fe以上の飽和磁化を有する材料としては、Fe−Co系合金が知られている。 2. Description of the Related Art As a material having a saturation magnetization of more than Fe, Fe-Co-based alloy is known. 市販材料としては、代表組成:Fe−48Co−2Vで表されるパーメンジュール合金が有名である。 Commercially available materials, typical composition: Permendur alloys represented by Fe-48Co-2V is famous. また、Fe−Co系合金以外には、Fe以上の高飽和磁化を有する材料はないが、期待されている物質として、Fe 16が知られている。 In addition to Fe-Co-based alloy is not material having more high saturation magnetization Fe, as a substance which is expected, Fe 16 N 2 are known. Fe 16は、スレータ・ポーリング曲線から推定されるFe−Co系合金の飽和磁化を超える高い飽和磁化を持つ化合物として注目されているものである。 Fe 16 N 2 is one that is attracting attention as a compound having a high saturation magnetization in excess of saturation magnetization of the Fe-Co-based alloy which is estimated from the translator polling curve.

【0003】Fe 16相の生成がX線回折やメスバウワー解析で確認されている作製方法としては、(1) [0003] As a manufacturing method of Fe 16 N 2 phase generation is confirmed by X-ray diffraction and Mossbauer analysis, (1)
焼き入れ・焼戻し法、(2)薄膜法、(3)イオン打ち込み法、(4)低温窒化法の4種類がある。 Quenching and tempering process, (2) thin film method, (3) an ion implantation method, there are four (4) low-temperature nitriding. 焼き入れ・ Quenching -
焼戻し法は、窒素含有オーステナイトを急冷して得たマルテンサイト相を、さらに100〜150℃で数日間アニールし、Fe 16相を生成させる方法である(例えば、JMD Coey, et al., J. Phys. Condens. Matter, Tempering method, the martensite phase obtained by quenching the nitrogen-containing austenite and annealed for several days for a further 100 to 150 ° C., a method of generating an Fe 16 N 2 phase (e.g., JMD Coey, et al., J. Phys. Condens. Matter,
6(1994)L23参照。 6 (1994) L23 reference. )。 ).

【0004】薄膜法は、分子線エピタキシー法を用いて、In 0.2 Ga 0.8 As単結晶基板上にFe 16 [0004] thin film method, using a molecular beam epitaxy method, Fe 16 to In 0.2 Ga 0.8 As the single crystal substrate
薄膜をエピタキシャル成長させる方法である(例えば、Y.Sugita, et al., J. Appl. Phys., 70(1991)5997 A method for the N 2 thin film is epitaxially grown (e.g., Y.Sugita, et al., J. Appl. Phys., 70 (1991) 5997
参照。 reference. )。 ). また、イオン打ち込み法は、鏡面研磨したM In addition, ion implantation method was mirror-polished M
gO単結晶表面にFe薄膜を形成し、これにN 及びN イオンを打ち込み、Fe 16相を生成させる方法である(例えば、K.Nakashima and S.Okamoto, Appl. The Fe thin film is formed gO single crystal surface, this implanted N 2 + and N + ions, a method of generating an Fe 16 N 2 phase (e.g., K.Nakashima and S.Okamoto, Appl.
Phys. Lett., 56(1990)92参照。 Phys. Lett., 56 (1990) 92 reference. )。 ).

【0005】さらに、低温窒化法は、針状の酸化鉄を水素還元して得た直径約20nmの微粒状α−Feをアンモニア気流中において、110℃×10日の条件で加熱処理し、Fe 16相を生成させる方法である(例えば、永富他、「粉体および粉末冶金」、vol.46, No.2, Furthermore, the low-temperature nitriding method, a particulate alpha-Fe needle diameter of about 20nm to iron oxide obtained by hydrogen reduction of the ammonia gas stream, heat treatment under conditions of 110 ° C. × 10 days, Fe a method of generating a 16 N 2 phase (e.g., Nagatomi other, "powder and powder metallurgy", vol.46, No.2,
P151(1999)参照。 P151 (1999) reference. )。 ).

【0006】 [0006]

【発明が解決しようとする課題】Fe以上の飽和磁化を発現するバルク材料としては、上述したFe−Co系合金しか見出されていない。 The bulk material exhibiting saturation magnetization than Fe [0008], have been found only Fe-Co based alloy as described above. しかし、Fe−Co系合金は、高価なCoを多く使用するため(30〜50mas However, Fe-Co-based alloy, for use more expensive Co (30~50mas
s%)、コストの高い材料となっている。 s%), it has become a high-cost material.

【0007】これに対し、Fe−N系磁性体は、鉄と窒素という安価な物質から作製されるため、Fe以上の飽和磁化を発現する低コストな磁性材料として期待できる。 [0007] In contrast, Fe-N-based magnetic material, because it is made from inexpensive materials that iron and nitrogen, can be expected as a low-cost magnetic material exhibiting a saturation magnetization of more than Fe. 実際に、薄膜法あるいはイオン打ち込み法で得られたFe−N系磁性体薄膜は、窒素量の増加とともにFe Fe Indeed, Fe-N-based magnetic thin film obtained by a thin film method or an ion implantation method, with increasing nitrogen content
16相の生成量が増加し、飽和磁化も増加することが確認されている。 16 N the amount of 2-phase is increased, it has been confirmed that also increase the saturation magnetization. また、Fe 16単相となる窒素量で最大の飽和磁化となり、Fe−Co系合金と同等以上の飽和磁化を示すことが確認されている。 Further, a maximum saturation magnetization amount of nitrogen to be Fe 16 N 2 single phase, it has been confirmed to exhibit a saturation magnetization equal to or larger than that of the Fe-Co alloy.

【0008】しかしながら、Fe 16相は準安定相であるため、バルク材単相の作製が困難であり、また、 However, since the Fe 16 N 2 phase is a metastable phase, it is difficult to produce a bulk material a single phase, also,
得られた試料について測定された磁気的性質には大きな差が見られている。 The measured magnetic properties of the obtained sample is seen a large difference. 例えば、焼き入れ・焼戻し法では、 For example, in the quenching and tempering method,
単相のFe 16は得られず、得られた試料は、α− Fe 16 N 2 single phase can not be obtained, resulting samples, alpha-
Fe、γ−Fe、Fe 16及びFe Nの混合相となっている。 Fe, γ-Fe, and has a mixed phase of Fe 16 N 2 and Fe 4 N. また、窒素含有量の増加とともに、Fe Furthermore, with increasing nitrogen content, Fe
16相の生成量は増加するが、これに伴い残留オーステナイト(非磁性)も増加するため、全体の飽和磁化は、α−Fe単相よりも低下する。 The amount of 16 N 2 phase is increased, for increasing even residual austenite (non-magnetic) Accordingly, the saturation magnetization of the whole is lower than alpha-Fe single phase.

【0009】一方、永富らの提案した低温窒化法によれば、Fe 16のバルク単体の合成が確認できたが、 On the other hand, according to Nagatomi et al proposed a low temperature nitriding method, the synthesis of bulk single Fe 16 N 2 could be confirmed,
得られた粉末の飽和磁化は、薄膜の報告値及びFe粉末の飽和磁化にも達していないのが現状である。 Saturation magnetization of the obtained powder, at present, does not reach to the saturation magnetization of the reported values ​​and Fe powder of the thin film. これは、 this is,
薄膜で観測された高飽和磁化が、薄膜特有の現象(膜の内部応力等による歪に起因した磁気体積効果など)により発現している可能性も考えられる。 High saturation magnetization that has been observed in thin films, also conceivable possibility that expressed by thin peculiar phenomena (such as a magnetic volume effect due to strain caused by internal stress or the like of the film).

【0010】本発明が解決しようとする課題は、低コストであり、かつ、Fe以上の飽和磁化を発現する高飽和磁化Fe−N系磁性体を提供することにある。 [0010] An object of the present invention is to provide a low cost, and to provide a high saturation magnetization Fe-N based magnetic expressing the saturation magnetization of more than Fe.

【0011】 [0011]

【課題を解決するための手段】上記課題を解決するために本発明に係る高飽和磁化Fe−N系磁性体は、α−F Means for Solving the Problems] high saturation magnetization Fe-N based magnetic material according to the present invention in order to solve the above problems, alpha-F
e相とFe 16相の混相を主相とし、該混相中のF The mixed phase of e phase and Fe 16 N 2 phase as the main phase, F in該混phase
16相の生成割合が10%以上90%以下であることを要旨とするものである。 production ratio of e 16 N 2 phase is intended to subject matter that 10% to 90%. 本発明に係るFe−N系磁性体は、高価な合金元素を含まないので、低コストである。 Fe-N based magnetic material according to the present invention does not contain expensive alloying elements, and low cost. また、本発明に係るFe−N系磁性体は、α−F Further, Fe-N based magnetic material according to the present invention, alpha-F
e相とFe 16相の混相を備えているので、Fe以上の高飽和磁化を発現するバルク体が得られる。 is provided with the mixed phase of the e-phase and Fe 16 N 2 phase, bulk expressing the above high saturation magnetization Fe is obtained. その機構の詳細については不明であるが、α−Fe相とFe It is unknown for details of that mechanism, alpha-Fe phase and Fe
16相の界面近傍の相互作用によって、飽和磁化が増加したためと考えられる。 The interaction in the vicinity of the interface 16 N 2 phase, presumably because the saturation magnetization is increased.

【0012】 [0012]

【発明の実施の形態】以下、本発明の実施の形態について詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be described in detail embodiments of the present invention. 本発明に係る高飽和磁化Fe−N系磁性体は、α−Fe相とFe 16相の混相を備えている。 High saturation magnetization Fe-N based magnetic material according to the present invention comprises a mixed phase of alpha-Fe phase and Fe 16 N 2 phase. このような組織を有する高飽和磁化Fe−N系磁性体は、Feを含む磁性体に、Fe 相を一部生成させることによって得ることができる。 High saturation magnetization Fe-N based magnetic material having such a structure is a magnetic body including Fe, it can be obtained by generating a part of Fe 1 6 N 2 phase.

【0013】ここで、磁性体の形状は、粉末、板等のいわゆるバルク材であり、必ずしも薄膜である必要はない。 [0013] Here, the shape of the magnetic substance powder, a so-called bulk material such as a plate, not necessarily a thin film. また、例えば、カセットテープ、ビデオテープ等、 Further, for example, a cassette tape, video tape,
塗布型の磁気記録媒体に用いられるような粉末である場合、その比表面積は、大きい方が好ましい。 If a powder as used in the coating type magnetic recording medium, the specific surface area is larger are preferred. 高い真の保磁力を得るためには、粉末の比表面積は、10m /g In order to obtain a high true coercivity, the specific surface area of the powder, 10 m 2 / g
以上が好適である。 The above is preferred.

【0014】さらに、本発明に係る磁性体において、高い飽和磁化を得るためには、混相中に含まれるFe 16 Furthermore, in the magnetic body of the present invention, in order to obtain a high saturation magnetization, Fe 16 contained in the mixed phase
相の生成割合は、10〜90%が好ましい。 Production ratio of N 2 phase, preferably 10-90%. なお、 It should be noted that,
「生成割合」とは、X線回折法で測定されたFe 16 The "production ratio", Fe 16 measured by X-ray diffractometry N
相の体積分率を示し、例えば、粉末試料の場合には、 Shows the volume fraction of the two phases, for example, in the case of a powder sample,
次の数1の式にて表される。 It is represented by the following Expression 1. また、板などの試料では、 In addition, in the sample, such as a plate,
その方位配列、消衰等を考慮して体積分率を評価する必要がある。 As a preferred orientation, it is necessary to evaluate the volume fraction in view of the consumption 衰等.

【0015】 [0015]

【数1】 [Number 1]

【0016】次に、本発明に係る高飽和磁化Fe−N系磁性体の作用について説明する。 [0016] Next, the operation of the high saturation magnetization Fe-N based magnetic material according to the present invention. 多成分系の磁性体の飽和磁化は、各生成相の相加平均により決定されているのが一般的である。 Saturation magnetization of the magnetic material of the multi-component system, it is general that are determined by the arithmetic mean of the production phase. 従って、Fe−N系磁性体においても、従来は、磁化が最大となるFe 16の飽和磁化を超えることはないと考えられていた。 Accordingly, even in Fe-N based magnetic material, conventionally, magnetization is believed to never exceed the saturation magnetization of the Fe 16 N 2 to a maximum.

【0017】しかしながら、本発明に係る高飽和磁化F [0017] However, high saturation magnetization F according to the present invention
e−N系磁性体においては、その飽和磁化は、後述するように、Fe 16相の生成割合が増加するに伴い、 In e-N based magnetic material, the saturation magnetization, as described later, with the rate of formation of Fe 16 N 2 phase increases,
上に凸の曲線を描いて変化し、単なる相加平均を超える高飽和磁化が得られている。 Draw a convex curve changes above, high saturation magnetization is obtained more than mere arithmetic mean. しかも、従来のFe−N系磁性体では、Feを超える飽和磁化を有するバルク材は得られていないのに対し、本発明によれば、Feを超える高い飽和磁化を有するバルク材が得られている。 Moreover, in the conventional Fe-N based magnetic material, while not bulk materials obtained having a saturation magnetization of more than Fe, according to the present invention, the bulk material is obtained having a high saturation magnetization in excess of Fe there. その原因の詳細については不明であるが、おそらく、α−F It is unknown for details of the cause, perhaps, α-F
e相とFe 16相の界面近傍での窒素分布、磁気的な相互作用、界面相の影響等、α−Fe相とFe 16 nitrogen distribution in the vicinity of the interface of e phase and Fe 16 N 2 phase, magnetic interaction, the interphase influence, alpha-Fe phase and Fe 16 N
相の界面近傍の相互作用によって、磁性体全体の飽和磁化が増加したためと考えられる。 The interaction near the interface of the two phases, presumably because the saturation magnetization of the whole magnetic body is increased.

【0018】次に、本発明に係る高飽和磁化Fe−N系磁性体の製造方法について説明する。 [0018] Next, a method for manufacturing the high saturation magnetization Fe-N based magnetic material according to the present invention. 本発明に係る高飽和磁化Fe−N系磁性体は、還元工程と、窒化工程とを備えている。 High saturation magnetization Fe-N based magnetic material according to the present invention includes a reduction step, and a nitriding process. 還元工程は、鉄を含む原料を還元する工程である。 Reduction step is a step of reducing a raw material containing iron. 原料としては、酸化鉄粉末(例えば、α−Fe As the raw material, iron oxide powder (e.g., alpha-Fe
、γ−Fe 、FeO、Fe 等。 2 O 3, γ-Fe 2 O 3, FeO, Fe 3 O 4 and the like. )、 ),
一部に酸化鉄を含んだ金属鉄粉末(例えば、その表面が薄い酸化膜で覆われた鉄粉等。)、一部に酸化鉄を含んだ金属鉄板等が用いられる。 Partially metallic iron powder containing iron oxide (e.g., iron powder its surface is covered with a thin oxide film or the like.), Metals such as iron plates containing iron oxide is used in a part.

【0019】なお、原料粉末の形状は、特に限定されるものではない。 [0019] The shape of the raw material powder is not particularly limited. すなわち、針状、紡錘状等の異方性を有する形状であっても良く、あるいは、球状、立方体状等の不定形であっても良い。 That is, the needle may have a shape having anisotropy fusiform like, or spherical, or may be irregular cube shape.

【0020】還元処理は、水素ガス気流中で行うのが好ましい。 The reduction treatment is preferably carried out in a hydrogen gas stream. また、使用する水素ガスは、高純度であることが好ましい。 The hydrogen gas used is preferably of high purity. 具体的には、5N以上の水素ガス、あるいは、酸素量が数ppm以下の水素ガスが好適である。 Specifically, 5N or more hydrogen gas, or several ppm or less of hydrogen gas oxygen content is preferred.

【0021】また、還元温度は、300℃〜700℃の温度域で行うのが好ましい。 Further, the reduction temperature is preferably carried out in a temperature range of 300 ° C. to 700 ° C.. 還元温度が300℃未満になると、還元反応が不十分となるので好ましくない。 When the reduction temperature is less than 300 ° C., since the reduction reaction becomes insufficient undesirably. 一方、原料が粉末である場合において、還元温度が700 On the other hand, in the case where the raw material is a powder, the reduction temperature is 700
℃を超えると、粉末の粒成長及び焼結が進行して比表面積が低下し、例えば、磁気記録材料においては、高い真の保磁力を有する粉末状の磁性体が得られないので好ましくない。 When ℃ exceeds, by grain growth and sintering of the powder proceeds specific surface area is reduced, for example, in a magnetic recording material, since the powdery magnetic material having a high true coercivity can not be obtained undesirably.

【0022】窒化工程は、還元工程において得られた鉄を含む原料を窒化処理する工程である。 The nitriding step is a step of nitriding a raw material containing iron obtained in the reduction step. 窒化処理は、アンモニア気流中、あるいは、アンモニアガスを含んだ混合ガス(例えば、アルゴン、水素、窒素のいずれか1以上のガスとアンモニアガスとの混合ガス)気流中で行うのが好ましい。 Nitriding treatment in an ammonia gas stream, or a mixed gas containing ammonia gas (e.g., argon, hydrogen, a mixed gas of any one or more gas and ammonia gas of nitrogen) carried out in a stream preferred. また、使用するこれらのガスは、高純度であることが好ましい。 These gas used is preferably of high purity. 具体的には、5N以上のガス、 Specifically, 5N or more gases,
あるいは、酸素量が数ppm以下のガスを用いると良い。 Alternatively, the amount of oxygen may be used several ppm or less gas.

【0023】窒化温度は、100℃〜250℃が好ましい。 [0023] The nitriding temperature is preferably 100 ℃ ~250 ℃. 窒化温度が250℃を超えると、安定なFe When nitriding temperature exceeds 250 ° C., stable Fe 3 N
相、Fe N相等が生成し、Fe 16相が得られないので好ましくない。 Phase, Fe 4 N phase etc. is produced, since Fe 16 N 2 phase is not obtained unfavorably. 一方、窒化温度が100℃未満になると、Fe 16相の生成速度が遅くなるので好ましくない。 On the other hand, if the nitriding temperature is less than 100 ° C., since the production rate of the Fe 16 N 2 phase is delayed undesirably. なお、磁性体中のFe 16相の生成割合は、窒化温度及び窒化時間に依存するので、目的とするFe 16相の生成割合を得るには、窒化温度及び/ The generation ratio of Fe 16 N 2 phase in the magnetic material, because it depends on the nitriding temperature and time nitriding, to obtain a rate of production of Fe 16 N 2 phase of interest, nitriding temperature and /
又は窒化時間を適宜調節すればよい。 Or nitridation time may be appropriately adjusted.

【0024】以上のように、酸化鉄粉末等の原料を還元処理し、これを窒化すると、鉄内部には、Fe−N系化合物が生成する。 [0024] As described above, the raw materials such as iron oxide powder and reducing treatment, which upon nitridation, inside the iron, Fe-N-based compound is produced. この時、窒化温度を上述の範囲内とすると、準安定相であるFe 16相を生成させることができる。 At this time, when the range nitriding temperature described above can be generated Fe 16 N 2 phase is a metastable phase. また、窒化温度及び/又は窒化時間を適宜調節することにより、Fe 16相の生成割合を任意に制御することができる。 Further, by appropriately adjusting the nitriding temperature and / or nitriding time can be arbitrarily control the generation ratio of Fe 16 N 2 phase. このようにして得られたFe− Fe- obtained in this way
N系磁性体は、α−Fe相とFe 16相の混相を備えており、Feを超える高い飽和磁化を発現する。 N based magnetic material has a mixed phase of alpha-Fe phase and Fe 16 N 2 phase, exhibits high saturation magnetization in excess of Fe.

【0025】 [0025]

【実施例】(実施例1)γ−Fe の不定形超微粉末(粒径10〜50nm)約2gをアルミナボートに乗せ、水素気流中500℃で8時間還元処理を行った。 EXAMPLES (Example 1) γ-Fe 2 O 3 of amorphous ultrafine powder (particle size 10 to 50 nm) to about 2g placed in an alumina boat and subjected to 8 hours reduction treatment at 500 ° C. in a hydrogen stream. 次いで、還元処理した粉末をアンモニアガスとアルゴンガスの流量比を2:1とした混合ガス気流中において、1 Then, the flow rate of powder reduction treatment and ammonia gas and the argon gas 2: 1 and the mixed gas stream, 1
30℃×24時間窒化処理を行い、炉冷した。 It performed 30 ° C. × 24 hours nitriding, furnace cooled. 炉冷後に試料を取り出して、振動試料型磁力計(東英工業製VS Samples are removed after the furnace cooling, vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd. VS
M、最大印加磁場:1432kA/m)による飽和磁化の測定を行った。 M, the maximum applied magnetic field: the 1432kA / m) Measurement of saturation magnetization by Been. 得られた粉末の磁気特性は、飽和磁化σs=208Am /kgであった。 Magnetic properties of the obtained powder was a saturation magnetization σs = 208Am 2 / kg. また、この粉末の生成相をX線回折により評価したところ、生成相は、α We have also measured the production phase of the powder by X-ray diffraction, the product phase is, alpha
−Fe相とFe 16相の混相であり、Fe 16 A mixed phase of -Fe phase and Fe 16 N 2 phase, Fe 16 N 2
相の生成割合は、60%であった。 Production ratio of the phases was 60%.

【0026】(実施例2〜4)供試材料は、実施例1の場合と同一のものを使用した。 [0026] (Examples 2-4) the test materials used was the same as in Example 1. この供試材を実施例1と同一の条件下で還元処理した後、窒化温度及び窒化時間を変えて窒化処理を行い、Fe 16相の生成割合の異なる粉末状の磁性体を得た。 After reduction treatment under the same conditions the test materials as in Example 1, subjected to nitriding treatment by changing the nitridation temperature and nitridation time, to obtain a different powdery magnetic material of the rate of formation of Fe 16 N 2 phase . 得られた粉末について、 The resulting powder,
実施例1と同一条件下で、磁気特性の測定及び生成相の評価を行った。 Under the same conditions as in Example 1, was measured and evaluated in the production phase of the magnetic properties. 得られた粉末の生成相は、いずれもα− The resulting product phase powder are both α-
Fe相とFe 16相の混相であり、Fe 16相の生成割合は、それぞれ、65%、40%及び10%であった。 A mixed phase of Fe phase and Fe 16 N 2 phase, the rate of formation of Fe 16 N 2 phase, respectively, 65%, was 40% and 10%. また、飽和磁化σsは、それぞれ、207Am In addition, the saturation magnetization σs, respectively, 207Am
/kg、206Am /kg及び201Am /kg 2 / kg, 206Am 2 / kg and 201Am 2 / kg
であった。 Met.

【0027】(比較例1)窒化条件を140℃×24時間とした以外は、実施例1と同一の条件下で、γ−Fe [0027] except that the (Comparative Example 1) nitride conditions as 140 ° C. × 24 hours, under the same conditions as Example 1, gamma-Fe
の還元処理及び窒化処理を行った。 The reduction treatment and nitriding treatment 2 O 3 was performed. また、実施例1と同一の条件下で、磁気特性の測定及び生成相の評価を行った。 Further, under the same conditions as Example 1, was measured and evaluated in the production phase of the magnetic properties. 得られた粉末の磁気特性は、飽和磁化σs= Magnetic characteristics of the resulting powder, the saturation magnetization [sigma] s =
200Am /kgであった。 200Am was 2 / kg. また、この粉末の生成相をX線回折により評価したところ、生成相は、Fe 16 Further, when the production phase of the powder was evaluated by X-ray diffraction, the product phase, Fe 16
相の単相であった。 It was a single phase of N 2 phase.

【0028】(比較例2)γ−Fe の不定形超微粉末(粒径10〜50nm)約2gをアルミナボートに乗せ、水素気流中500℃で8時間還元処理を行った。 [0028] (Comparative Example 2) amorphous ultrafine powder of gamma-Fe 2 O 3 (particle size 10 to 50 nm) placed about 2g in an alumina boat and subjected to 8 hours reduction treatment at 500 ° C. in a hydrogen stream.
得られた還元粉末について、実施例1と同一の条件下で、磁気特性の測定及び生成相の評価を行った。 The resulting reduced powder, under the same conditions as Example 1, was measured and evaluated in the production phase of the magnetic properties. 還元粉末の磁気特性は、飽和磁化σs=200Am /kgであった。 Magnetic properties of the reduced powder was saturation magnetization σs = 200Am 2 / kg. また、この還元粉末の生成相をX線回折により評価したところ、生成相は、α−Feの単相であった。 Moreover, the production phase of the reduction powder was evaluated by X-ray diffraction, the product phase was single phase of alpha-Fe.

【0029】図1に、実施例1〜4及び比較例1で得られた粉末のX線回折パターンを示す。 [0029] FIG 1 shows an X-ray diffraction pattern of the powder obtained in Examples 1 to 4 and Comparative Example 1. 粉末試料で、Fe In powder samples, Fe
16単相のとき、I Fe16N2(202) /I 16 when N 2 single phase, I Fe16N2 (202) / I
Fe1 6N2(220) ≒2.0となる。 The Fe1 6N2 (220) ≒ 2.0. また、2θ= In addition, 2θ =
50°のピークは、Fe 16 Peak of 50 ° is, Fe 16 N (202)ピークであり、2θ=52.4°のピークは、Fe 16 (22 2 (202) is the peak, the peak of the 2 [Theta] = 52.4 ° is, Fe 16 N 2 (22
0)のピークとFe(110)のピークが重なっている。 Peak of the Fe (110) of 0) are overlapped. また、図2に、図1から数1の式を用いて求めたF Further, in FIG. 2, was determined using the equation 1 from FIG. 1 F
16相の生成割合(%)と、粉末の飽和磁化(A e 16 production ratio of N 2 phase (%), the powder saturation magnetization (A
/kg)との関係をグラフに示したものである。 The relationship between m 2 / kg) is that shown in the graph. また、表1はその裏付けデータを示している。 Table 1 also shows the supporting data.

【0030】 [0030]

【表1】 [Table 1]

【0031】図2より、実施例1〜4で得られた本発明に係るFe−N系磁性体の飽和磁化σsは、Fe 16 [0031] From FIG. 2, the saturation magnetization σs of Fe-N based magnetic material according to the present invention obtained in Examples 1 to 4, Fe 16 N
単相の場合及びα−Fe単相の場合よりも増加し、F Increase than in case of the second single-phase and alpha-Fe single phase, F
相の生成割合が約60%のところで飽和磁化σsが極大になっていることがわかる。 It can be seen that production ratio of e 1 6 N 2 phase saturation magnetization σs is in maximum at about 60%. また、表1に、 In addition, in Table 1,
印加磁場796kA/mの場合の磁化σsを併せて示した。 And also it shows the magnetization σs when the applied magnetic field 796 kA / m. 印加磁場が796kA/mである場合、Fe 16 If the applied magnetic field is 796kA / m, Fe 16 N
単相及びα−Fe単相の磁化σsは、それぞれ、18 2 magnetization σs of single phase and alpha-Fe single phase, respectively, 18
6Am /kg及び195Am /kgであった。 6Am was 2 / kg and 195Am 2 / kg. これに対し、Fe 16相及びα−Fe相の混相を備えた本発明に係る磁性体の磁化σsは、196〜199Am In contrast, the magnetization σs of the magnetic material according to the present invention having a mixed phase of Fe 16 N 2 phase and alpha-Fe phase, 196~199Am
/kgであり、各相の相加平均から求められる磁化の値を大きく上回った。 A 2 / kg, far exceeding the value of magnetization obtained from each phase of the arithmetic mean.

【0032】以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。 The invention has been described in detail embodiments of the present invention, the present invention is not intended to be limited to the above embodiments, and can be variously modified within a scope not departing from the gist of the present invention is there. 例えば、上記実施例では、出発原料としてγ−Fe の不定形粉末を用いたが、α− For example, the above embodiment is used amorphous powder γ-Fe 2 O 3 as starting material, alpha-
Fe 、FeO、Fe などを出発原料として用いても良い。 Fe 2 O 3, FeO, Fe 3 O 4 and the like may be used as the starting material. また、出発原料として金属鉄粉末を用いる場合において、表面の酸化膜が問題とならない時には、還元工程を省略し、直接、窒化処理しても良く、これにより上記実施の形態と同様の効果を得ることができる。 Further, in the case of using metallic iron powder as the starting material, when the oxide film on the surface is not problematic, omitting the reduction step, the direct, may be nitrided, thereby obtaining the same effects as those in the embodiment be able to.

【0033】 [0033]

【発明の効果】本発明に係る高飽和磁化Fe−N系磁性体は、α−Fe相とFe 16相の混相を備えているので、Feを超える高い飽和磁化を発現するバルク体が低コストで得られるという効果がある。 Effects of the Invention According to the present invention high saturation magnetization Fe-N based magnetic material is provided with the mixed phase of alpha-Fe phase and Fe 16 N 2 phase, bulk material exhibits high saturation magnetization in excess of Fe is there is an effect that is obtained at a low cost. また、混相中のFe 16相の生成割合を10%〜90%とすると、 Further, if the production ratio of Fe 16 N 2 phase in the mixed phase is 10% to 90%,
α−Fe単相あるいはFe 16単相の場合よりも高い飽和磁化を発現するという効果がある。 there is an effect that exhibits high saturation magnetization than that of alpha-Fe single phase or Fe 16 N 2 single phase.

【0034】以上のように本発明によれば、低コストかつ高飽和磁化を有する磁性材料が得られるので、これを例えば塗布型の磁気記録媒体に応用すれば、磁気記録媒体の高記録密度化、製造コストの削減等に寄与するものであり、産業上、その効果の極めて大きな発明である。 According to the present invention as described above, since the magnetic material having a low cost and high saturation magnetization can be obtained, if applying this example to the coating type magnetic recording medium, higher recording density of the magnetic recording medium is intended to contribute to a reduction of manufacturing cost, the industry is very large invention their effectiveness.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】Fe 16相の生成割合の異なるFe−N系磁性体のX線回折パターンである。 1 is a X-ray diffraction patterns of different Fe-N based magnetic material of the rate of formation of Fe 16 N 2 phase.

【図2】Fe 16相の生成割合と飽和磁化の関係を示す図である。 2 is a diagram showing the relationship between saturation magnetization and the rate of formation of Fe 16 N 2 phase.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 義雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 山田 勝則 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 神谷 信雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 5E041 AA11 AA19 BD00 CA01 NN01 NN15 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Kato, Yoshio, Aichi Prefecture Aichi-gun Nagakute Oaza Nagakute-shaped side street No. 41 land of 1 Co., Ltd. Toyota central Research Institute in (72) inventor Katsunori Yamada Aichi Prefecture Aichi-gun Nagakute Oaza Nagakute shaped side street No. 41 areas of 1 Co., Ltd. Toyota central Research Institute in (72) inventor Nobuo Kamiya Aichi Prefecture Aichi-gun Nagakute Oaza Nagakute-shaped side street No. 41 land of 1 Co., Ltd. Toyota central R & D Labs in the F-term (reference) 5E041 AA11 AA19 BD00 CA01 NN01 NN15

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 α−Fe相とFe 16相の混相を主相とし、該混相中のFe 16相の生成割合が10% 1. A alpha-Fe phase and Fe 16 N 2 phase mixed phase as the main phase, the rate of formation of Fe 16 N 2 phase in該混phase 10%
    以上90%以下である高飽和磁化Fe−N系磁性体。 High saturation magnetization Fe-N based magnetic material is 90% or less.
  2. 【請求項2】 前記磁性体において、α−Fe相とFe 2. A the magnetic, alpha-Fe phase and Fe
    16相の相加平均以上の飽和磁化を有している請求項1に記載の高飽和磁化Fe−N系磁性体。 High saturation magnetization Fe-N based magnetic material according to claim 1 which has a arithmetic mean more saturated magnetization of 16 N 2 phase.
  3. 【請求項3】 前記磁性体は、バルク体である請求項1 Wherein the magnetic body, according to claim 1, which is a bulk body
    又は2に記載の高飽和磁化Fe−N系磁性体。 Or high saturation magnetization Fe-N based magnetic material according to.
JP36214999A 1999-12-21 1999-12-21 HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL Pending JP2001176715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36214999A JP2001176715A (en) 1999-12-21 1999-12-21 HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36214999A JP2001176715A (en) 1999-12-21 1999-12-21 HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL

Publications (1)

Publication Number Publication Date
JP2001176715A true JP2001176715A (en) 2001-06-29

Family

ID=18476074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36214999A Pending JP2001176715A (en) 1999-12-21 1999-12-21 HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL

Country Status (1)

Country Link
JP (1) JP2001176715A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964811B2 (en) 2002-09-20 2005-11-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US7238439B2 (en) 2003-02-19 2007-07-03 Hitachi Maxell, Ltd. Magnetic recording medium containing particles with a core containing a Fe16N2 phase
US7241501B2 (en) 2003-11-27 2007-07-10 Dowa Mining Co., Ltd. Iron nitride magnetic powder and method of producing the powder
US7267896B2 (en) 2002-03-18 2007-09-11 Hitachi Maxell, Ltd. Magnetic tape and magnetic tape cartridge
JP2008159259A (en) * 2008-02-13 2008-07-10 Hitachi Maxell Ltd Magnetic recording medium
WO2011049080A1 (en) * 2009-10-22 2011-04-28 戸田工業株式会社 Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
EP2954540A4 (en) * 2013-02-07 2017-06-28 Regents of the University of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
EP2666563A4 (en) * 2011-01-21 2018-04-04 Toda Kogyo Corporation Ferromagnetic granular powder and method for manufacturing same, as well as anisotropic magnet, bonded magnet, and pressed-powder magnet
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2015-08-05 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445858B2 (en) 2002-03-18 2008-11-04 Hitachi Maxell, Ltd. Magnetic recording medium using magnetic powder having a core portion and an outer layer portion including a rare earth element and magnetic recording cassette
US7267896B2 (en) 2002-03-18 2007-09-11 Hitachi Maxell, Ltd. Magnetic tape and magnetic tape cartridge
US7291409B2 (en) 2002-03-18 2007-11-06 Hitachi Maxell, Ltd. Magnetic recording medium using magnetic powder having a core portion and an outer layer portion including a rare earth element and magnetic recording cassette
US7510790B2 (en) 2002-09-20 2009-03-31 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US6964811B2 (en) 2002-09-20 2005-11-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US7700204B2 (en) 2003-02-19 2010-04-20 Hitachi Maxell, Ltd. Magnetic recording medium containing particles with a core containing a FE16N2 phase
US7238439B2 (en) 2003-02-19 2007-07-03 Hitachi Maxell, Ltd. Magnetic recording medium containing particles with a core containing a Fe16N2 phase
US7241501B2 (en) 2003-11-27 2007-07-10 Dowa Mining Co., Ltd. Iron nitride magnetic powder and method of producing the powder
JP2008159259A (en) * 2008-02-13 2008-07-10 Hitachi Maxell Ltd Magnetic recording medium
WO2011049080A1 (en) * 2009-10-22 2011-04-28 戸田工業株式会社 Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
EP2666563A4 (en) * 2011-01-21 2018-04-04 Toda Kogyo Corporation Ferromagnetic granular powder and method for manufacturing same, as well as anisotropic magnet, bonded magnet, and pressed-powder magnet
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
JP2017126755A (en) * 2013-02-07 2017-07-20 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
EP2954540A4 (en) * 2013-02-07 2017-06-28 Regents of the University of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2015-08-05 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy

Similar Documents

Publication Publication Date Title
Burkert et al. Giant magnetic anisotropy in tetragonal FeCo alloys
Ramirez Strongly geometrically frustrated magnets
Dai et al. Shapes, multiple twins and surface structures of monodisperse FePt magnetic nanocrystals
Chen et al. The phase transformation and physical properties of the MnBi and Mn 1.08 Bi compounds
Grigorova et al. Magnetic properties and Mössbauer spectra of nanosized CoFe2O4 powders
Liu et al. Reduction of sintering during annealing of FePt nanoparticles coated with iron oxide
Kuo et al. Magnetic properties and microstructure of FePt–Si 3 N 4 nanocomposite thin films
Itoh et al. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles
Pan et al. Rock magnetic properties related to thermal treatment of siderite: behavior and interpretation
Maaz et al. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route
Herzer et al. Round table discussion: Present and future applications of nanocrystalline magnetic materials
Zeng et al. Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing
Hadjipanayis Nanophase hard magnets
Gubin et al. Magnetic and structural properties of Co nanoparticles in a polymeric matrix
Kang et al. Synthesis, self-assembly, and magnetic properties of [FEPT]/sub 1-x/au/sub x/nanoparticles
Goll et al. Micromagnetism and the microstructure of high-temperature permanent magnets
Warne et al. Self assembled nanoparticulate Co: Pt for data storage applications
Horng et al. Magnetic anisotropic properties in Fe3O4 and CoFe2O4 ferrite epitaxy thin films
Sun et al. Compositionally controlled FePt nanoparticle materials
Luborsky Permanent magnets in use today
JPH11353648A (en) Production of information record medium comprising regular alloy thin film
Maaz et al. Structural analysis of nickel doped cobalt ferrite nanoparticles prepared by coprecipitation route
Jing et al. Synthesis, characterization and magnetic properties of γ-Fe2O3 nanoparticles via a non-aqueous medium
JP4084638B2 (en) Preparation of nanocomposite films for high-density magnetic recording medium
US20120244356A1 (en) Ferromagnetic particles and process for producing the same, anisotropic magnet and bonded magnet