JP3167808B2 - Soft magnetic thin film - Google Patents

Soft magnetic thin film

Info

Publication number
JP3167808B2
JP3167808B2 JP27676992A JP27676992A JP3167808B2 JP 3167808 B2 JP3167808 B2 JP 3167808B2 JP 27676992 A JP27676992 A JP 27676992A JP 27676992 A JP27676992 A JP 27676992A JP 3167808 B2 JP3167808 B2 JP 3167808B2
Authority
JP
Japan
Prior art keywords
soft magnetic
thin film
magnetic
film
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27676992A
Other languages
Japanese (ja)
Other versions
JPH05267057A (en
Inventor
雄一 佐藤
潔 野口
義和 成宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP27676992A priority Critical patent/JP3167808B2/en
Publication of JPH05267057A publication Critical patent/JPH05267057A/en
Application granted granted Critical
Publication of JP3167808B2 publication Critical patent/JP3167808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は軟磁性材料に関し、特に
高密度記録に適した磁気ヘッド及びインダクタに使用す
る軟磁性薄膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic material, and more particularly to a soft magnetic thin film used for a magnetic head and an inductor suitable for high-density recording.

【0002】[0002]

【従来の技術】磁気記録の分野では磁気記録密度の高密
度化に伴い高い保磁力Hcを有する磁気記録媒体が用い
られる。この場合良好な磁気記録を行うためには磁気ヘ
ッドから密度の高い磁束を発生させる必要がある。この
ため磁気ヘッド用の軟磁性薄膜として飽和磁束密度Bs
が高く、磁歪が小さく、保磁力Hcが低く、透磁率μが
高いものが必要である。またインダクタ用としても同様
な磁気特性が必要である。
2. Description of the Related Art In the field of magnetic recording, a magnetic recording medium having a high coercive force Hc is used as the magnetic recording density increases. In this case, in order to perform good magnetic recording, it is necessary to generate a high-density magnetic flux from the magnetic head. Therefore, as a soft magnetic thin film for a magnetic head, the saturation magnetic flux density Bs
, A low magnetostriction, a low coercive force Hc, and a high magnetic permeability μ are required. Similar magnetic properties are also required for inductors.

【0003】このような事情から飽和磁束密度が高い軟
磁性薄膜(15kG程度以上)が種々提案されている
が、いまだ十分ではない。Feよりも高い飽和磁束密度
を持つ系としてFe−Co合金系が知られている。しか
しこの系の材料は、磁歪定数が大きく、保磁力Hcが基
板温度及びアニール等を最適にした製造条件でも5Oe
以上と大きいので充分な軟磁性化はなされていなかった
(星陽一他、日本応用磁気学会誌、Vol.10,N
o.2,P315(1986)参照)。この系の合金に
更にSmを添加したFe−Co−Smにおいて稀土類金
属元素による磁歪制御が報告されている(嶋他、日本金
属学会春季大会講演概要(1992)、P196))。
しかしながら、保磁力は最低でも4Oeと十分な軟磁気
特性を示していない。更にSm以外の稀土類元素Dy、
Ho、Tmの添加による磁歪制御も報告されているが、
その軟磁気特性は十分ではない。
[0003] Under such circumstances, various soft magnetic thin films (about 15 kG or more) having a high saturation magnetic flux density have been proposed, but are not yet sufficient. An Fe—Co alloy system is known as a system having a higher saturation magnetic flux density than Fe. However, the material of this system has a large magnetostriction constant, and the coercive force Hc is 5 Oe even under manufacturing conditions in which the substrate temperature and annealing are optimized.
Because of the above, it was not sufficiently softened (Yoichi Hoshi et al., Journal of the Japan Society of Applied Magnetics, Vol. 10, N.
o. 2, P315 (1986)). It has been reported that rare earth metal elements control magnetostriction in Fe-Co-Sm obtained by further adding Sm to an alloy of this type (Shima et al., Abstracts of Spring Meeting of the Japan Institute of Metals (1992), P196).
However, the coercive force is at least 4 Oe and does not show sufficient soft magnetic properties. Furthermore, rare earth elements Dy other than Sm,
Magnetostriction control by addition of Ho and Tm has also been reported,
Its soft magnetic properties are not sufficient.

【0004】Fe系軟磁性材料の軟磁気特性を改善する
ためにFe−M−X系合金が提案されている(特開平3
−153851号)。ここにMはCoを含み、Xは窒素
を含む。しかし、得られた保磁力は5Oe以上であり
(同公報の表1)、軟磁性化は十分でない。
[0004] In order to improve the soft magnetic properties of Fe-based soft magnetic materials, Fe-MX-based alloys have been proposed (Japanese Patent Laid-Open Publication No. Hei 3 (1994)).
-153851). Here, M contains Co and X contains nitrogen. However, the obtained coercive force is 5 Oe or more (Table 1 of the publication), and softening is not sufficient.

【0005】Fe系軟磁性材料の軟磁気特性を改善する
ための他の技術としてFeにNとOを数%以下の量で含
有させることが提案されている(特開平2−57665
号)。得られた保磁力は1.5Oe以下であり、また飽
和磁束密度も15kG以上とすぐれている。しかしなが
ら、この系の軟磁性材料は環境温度及び湿度中で容易に
酸化が進み、磁気特性が大幅に低下する欠点がある。ま
た耐熱性にも問題がある。
As another technique for improving the soft magnetic properties of an Fe-based soft magnetic material, it has been proposed to incorporate N and O in Fe in an amount of several percent or less in Fe (Japanese Patent Application Laid-Open No. 2-57665).
issue). The obtained coercive force is 1.5 Oe or less, and the saturation magnetic flux density is excellent at 15 kG or more. However, this type of soft magnetic material has the disadvantage that oxidation proceeds easily at ambient temperature and humidity, and magnetic properties are greatly reduced. There is also a problem with heat resistance.

【0006】[0006]

【発明が解決しようとする課題】したがって、本発明の
解決すべき課題は、Fe−Co系合金よりなる軟磁性薄
膜において、保磁力Hcを低下し、透磁率μを向上さ
せ、しかも耐食性を向上させることである。
Accordingly, an object of the present invention is to reduce the coercive force Hc, improve the magnetic permeability μ, and improve the corrosion resistance of a soft magnetic thin film made of an Fe—Co alloy. It is to make it.

【0007】[0007]

【課題を解決するための手段】本発明はFe−Co系合
金に稀土類金属元素Rを添加することにより磁歪を制御
し、O、Nを添加することにより結晶粒を微細化し、軟
磁性化を図った。またRとOは化合物を生成して結晶粒
の成長を抑制する効果を有し、それにより軟磁気特性を
向上する。さらにRはFe−Co合金の耐食性を向上さ
せる作用も有する。より具体的に述べると、本発明は式 Fe100-α- β- γ- δCoαRβNγOδ (ここにRは稀土類金属元素であり、 15.0≦α≦55.0at% 0.1≦β≦5.0at% 0.1≦γ≦20.0at% 0.1≦δ≦10.0at%) で表される組成を有することを特徴とする軟磁性薄膜で
ある。本発明の軟磁性薄膜は、Fe−Co系合金に特有
の高い飽和磁束密度BS (17kG以上)を有し、低い
保磁力Hcと高い透磁率μを有する。また耐食性もすぐ
れている。またこの軟磁性薄膜は単層でも使用できる
が、非磁性または他の組成の磁性膜と積層して使用すれ
ば損失の少ないすぐれた製品例えば磁気記録再生ヘッド
を作製できる。
According to the present invention, magnetostriction is controlled by adding a rare earth metal element R to an Fe-Co alloy, and crystal grains are refined by adding O and N to soft magnetic material. Was planned. R and O also have the effect of forming a compound to suppress the growth of crystal grains, thereby improving soft magnetic properties. Further, R also has an effect of improving the corrosion resistance of the Fe—Co alloy. More specifically, the present invention employs the formula Fe 100- α - β - γ - δCoαRβNγOδ (where R is a rare earth metal element, 15.0 ≦ α ≦ 55.0 at% 0.1 ≦ β ≦ 5 (0.0at% 0.1 ≦ γ ≦ 20.0at% 0.1 ≦ δ ≦ 10.0at%) A soft magnetic thin film characterized by having a composition represented by the following formula: The soft magnetic thin film of the present invention has a high saturation magnetic flux density B S (17 kG or more) specific to Fe—Co alloys, a low coercive force Hc, and a high magnetic permeability μ. It also has excellent corrosion resistance. This soft magnetic thin film can be used as a single layer, but if it is used by laminating it with a non-magnetic or other composition magnetic film, an excellent product with little loss, for example, a magnetic recording / reproducing head can be manufactured.

【0008】次に各成分の含有量と作用を説明する。C
oは15.0〜55.0at%の範囲で飽和磁束密度を
向上させる。特に20〜50at%では飽和磁束密度が
高くなり低保磁力及び高透磁率を達成しながら17.5
〜23.5kGが維持できる。なお本発明者らは特願平
2−287566(平成2年10月25日出願)で上記
の組成でCoを含まない軟磁性薄膜を提案したが、低保
磁力及び高透磁率を達成しながら維持できる飽和磁束密
度は15.5〜19.0kG程度に留まるものであった
が、本発明はこれを更に向上させたものである。
Next, the content and action of each component will be described. C
o improves the saturation magnetic flux density in the range of 15.0 to 55.0 at%. In particular, at 20 to 50 at%, the saturation magnetic flux density increases, and 17.5 while achieving low coercive force and high magnetic permeability.
2323.5 kG can be maintained. The present inventors proposed a soft magnetic thin film having the above composition and containing no Co in Japanese Patent Application No. 2-287566 (filed on Oct. 25, 1990), while achieving a low coercive force and a high magnetic permeability. The saturation magnetic flux density that can be maintained was only about 15.5 to 19.0 kG, but the present invention has further improved this.

【0009】稀土類金属元素RはY、ランタニドLa〜
Lu、及びアクチニドAc〜Lrより選択した少なくと
も一種の稀土類金属元素である。これらのうち、良好な
磁気特性が得られる元素はY、Ho、Sm、Er、Dy
であり、特にY、Ho、Sm、Erが好ましい。
The rare earth metal element R is Y, lanthanide La ~
Lu and at least one rare earth metal element selected from actinides Ac to Lr. Among these, the elements that provide good magnetic properties are Y, Ho, Sm, Er, and Dy.
And Y, Ho, Sm, and Er are particularly preferable.

【0010】Rは0.1〜5.0at%の範囲、より好
ましくは0.3〜3.5at%の範囲で添加する。Rの
添加は磁歪を抑制し、また製造した軟磁性薄膜の耐食性
を改善する。更にR−O化合物の生成により結晶粒の成
長を抑制し、結晶を微細化して軟磁気特性を向上させ
る。Rが0.1at%未満であると磁歪の抑制に充分な
効果を持たない。Rが5at%を超えると、保磁力が
2.0Oeを超えて軟磁気特性を損なう。
[0010] R is added in the range of 0.1 to 5.0 at%, more preferably in the range of 0.3 to 3.5 at%. The addition of R suppresses magnetostriction and improves the corrosion resistance of the manufactured soft magnetic thin film. Furthermore, the growth of crystal grains is suppressed by the generation of the RO compound, and the crystal is refined to improve the soft magnetic properties. If R is less than 0.1 at%, there is no sufficient effect for suppressing magnetostriction. If R exceeds 5 at%, the coercive force exceeds 2.0 Oe and the soft magnetic properties are impaired.

【0011】Nは0.1〜20.0at%の範囲、好ま
しくは1〜15at%の範囲で添加する。Nは結晶粒を
微細化し、保磁力を低下させ透磁率を増大させ軟磁性化
を促進させる。Nが0.1at%未満であると微細結晶
とならないので良好な軟磁気特性が得られない。また2
0at%を越えると飽和磁束密度が15kG以下に低下
する。
N is added in the range of 0.1 to 20.0 at%, preferably in the range of 1 to 15 at%. N refines crystal grains, lowers coercive force, increases magnetic permeability, and promotes soft magnetization. If N is less than 0.1 at%, fine crystals will not be formed, and good soft magnetic properties cannot be obtained. Also 2
If it exceeds 0 at%, the saturation magnetic flux density decreases to 15 kG or less.

【0012】Oは0.1〜10.0at%の量で添加さ
れる。Oの添加は前述のようにRとの間に酸化物を形成
して結晶粒の成長を抑制する。ただし、酸化物相は微細
なため通常のX線回折では検出が困難な場合もある。O
が0.1at%未満であると酸化物の生成が不十分なの
で良好な軟磁気特性が得られない。また10at%を超
えると飽和磁束密度が15kG以下に低下する。本発明
においては耐食性の向上を目的としてCr等でFeの一
部を置換してもよい。
O is added in an amount of 0.1 to 10.0 at%. As described above, the addition of O forms an oxide with R and suppresses the growth of crystal grains. However, the oxide phase is so fine that it may be difficult to detect it by ordinary X-ray diffraction. O
If the content is less than 0.1 at%, good soft magnetic properties cannot be obtained because of insufficient generation of oxide. If it exceeds 10 at%, the saturation magnetic flux density decreases to 15 kG or less. In the present invention, a part of Fe may be substituted with Cr or the like for the purpose of improving corrosion resistance.

【0013】なお、本発明の軟磁性薄膜を薄膜磁気ヘッ
ドに適用する場合、飽和磁束密度Bsが15kG未満に
なると、高保磁力特に1400Oe以上の磁気記録媒体
に対してオーバーライト特性が低下する。
When the soft magnetic thin film of the present invention is applied to a thin-film magnetic head, if the saturation magnetic flux density Bs is less than 15 kG, the overwrite characteristics are deteriorated with respect to a high coercive force, especially a magnetic recording medium having a magnetic field of 1400 Oe or more.

【0014】NまたはOはそれらの合計量の30at%
以下、特に20at%以下の添加量が好ましい。なお場
合によっては、さらに炭素CがNやOの一部を置換して
含有されても良い。
N or O is 30 at% of their total amount
The addition amount is particularly preferably 20 at% or less. In some cases, carbon C may be contained by substituting a part of N or O.

【0015】軟磁性薄膜の膜厚は用途に応じて適宜に選
択できるが、通常0.5〜6μmである。
The thickness of the soft magnetic thin film can be appropriately selected according to the application, but is usually 0.5 to 6 μm.

【0016】このような本発明の軟磁性薄膜は、通常F
e−Coを主成分とする主磁性層と、Rの窒化物および
(または)酸化物を主成分とする相を含むが、特に主磁
性層の平均結晶粒径Dは1000Å以下、好ましくは5
00Å以下、更に好ましくは20〜250Åである。こ
のように粒径が微細化されることにより優れた軟磁気特
性が得られる。
Such a soft magnetic thin film of the present invention is usually made of F
It contains a main magnetic layer mainly containing e-Co and a phase mainly containing nitride and / or oxide of R. In particular, the average crystal grain size D of the main magnetic layer is 1000 ° or less, preferably 5 ° or less.
00 ° or less, more preferably 20 to 250 °. Excellent soft magnetic characteristics can be obtained by reducing the particle size in this manner.

【0017】本発明の軟磁性薄膜の製造はイオンプレー
テイング、蒸着、CVD、スパッタリング等の真空成膜
法により実施できる。また成膜の際に基板を使用するた
め軟磁性薄膜に応力が加わる。したがって、200〜3
00℃の基板温度で成膜し、成膜後に約300〜400
℃で熱処理することにより応力緩和を行うことが望まし
い。
The soft magnetic thin film of the present invention can be manufactured by a vacuum film forming method such as ion plating, vapor deposition, CVD, and sputtering. In addition, stress is applied to the soft magnetic thin film because the substrate is used during film formation. Therefore, 200-3
A film is formed at a substrate temperature of 00 ° C.
It is desirable to relax the stress by performing a heat treatment at a temperature of ° C.

【0018】軟磁性薄膜のスパッタ法による成膜は例え
ば次のようにする。まずターゲットには合金鋳造体や焼
結体、さらには複合ターゲット等を使用する。膜中に窒
素、酸素を導入するには、窒素、酸素雰囲気中の反応性
スパッタリングを行っても良いし、あるはターゲットに
これらの元素を導入しておいても良い。スパッタリング
はAr等不活性ガス雰囲気下で行われる。反応性スパッ
タの場合には窒素を0.1〜20体積%、酸素を0.1
〜2.5体積%含ませれば良い。あるいはデュアルイオ
ンビームスパッタリング(DIBS)装置を用いて窒素
イオン、酸素イオンを成膜中膜表面に照射し、膜中に窒
素、酸素を導入することもできる。
The soft magnetic thin film is formed by, for example, the following method. First, an alloy casting or sintered body, or a composite target or the like is used as the target. In order to introduce nitrogen and oxygen into the film, reactive sputtering in an atmosphere of nitrogen and oxygen may be performed, or these elements may be introduced into a target. The sputtering is performed in an inert gas atmosphere such as Ar. In the case of reactive sputtering, 0.1-20% by volume of nitrogen and 0.1% of oxygen are used.
What is necessary is just to contain-2.5 volume%. Alternatively, the surface of the film during film formation may be irradiated with nitrogen ions and oxygen ions using a dual ion beam sputtering (DIBS) device to introduce nitrogen and oxygen into the film.

【0019】[0019]

【実施例の説明】100mm径のバケット型イオンガン
を2基備えるデュアルイオンビームスパッタ装置を用い
て薄膜試料を製作した。基板は磁気特性評価用には結晶
化ガラス基板(コーニング社製フォトセラム基板)を用
い、組成分析用には純度99.85%のAl基板を用い
た。また成膜中は応力緩和のため200℃の基板加熱を
行った。ターゲットはFe−Co合金ターゲット上に種
々の稀土類金属元素チップを円環上に配置した複合ター
ゲットを用いた。そして、メインイオンガンによりAr
イオンを加速してターゲットをスパッタし基板上に成膜
した。同時にアシストガンによりAr+窒素+酸素混合
ガスをイオン化し、加速し、試料に照射することによ
り、窒素及び酸素を試料中に導入した。主な成膜条件を
以下に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Thin film samples were produced using a dual ion beam sputtering apparatus having two 100 mm diameter bucket type ion guns. As a substrate, a crystallized glass substrate (a photocell substrate manufactured by Corning Incorporated) was used for evaluation of magnetic properties, and an Al substrate having a purity of 99.85% was used for composition analysis. During the film formation, the substrate was heated at 200 ° C. for stress relaxation. The target used was a composite target in which various rare earth metal element chips were arranged on a ring on an Fe—Co alloy target. Then, Ar ion is emitted by the main ion gun.
The target was sputtered by accelerating the ions to form a film on the substrate. At the same time, an Ar + nitrogen + oxygen mixed gas was ionized by an assist gun, accelerated, and irradiated to the sample, thereby introducing nitrogen and oxygen into the sample. The main film forming conditions are shown below.

【0020】 到達圧力 : 1×10-7Torr 加速電圧(メインビーム) : 1200V 加速電流(メインビーム) : 135mA 加速電圧(アシストビーム) : 250V 加速電流(アシストビーム) : 10mA 成膜中圧力 : 1.5〜2.8×1
-4Torr 成膜速度 : 1Å/sec 薄膜試料は応力緩和のため圧力1×10-5Torrの真
空中で温度300℃、保持時間1時間の熱処理を行っ
た。
Ultimate pressure: 1 × 10 −7 Torr Accelerating voltage (main beam): 1200 V Accelerating current (main beam): 135 mA Accelerating voltage (assist beam): 250 V Accelerating current (assist beam): 10 mA Film forming pressure: 1 0.5-2.8 × 1
0 -4 Torr Film forming rate: 1Å / sec The thin film sample was subjected to a heat treatment at a temperature of 300 ° C. and a holding time of 1 hour in a vacuum of 1 × 10 -5 Torr for stress relaxation.

【0021】得られた薄膜試料は次の方法により評価し
た。 1.膜組成 電子線プローブマイクロアナライザー(EPMA)およ
び高周波燃焼方式による酸素窒素同時分析計で求めた。 2.飽和磁束密度Bs 試料振動式磁力計(VSM)を用い10kOeの磁場中
で測定した。 3.飽和磁歪λs 薄膜試料を膜面内に回転する100Oeの磁場中に配置
し、レーザ光線を使用して、試料の磁歪による延び縮み
を同期整流方式にて検出し、λsを検出した。 4.結晶粒径D CuKα1線を用いたX線回折により体心立方結晶の
(110)ピークの半値巾から求めた。 5.保磁力Hc 薄膜ヒストロスコープにより求めた。 6.実効透磁率|μ| 8の字コイルを用いて3mOe、5MHzの高周波磁場
中で実数成分μ’と虚数成分μ”を測定して|μ|を求
めた。得られた結果を表1に示す。
The obtained thin film sample was evaluated by the following method. 1. Film composition The film composition was determined by an electron probe microanalyzer (EPMA) and an oxygen and nitrogen simultaneous analyzer using a high-frequency combustion method. 2. Saturation magnetic flux density Bs Measured in a magnetic field of 10 kOe using a sample vibration magnetometer (VSM). 3. Saturated magnetostriction λs A thin film sample was placed in a magnetic field of 100 Oe rotating in the plane of the film, and using a laser beam, extension and contraction due to magnetostriction of the sample were detected by a synchronous rectification method to detect λs. 4. The grain size was determined from the half width of the (110) peak of the body-centered cubic crystal by X-ray diffraction using a CuKα1 line. 5. Coercive force Hc Determined using a thin-film hysteroscope. 6. The real component μ ′ and the imaginary component μ ″ were measured in a high-frequency magnetic field of 3 mOe and 5 MHz using a figure-eight coil of the effective magnetic permeability | μ |, and | μ | was determined. The obtained results are shown in Table 1. .

【0022】[0022]

【表1】 [Table 1]

【0023】表1の結果から次のことがわかる。飽和磁
束密度BsはFeとCoの総量により定まり、17.5
〜23.5kGが実現できる。なお先に触れたようにC
oの添加によりFe単独の場合よりも高い飽和磁束密度
を実現できる。特に実施例で用いたCo15〜50at
%が好適である。Coを40at%以上添加した場合飽
和磁束密度は19〜23kGと大きな値を得ることが可
能である。この場合透磁率は約1000の磁気特性を得
た。更にCoが15〜20at%とした試料では飽和磁
束密度は18.5〜22.5kGとやや低い値を示す。
しかしながらこの組成系において0.5%程度のわずか
な稀土類元素の添加により磁歪を負とすることができ
る。更に窒素及び酸素の添加により透磁率は2000以
上の良好な軟磁気特性を得ることがでる。飽和磁歪λs
はFe系は10-6、Fe−Co系は10-6から10-5
オーダーであるが、稀土類金属元素Rの添加によっても
ある程度磁歪が抑制されることがわかる(試料1、5と
試料9を比較されたい)。Nおよび(または)Oを含有
させることにより磁歪をかなりの程度低下させることが
できる(試料1と2〜4、試料5と6〜8、試料9と1
0をそれぞれ比較されたい)。結晶粒径Dは稀土類金属
元素の添加である程度微細化するが(試料1、5と試料
9を比較されたい)、窒素及び酸素の効果が大きい(試
料1と2〜4、試料5と6〜8、試料9と10をそれぞ
れ比較されたい)。飽和磁歪λsを及び結晶粒径Dが小
さくなるにしたがって、保磁力Hcは小さくなり、本発
明の実施例では2.0Oe以下が実現できる。また本発
明の軟磁性薄膜は耐熱性や耐食性も良好であった。
The following can be seen from the results in Table 1. The saturation magnetic flux density Bs is determined by the total amount of Fe and Co, and is 17.5.
2323.5 kG can be realized. As mentioned earlier, C
By adding o, a higher saturation magnetic flux density can be realized than in the case of using Fe alone. In particular, Co15 to 50at used in Examples
% Is preferred. When Co is added in an amount of 40 at% or more, the saturation magnetic flux density can be as large as 19 to 23 kG. In this case, a magnetic permeability of about 1,000 was obtained. Further, in the sample in which Co is 15 to 20 at%, the saturation magnetic flux density shows a slightly low value of 18.5 to 22.5 kG.
However, in this composition system, the magnetostriction can be made negative by adding a small amount of rare earth element of about 0.5%. Further, by adding nitrogen and oxygen, it is possible to obtain good soft magnetic properties with a magnetic permeability of 2000 or more. Saturation magnetostriction λs
It can be seen that although the Fe type is on the order of 10 -6 and the Fe-Co type is on the order of 10 -6 to 10 -5 , the magnetostriction can be suppressed to some extent even by the addition of the rare earth metal element R (see Samples 1 and 5). Compare sample 9). By adding N and / or O, the magnetostriction can be reduced to a considerable extent (Samples 1 and 2 to 4, Samples 5 and 6 to 8, Samples 9 and 1).
0 each). The crystal grain size D is reduced to some extent by the addition of rare earth metal elements (compare samples 1, 5 and sample 9), but the effect of nitrogen and oxygen is large (samples 1 and 2 to 4, sample 5 and 6). -8, samples 9 and 10 respectively). As the saturation magnetostriction λs and the crystal grain size D become smaller, the coercive force Hc becomes smaller, and the embodiment of the present invention can realize 2.0 Oe or less. The soft magnetic thin film of the present invention also had good heat resistance and corrosion resistance.

【0024】[0024]

【発明の効果】以上のように、本発明によるとFe−C
o系合金よりなる軟磁性薄膜において高い飽和磁束密度
を維持しながら、保磁力Hcを低下し、透磁率μを向上
させ、しかも耐食性を向上させることである。
As described above, according to the present invention, Fe-C
An object of the present invention is to reduce the coercive force Hc, improve the magnetic permeability μ, and improve the corrosion resistance while maintaining a high saturation magnetic flux density in a soft magnetic thin film made of an o-based alloy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−160709(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 10/16 G11B 5/31 H01F 41/18 ──────────────────────────────────────────────────続 き Continued on the front page (56) References JP-A-3-160709 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 10/16 G11B 5/31 H01F 41 / 18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 式 Fe100-α- β- γ- δCoαRβNγOδ (ここにRはYを含む稀土類元素であり、 15.0≦α≦55.0at% 0.1≦β≦5.0at% 0.1≦γ≦20.0at% 0.1≦δ≦10.0at%) で表される組成を有することを特徴とする軟磁性薄膜。1. The formula Fe 100- α - β - γ - δCoαRβNγOδ (where R is a rare earth element containing Y, 15.0 ≦ α ≦ 55.0 at% 0.1 ≦ β ≦ 5.0 at%) A soft magnetic thin film having a composition represented by the following formula: 0.1 ≦ γ ≦ 20.0 at% (0.1 ≦ δ ≦ 10.0 at%). 【請求項2】 請求項1の軟磁性薄膜を、非磁性または
他の組成の磁性膜と積層してなる軟磁性多層膜。
2. A soft magnetic multilayer film obtained by laminating the soft magnetic thin film according to claim 1 with a magnetic film having a non-magnetic or other composition.
JP27676992A 1991-10-22 1992-09-22 Soft magnetic thin film Expired - Fee Related JP3167808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27676992A JP3167808B2 (en) 1991-10-22 1992-09-22 Soft magnetic thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30126291 1991-10-22
JP3-301262 1991-10-22
JP27676992A JP3167808B2 (en) 1991-10-22 1992-09-22 Soft magnetic thin film

Publications (2)

Publication Number Publication Date
JPH05267057A JPH05267057A (en) 1993-10-15
JP3167808B2 true JP3167808B2 (en) 2001-05-21

Family

ID=26552104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27676992A Expired - Fee Related JP3167808B2 (en) 1991-10-22 1992-09-22 Soft magnetic thin film

Country Status (1)

Country Link
JP (1) JP3167808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102311958B1 (en) 2019-09-17 2021-10-13 주식회사 틔움세상 Seed kit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314434A (en) * 1986-07-04 1988-01-21 Dainippon Screen Mfg Co Ltd Substrate surface processing and equipment therefor
US7233458B2 (en) * 2002-09-11 2007-06-19 International Business Machines Corporation High magnetic moment Co-Fe-O-N films with soft magnetic properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102311958B1 (en) 2019-09-17 2021-10-13 주식회사 틔움세상 Seed kit

Also Published As

Publication number Publication date
JPH05267057A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US4935314A (en) Ferromagnetic film and magnetic head using the same
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
US5302469A (en) Soft magnetic thin film
KR960004065B1 (en) Magnetic head using magnetic film
JP3167808B2 (en) Soft magnetic thin film
JP3121933B2 (en) Soft magnetic thin film
JP2950917B2 (en) Soft magnetic thin film
JP3238216B2 (en) Soft magnetic thin film
EP0438687A1 (en) Iron/iron nitride multilayer films
JP2839554B2 (en) Magnetic film and magnetic head using the same
JPS6365604A (en) Iron magnetic film
JPH03265104A (en) Soft magnetic alloy film
JP2853923B2 (en) Soft magnetic alloy film
JPH03265105A (en) Soft magnetic laminate film
JP2675178B2 (en) Soft magnetic alloy film
JPS61142523A (en) Magnetic recording medium
JP2996553B2 (en) Soft magnetic alloy thin film
JP2554445B2 (en) Magnetic thin film and method of manufacturing the same
JP2893706B2 (en) Iron-based soft magnetic film
JPH04285153A (en) Multi-layer magnetic film and its formation
JP2834359B2 (en) Soft magnetic alloy film
JPH03101202A (en) Soft magnetic thin film and manufacture thereof
JP2522284B2 (en) Soft magnetic thin film
JPH05101934A (en) Soft magnetic thin film
JP3036891B2 (en) Thin film magnetic head

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010220

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees