JPS5836908A - Manufacture of magnetic body of thin nitride film - Google Patents

Manufacture of magnetic body of thin nitride film

Info

Publication number
JPS5836908A
JPS5836908A JP13310481A JP13310481A JPS5836908A JP S5836908 A JPS5836908 A JP S5836908A JP 13310481 A JP13310481 A JP 13310481A JP 13310481 A JP13310481 A JP 13310481A JP S5836908 A JPS5836908 A JP S5836908A
Authority
JP
Japan
Prior art keywords
magnetic
alloy
nitrogen
metal
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13310481A
Other languages
Japanese (ja)
Other versions
JPS617723B2 (en
Inventor
Mitsuhiro Takada
光裕 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP13310481A priority Critical patent/JPS5836908A/en
Publication of JPS5836908A publication Critical patent/JPS5836908A/en
Publication of JPS617723B2 publication Critical patent/JPS617723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To manufacture a magnetic body of a thin nitride film with superior magnetic characteristics, wear resistance and corrosion resistance by forming a thin film of a magnetic metal or alloy by a vapor deposition method while introducing nitrogen into the metal or alloy and by converting the resulting thin nitride film into an amorphous compound. CONSTITUTION:A magnetic metal such as Fe, Co or Ni or an alloy thereof in a crucible 3 set in a vacuum vessel 1 is melted and evaporated with an electron beam generating filament 2. At the same time, gaseous nitrogen is fed to the vessel 1 through a needle valve 4 until the vacuum degree gauged with a vacuum gauge becomes 5X10<-4>Torr. Thermions are emitted with filament 6 and an electrode 7 to excite and ionize the gaseous nitrogen atoms and the evaporated magnetic metal. At this time, by applying about 200V negative voltage to a polyimide film substrate 8 placed in the vessel 1, said metallic ions and nitrogen ions are accelerated and hit on the substrate 8 to deposit an amorphous thin metallic nitride film. Thus, a magnetic body is manufactured.

Description

【発明の詳細な説明】 この発明は、耐摩耗性、耐蝕性にすぐれ、高い磁気特性
を有する窒化物薄膜磁性体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a nitride thin film magnetic material having excellent wear resistance, corrosion resistance, and high magnetic properties.

一般に、Fee COI N1等の磁性金属及びその合
金のみの薄膜を製造する方法としては、真空中に桔ける
蒸着、あるいはろパVタリング等の方法がある。この方
法により生成された薄膜は、固形状(バルク状)の金属
体と同じ結晶構造を有し、磁気特性もバルク体とほとん
ど同等であるが、磁気テープ、磁気ディスク等の磁気記
録媒体に薄膜吠にして使用する場合は、耐摩耗性、耐蝕
性の点で問題があり、実用化に大きな障書となっている
Generally, methods for producing thin films made only of magnetic metals and their alloys, such as Fee COI N1, include methods such as vapor deposition in a vacuum or filtering. The thin film produced by this method has the same crystal structure as a solid (bulk) metal body, and its magnetic properties are almost the same as the bulk body. When used in a closed position, there are problems in terms of wear resistance and corrosion resistance, which poses a major obstacle to practical application.

最近、結晶構造を有する窒化物磁性体はすぐれた磁気特
性と機械的性質を有し、例えば、Feの場合、金属pe
粉末をアンモニアガスと水素ガス中にて400″c−s
oooCの温度で処理して窒化物粉末を作製し、これを
薄く塗布して薄膜を生成する方法が提案されているが、
前記方法で生成された薄膜はFCとNの組成比が限定さ
れ、飽和磁化が160emu/gr l!!度の面心立
方格子構造のF%Nしか得られず、より高い飽和磁化が
期待されるF・含有量の多いものは生成することはでき
ない。  。
Recently, nitride magnetic materials with a crystalline structure have excellent magnetic and mechanical properties. For example, in the case of Fe, metal pe
The powder was heated in ammonia gas and hydrogen gas for 400″c-s.
A method has been proposed in which nitride powder is produced by processing at a temperature of oooC and then applied thinly to form a thin film.
The thin film produced by the above method has a limited composition ratio of FC and N, and has a saturation magnetization of 160 emu/gr l! ! Only F%N with a face-centered cubic lattice structure of 100% can be obtained, and it is not possible to produce a material with a high F content, which is expected to have a higher saturation magnetization. .

本発明省はすぐれた磁気的性質及び耐摩耗性、耐蝕性を
同時に有する窒化物薄膜磁性体の製造について種々検討
した結果、磁性金属あるいはそれらの合金の薄膜を蒸着
法により製造する化際し、前記金属あるいは合金に一定
量の窒素を含有せしめ、かつこの窒化物薄膜を非晶質化
合物にすることにより、すぐれた飽和磁化、抗磁力、透
磁率等の磁気特性と共に゛良好な耐摩耗性、耐蝕性を得
られることを知見した。
As a result of various studies on the production of nitride thin film magnetic materials that have excellent magnetic properties, wear resistance, and corrosion resistance at the same time, the Ministry of the Invention has decided to produce thin films of magnetic metals or their alloys by vapor deposition. By incorporating a certain amount of nitrogen into the metal or alloy and making the nitride thin film an amorphous compound, it has excellent magnetic properties such as saturation magnetization, coercive force, and magnetic permeability, as well as good wear resistance. It was found that corrosion resistance can be obtained.

この発明は、磁性金属あるいはその合金を真空槽内で溶
解・蒸発せしめると同時に真空度にしてI X 10 
〜lXl0  ’fortに相当する窒素ガスを上記真
空槽内に導入し、蒸発している上記金属あるいはその合
金と窒素をイオン化し、さらにイオン化した原子に加速
電圧を印加して該槽内の基板上に衝突付着せしめ、窒素
を含む磁性金属あるいはその合金の非晶質化合物を生成
することを要旨とする窒化物薄膜磁性体の製造法である
This invention melts and evaporates a magnetic metal or its alloy in a vacuum chamber, and at the same time increases the degree of vacuum to I x 10.
Nitrogen gas corresponding to ~l This is a method for producing a nitride thin film magnetic material, the gist of which is to produce an amorphous compound of a nitrogen-containing magnetic metal or its alloy by collisional adhesion to the magnetic material.

この発明の特徴は■、、性金属あるいは合金に含有する
窒素量を自由に制御できること、■、非非晶槽構造薄膜
が得られること、またこれらが同時に得られることにあ
る。
The features of this invention are (1) that the amount of nitrogen contained in the metal or alloy can be freely controlled, (2) that a thin film with an amorphous tank structure can be obtained, and that these can be obtained at the same time.

この発明において、前記■は窒素ガス導入用ニードル弁
等を採用することにより、金属あるいは合金蒸気中の窒
素量を調節ができ、生成する薄膜中の窒素量の調整が可
能である。この場合、窒素ガスの導入時の換算真空度を
規定した理由は、真空度にしてI X 10”” ’l
’orrを超える窒素ガスを導入すると、蒸発している
金属あるいは合金が微粒子状となり、所要の納置な薄膜
が得られず、かつ薄膜内の窒素含有量が増大して磁性金
属本来の高い磁気特性が失われ、例えばFe2Nよりも
窒素量が増大すると、飽和磁化はZoo 〜B□emn
/grと小さくなり、酸化物磁性体に近似して好ましく
ない。又、1×10″″”I’orr未満まで真空度を
上げると生成した薄、膜中には検出可能な窒素は存在せ
ず、非晶質構造は得られない、この発明において、例え
ばpeの場合、Fee N及びFeaNに相当する窒素
量の非晶質窒化物は窒素ガスが真空度でI XlO”’
I’orr相当のとき最も生成量が多い。
In this invention, the amount of nitrogen in the metal or alloy vapor can be adjusted by employing a needle valve for introducing nitrogen gas, and the amount of nitrogen in the formed thin film can be adjusted. In this case, the reason for specifying the equivalent degree of vacuum when introducing nitrogen gas is that the degree of vacuum is I
If nitrogen gas exceeding When the characteristic is lost and the amount of nitrogen increases compared to Fe2N, for example, the saturation magnetization becomes Zoo ~B□emn
/gr, which is undesirable as it approximates an oxide magnetic material. Furthermore, when the degree of vacuum is increased to less than 1×10''I'orr, there is no detectable nitrogen in the formed thin film and no amorphous structure is obtained. In the case of , the amorphous nitride with nitrogen amount equivalent to FeeN and FeaN is
The amount of production is greatest when it is equivalent to I'orr.

次に前記■の非晶質構造を得るために、真空槽内に導入
された窒素と蒸発している金属を熱電子等でイオン状態
に励起せしめる。イオン化する方法としては、前記の如
く熱電子を用いる他、イオン化した不活性ガスを衝突さ
せてもよいが、不純物の混入を避けるために熱電子を用
いるのが好ましい。又、イオン化する量は電気入力によ
り調整することがで伽、このイオン化量はガス導入量と
共に磁性金属に含まれる窒素量を調整するξともで番る
Next, in order to obtain the amorphous structure described in (2) above, the nitrogen introduced into the vacuum chamber and the evaporated metal are excited into an ionic state by thermoelectrons or the like. As a method for ionization, in addition to using thermoelectrons as described above, it is also possible to collide with ionized inert gas, but it is preferable to use thermoelectrons to avoid contamination with impurities. Further, the amount of ionization can be adjusted by electrical input, and the amount of ionization depends on the amount of gas introduced and ξ, which adjusts the amount of nitrogen contained in the magnetic metal.

続いて、これらイオン化した金属あるいはその合金と1
素原子を、50〜5oovs度の静電界を印加せしめ、
真空槽内に設けた基板上に衝突付着せしめる。この場合
、イオン化してない金属あるいは合金と窒素原子も同時
に基板に付着するが、前記の印加電界の強さは磁気特性
、結晶構造等を調整するための重要な因子である。
Next, these ionized metals or their alloys and 1
Applying an electrostatic field of 50 to 5 oovs to elementary atoms,
Collision adhesion onto a substrate provided in a vacuum chamber. In this case, non-ionized metal or alloy and nitrogen atoms also adhere to the substrate at the same time, but the strength of the applied electric field is an important factor for adjusting magnetic properties, crystal structure, etc.

この発明において、非晶質構造の化合物が生成される過
程は、例えばFl−Nの場合はイオン化したF・のクラ
スターと窒素イオンが強固に収応して基板上にF*!N
 (xは正の任意の数)が生成する過程と、加速された
yeあるいはNのイオンが基板上のNあるいはF@原子
と激しく反応して窒化物が生成される過程とからなると
考え4れ、Fes N g F”4 N p Fex 
Nの如く明確な組成と結晶構造をもった化合物が基板上
に形成されることはなく、アモルファス状となり、他の
アモルファス合金と同様に硬さと耐摩耗性、耐蝕性を有
する薄膜磁性体が得られる。
In this invention, the process by which a compound with an amorphous structure is generated is, for example, in the case of Fl-N, ionized F* clusters and nitrogen ions are strongly combined to form F*! on the substrate. N
(x is any positive number) is formed, and accelerated ye or N ions react violently with N or F atoms on the substrate to form nitrides4. , Fes N g F"4 N p Fex
A compound with a clear composition and crystal structure like N is not formed on the substrate, but becomes amorphous, resulting in a thin film magnetic material that has the same hardness, wear resistance, and corrosion resistance as other amorphous alloys. It will be done.

以下にこの発明の一笑施例を図面により説明する。Embodiments of the present invention will be explained below with reference to the drawings.

1111図において、真空槽(1)中で電子ビーム発生
フィラメント(りにより、純度99%の金属鉄を金属溶
解ルツボ(3)中で溶解、蒸発させたのち、窒素ガスを
ニードル弁(4)を通して、導入し電離真空針(!I)
での真空度が5 XIG−’Torrになるよう窒素ガ
スの流量を調節し、その後蒸発ye及び窒素をイオン化
するため、フィラメント(・)と電極())を用いて熱
電子を放出せしめ、前記窒素原子と蒸発したpe  の
一部を励起してイオン化する。熱電子の生成量はフィラ
メント(6)と電極())間の電流値で監視できる。
In Figure 1111, metal iron with a purity of 99% is melted and evaporated in a metal melting crucible (3) using an electron beam generating filament in a vacuum chamber (1), and then nitrogen gas is passed through a needle valve (4). , introduced ionization vacuum needle (!I)
The flow rate of nitrogen gas was adjusted so that the degree of vacuum at The nitrogen atoms and a portion of the evaporated PE are excited and ionized. The amount of thermoelectrons generated can be monitored by the current value between the filament (6) and the electrode ().

次にポリイ【ドフィルム基板+11 Iζ200V1度
の負の電圧を印加して、pc及び窒素のイオンを加速し
、前記基板上番ζ衝突、付着せしめると、5〜10 A
 / secの割合で非晶質の鉄窒化物が蒸着する。こ
の発明における蒸着速度と窒素の流入量によりpe中に
含まれる窒素量は決まる。
Next, a negative voltage of 200V 1 degree is applied to the polyamide film substrate + 11 Iζ to accelerate the PC and nitrogen ions, causing them to collide and adhere to the substrate.
Amorphous iron nitride is deposited at a rate of /sec. In this invention, the amount of nitrogen contained in PE is determined by the deposition rate and the amount of nitrogen inflow.

以上の方法により生成された3声m厚のポリイ芝ドフィ
ルム上の非晶質窒化鉄を適当な寸法に切断し、試料振動
閣磁力針番こより磁化を測定した。
The amorphous iron nitride on the polyamide turf film produced by the above method and having a thickness of 3 meters was cut to an appropriate size, and the magnetization was measured using the magnetic needle number of the sample vibrating rack.

その結果を第2図に示す。The results are shown in FIG.

82図のヒステリシスループから明らかな如く、この発
明により非晶質窒化鉄は純鉄に近い極めて大なる飽和磁
化を有しており、結晶質窒化鉄(Fe、 N) よゆす
ぐれていることが分かる。
As is clear from the hysteresis loop in Figure 82, this invention has shown that amorphous iron nitride has an extremely large saturation magnetization close to that of pure iron, and is superior to crystalline iron nitride (Fe, N). I understand.

tた、結晶質F@14Nとこの発明にょる非晶質窒化物
を、xIIII析法で結晶構造を調査した結果を第3図
に示す。第3図の(6)図は結晶質窒化物の闘析締、同
■図はこの発明の非晶質窒化物の囮析線を示す、これよ
りこの発明の窒化物は明確な回折ピークを示さず、非晶
質通性体であることが明らかである。
FIG. 3 shows the results of investigating the crystal structure of crystalline F@14N and the amorphous nitride according to the present invention by xIII analysis. Figure 3 (6) shows the diffraction line of the crystalline nitride, and Figure 3 shows the decoupling line of the amorphous nitride of the present invention. It is clear that it is an amorphous facultative body.

次に、上記の実施例と同一条件で平滑なガラス製基板上
に蒸着した薄膜について、引掻き硬さ試験を行なった結
果、通常の蒸着で生成されたpe薄膜に比し、この発明
の薄膜は引掻き紙幅の減少が確認でき、又耐蝕性につい
ても、40℃飽和水蒸気下で5000時間の耐久試験の
結果、通常の蒸着で生成されたpe薄膜は着しく酸化し
、化学的にも磁気的にも全く異質のものとなったが、ξ
の発明の非晶質窒化物薄膜には何らの変化も認められな
かった、。
Next, a scratch hardness test was conducted on the thin film deposited on a smooth glass substrate under the same conditions as in the above example, and the results showed that the thin film of the present invention A decrease in the scratch paper width was confirmed, and as for corrosion resistance, as a result of a 5,000 hour durability test under saturated steam at 40°C, the PE thin film produced by normal vapor deposition was oxidized and was chemically and magnetically oxidized. has also become completely different, but ξ
No change was observed in the amorphous nitride thin film of the invention.

この発明により、飽和磁化、抗磁力、透磁率のいずれか
に特徴を有する電化物磁性薄膜を得る目的に適合した磁
性金属あるいは合金を選択することができ、磁気記録媒
体材料、磁気ヘッド材゛゛への適用に極めて有藩な方法
である。
According to the present invention, it is possible to select a magnetic metal or alloy suitable for the purpose of obtaining an electrified magnetic thin film having characteristics of saturation magnetization, coercive force, and magnetic permeability, and to use it as a magnetic recording medium material and a magnetic head material. This is a very efficient method for applying.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例における実施装置の説明図、
第2図はこの発明による窒化物薄膜の磁化曲線を示すグ
ラフ、第3図はxI1回析バクーンを示すグラフであり
、a図は結晶質FenNの場合、b図はこの発明による
非晶質薄膜の場合である。 図中、1−・真空槽、2・・・電子ビーム発生フィラメ
ント、3・・・金属溶解ルツボ、4−二−ドル弁、5・
・・電離真空計、6−・フィラメント、7−・電極、8
・・・基板。 出願人   住友特殊金属株式会社 心 代理人   押  1) 良 第1図 第2図 鷹七σ(emu/gr1 第3図 (α) !I4度(deg) (b) 角度(deg)
FIG. 1 is an explanatory diagram of an implementation device in an embodiment of the present invention;
FIG. 2 is a graph showing the magnetization curve of the nitride thin film according to the present invention, and FIG. 3 is a graph showing the xI1 diffraction Bakun. This is the case. In the figure, 1--vacuum chamber, 2--electron beam generating filament, 3--metal melting crucible, 4--secondary valve, 5--
・・Ionization vacuum gauge, 6-・Filament, 7-・Electrode, 8
···substrate. Applicant: Sumitomo Special Metals Co., Ltd. Agent Shin 1) Ryo Figure 1 Figure 2 Takashi 7σ (emu/gr1 Figure 3 (α) !I4 degrees (deg) (b) Angle (deg)

Claims (1)

【特許請求の範囲】[Claims] 磁性金属あるいはその合金を真空槽内で溶解・蒸発せし
めると同時に、真空度にして’IXIG””〜10  
’forr に相当する窒素ガスを上、記真空槽内に導
入し、蒸発している金属あるいはその合金と窒素をイオ
ン化し−さらにイオン化した原子に加速電圧を印加して
、咳槽内の基板上に衝突付着せしめ、窒素を含む磁性金
属、あるいはその合金の非晶質化合物を生成することを
特徴とする窒化物薄膜磁性体の製造法。
At the same time, the magnetic metal or its alloy is melted and evaporated in a vacuum chamber, and the vacuum level is reduced to 'IXIG''~10.
Nitrogen gas equivalent to 'forr is introduced into the vacuum chamber described above, ionizes the evaporated metal or its alloy and nitrogen, and then applies an accelerating voltage to the ionized atoms to form a layer on the substrate inside the chamber. 1. A method for producing a nitride thin film magnetic material, which is characterized by producing an amorphous compound of a nitrogen-containing magnetic metal or an alloy thereof by collision adhesion to a magnetic material.
JP13310481A 1981-08-24 1981-08-24 Manufacture of magnetic body of thin nitride film Granted JPS5836908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13310481A JPS5836908A (en) 1981-08-24 1981-08-24 Manufacture of magnetic body of thin nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13310481A JPS5836908A (en) 1981-08-24 1981-08-24 Manufacture of magnetic body of thin nitride film

Publications (2)

Publication Number Publication Date
JPS5836908A true JPS5836908A (en) 1983-03-04
JPS617723B2 JPS617723B2 (en) 1986-03-08

Family

ID=15096904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13310481A Granted JPS5836908A (en) 1981-08-24 1981-08-24 Manufacture of magnetic body of thin nitride film

Country Status (1)

Country Link
JP (1) JPS5836908A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025012A (en) * 1983-07-20 1985-02-07 Konishiroku Photo Ind Co Ltd Magnetic head
JPS6025211A (en) * 1983-07-20 1985-02-08 Konishiroku Photo Ind Co Ltd Formation of thin film
JP2009035080A (en) * 2007-07-31 2009-02-19 Kyoraku Co Ltd Mounting structure of air conditioner unit and air conditioning duct
CN101920943A (en) * 2009-08-21 2010-12-22 东北大学 Method and device for preparing single-phase nano epsilon-Fe3N or gamma'-Fe4N powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025012A (en) * 1983-07-20 1985-02-07 Konishiroku Photo Ind Co Ltd Magnetic head
JPS6025211A (en) * 1983-07-20 1985-02-08 Konishiroku Photo Ind Co Ltd Formation of thin film
JPH035644B2 (en) * 1983-07-20 1991-01-28 Konishiroku Photo Ind
JPH0352641B2 (en) * 1983-07-20 1991-08-12 Konishiroku Photo Ind
JP2009035080A (en) * 2007-07-31 2009-02-19 Kyoraku Co Ltd Mounting structure of air conditioner unit and air conditioning duct
CN101920943A (en) * 2009-08-21 2010-12-22 东北大学 Method and device for preparing single-phase nano epsilon-Fe3N or gamma'-Fe4N powder

Also Published As

Publication number Publication date
JPS617723B2 (en) 1986-03-08

Similar Documents

Publication Publication Date Title
JPS6033289B2 (en) Metal thin film magnetic recording media
EP0132398A1 (en) A method and apparatus for ion beam generation
JPS5836908A (en) Manufacture of magnetic body of thin nitride film
Gloss et al. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu (100)
JPH0696947A (en) Thin belt-like iron nitride material
JPH11186035A (en) Amorphous soft magnetic thin-film material and manufacture thereof
KR900001141B1 (en) Mafnetic recording medium and its producing method there of
JPH07335575A (en) Manufacture of thin film
JP2752179B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JP3167808B2 (en) Soft magnetic thin film
JPS62114118A (en) Magnetic recording material and its production
JPH0679369B2 (en) Magnetic recording material and manufacturing method thereof
JPS5814329A (en) Production of magnetic recording medium
JPS6025211A (en) Formation of thin film
Ishii et al. Deposition of ferromagnetic metal thin films by ion beam sputtering
JP3785582B2 (en) Method for producing magnetostrictive thin film
JPS6289312A (en) Magnetically soft thin film
JP2525211B2 (en) Method for producing Fe-based alloy thin film having austenite structure
JP3238216B2 (en) Soft magnetic thin film
JPH0613236A (en) Soft magnetic thin film
Serdio et al. Synthesis and characterization of NiCr self-assembled nanorings
JPS61189610A (en) Magnetic material for magnetic recording medium
JPH02177122A (en) Magnetic recording medium
JPS60209927A (en) Magnetic recording medium and its production
JPH06240417A (en) Magnetic alloy