JP2752179B2 - Perpendicular magnetic recording medium and method of manufacturing the same - Google Patents

Perpendicular magnetic recording medium and method of manufacturing the same

Info

Publication number
JP2752179B2
JP2752179B2 JP1208130A JP20813089A JP2752179B2 JP 2752179 B2 JP2752179 B2 JP 2752179B2 JP 1208130 A JP1208130 A JP 1208130A JP 20813089 A JP20813089 A JP 20813089A JP 2752179 B2 JP2752179 B2 JP 2752179B2
Authority
JP
Japan
Prior art keywords
magnetic
substrate
thin film
fen
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1208130A
Other languages
Japanese (ja)
Other versions
JPH0371420A (en
Inventor
誠一郎 高橋
実 久米
宏太郎 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP1208130A priority Critical patent/JP2752179B2/en
Priority to US07/564,256 priority patent/US5173370A/en
Priority to EP90115388A priority patent/EP0415155B1/en
Priority to DE69023835T priority patent/DE69023835T2/en
Publication of JPH0371420A publication Critical patent/JPH0371420A/en
Application granted granted Critical
Publication of JP2752179B2 publication Critical patent/JP2752179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は窒化鉄または窒化鉄系合金からなる強磁性金
属薄膜を磁性層とする垂直磁気記録媒体及びその製造方
法に関する。
The present invention relates to a perpendicular magnetic recording medium having a ferromagnetic metal thin film made of iron nitride or an iron nitride-based alloy as a magnetic layer, and a method of manufacturing the same.

(ロ)従来の技術 東北大の岩崎らにより発表された垂直磁気記録は、記
録密度が高くなるほど自己減磁作用が抑制されるため本
質的に高密度記録に適した記録方式である。垂直磁気記
録用の媒体としては、スパッタ法もしくは真空蒸着法で
作製したCo−Cr膜が発表されている。
(B) Conventional technology Perpendicular magnetic recording disclosed by Iwasaki et al. Of Tohoku University is a recording method that is essentially suitable for high-density recording because the self-demagnetization effect is suppressed as the recording density increases. As a medium for perpendicular magnetic recording, a Co—Cr film produced by a sputtering method or a vacuum evaporation method has been disclosed.

Co−Cr膜は磁気異方性、飽和磁化ともに大きく垂直記
録媒体として優れているが、Coはコスト的に高価なため
問題がある。上述の欠点を解消したものとして、例えば
特開昭59−228705号(H01F10/18)に開示されているよ
うに、安価なFeをベースにしたFeN系垂直磁気記録媒体
が提案されている。これは六方晶系窒化鉄(ε−Fe2〜3
N)を主体とする媒体であり、鉄、γ′−Fe4N、ε−Fe
2〜3N、ζ−Fe2NのようなFeまたはその窒化物の中から
選ばれた少なくとも1つの粉末、粉末焼結体、バルクを
原料として、Ar気流中、Arと窒素の混合気流中、もしく
はAr、窒素、水素の混合気流中で物理蒸着(スパッタ
法、真空蒸着法)を行うことにより形成される。
The Co—Cr film is large in both magnetic anisotropy and saturation magnetization and is excellent as a perpendicular recording medium. However, Co has a problem because it is expensive in cost. As a solution to the above disadvantages, an inexpensive Fe-based perpendicular magnetic recording medium based on Fe has been proposed, for example, as disclosed in Japanese Patent Application Laid-Open No. 59-228705 (H01F10 / 18). This is hexagonal iron nitride (ε-Fe 2-3)
N) is a medium mainly composed of iron, γ′-Fe 4 N, ε-Fe
At least one powder selected from Fe or nitride thereof, such as 2-3 N, ζ-Fe 2 N, a powder sintered body, and a bulk, in an Ar gas stream, a mixed gas stream of Ar and nitrogen Alternatively, it is formed by performing physical vapor deposition (sputtering method, vacuum vapor deposition method) in a mixed gas flow of Ar, nitrogen, and hydrogen.

しかし乍ら、上述のような六方晶系窒化鉄を主体とす
る薄膜磁性体では、磁性層を高速で形成することが出来
ず、量産性に適した磁気記録媒体ではなかった。
However, in the case of the thin film magnetic material mainly composed of hexagonal iron nitride as described above, the magnetic layer cannot be formed at a high speed, and is not a magnetic recording medium suitable for mass production.

(ハ)発明が解決しようとする課題 本発明は上記従来例の欠点に鑑み為されたものであ
り、高速で形成可能な垂直磁気異方性を有する窒化鉄系
の磁性層を有する垂直磁気記録媒体及びその製造方法を
提供することを目的とするものである。
(C) Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned drawbacks of the conventional example, and has a perpendicular magnetic recording having an iron nitride-based magnetic layer having perpendicular magnetic anisotropy that can be formed at high speed. It is an object to provide a medium and a method for manufacturing the medium.

(ニ)課題を解決するための手段 本発明の垂直磁気記録媒体は、非磁性の基板上に、常
磁性窒化鉄ζ−Fe2Nを主体とし、該常磁性窒化鉄ζ−Fe
2Nがフェロ磁性のα−Fe相及びγ′−Fe4N相と相分離さ
れており、結晶構造が前記基板上面に対して垂直方向に
延びる柱状構造である垂直磁気異方性を有するFeN系磁
性薄膜を被着形成したことを特徴とする。
(D) Means for Solving the Problems The perpendicular magnetic recording medium of the present invention mainly comprises a paramagnetic iron nitride ζ-Fe 2 N on a non-magnetic substrate, and the paramagnetic iron nitride ζ-Fe
2 N are alpha-Fe phase and γ'-Fe 4 N phase and the phase separation of the ferro-magnetic, FeN the crystal structure has a perpendicular magnetic anisotropy is columnar structures extending in a direction perpendicular to the substrate top surface A magnetic thin film is formed by deposition.

また、本発明の垂直磁気記録媒体の製造方法は、加熱
された非磁性の基板上に該基板上面と直交する方向から
鉄の蒸気を蒸着すると同時に、該蒸着部に窒素イオン及
び電子を含有する窒素プラズマを照射することにより前
記基板上に、常磁性窒化鉄ζ−Fe2Nを主体とし、該常時
性窒化鉄ζ−Fe2Nがフェロ磁性のα−Fe相及びγ′−Fe
4N相と相分離されている垂直磁気異方性を有するFeN系
磁性薄膜を被着形成することを特徴とする。
Further, the method for manufacturing a perpendicular magnetic recording medium of the present invention includes the step of vapor-depositing iron vapor on a heated non-magnetic substrate from a direction perpendicular to the upper surface of the substrate, and containing nitrogen ions and electrons in the vapor-deposited portion. on the substrate by irradiating a nitrogen plasma, the paramagnetic iron nitride ζ-Fe 2 N and mainly, the normally chronotropic iron nitride ζ-Fe 2 N is ferromagnetic alpha-Fe phase and gamma prime-Fe
The FeN-based magnetic thin film having perpendicular magnetic anisotropy that is 4 N phase and phase separation, characterized in that deposited and formed.

(ホ)作用 上記構造の垂直磁気記録媒体では、常磁性窒化鉄ζ−
Fe2Nの結晶化に伴いフェロ磁性のα−Fe相及びγ′−Fe
4N相との相分離に磁気的分離効果が起こり、これが基板
上面に対して垂直方向に延びた微細柱状構造による形状
異方性と相乗することにより垂直磁気異方性の優れたFe
N系磁性薄膜が形成される。
(E) Action In the perpendicular magnetic recording medium having the above structure, paramagnetic iron nitride
Ferromagnetic α-Fe phase and γ'-Fe with crystallization of Fe 2 N
A magnetic separation effect occurs in the phase separation from the 4N phase, and this synergizes with the shape anisotropy due to the fine columnar structure extending perpendicularly to the upper surface of the substrate, resulting in Fe with excellent perpendicular magnetic anisotropy.
An N-based magnetic thin film is formed.

また、上述の製造方法では、プラズマ生成室からの低
い運動エネルギー領域でのイオン照射と適当な基板温度
との相互作用により常磁性窒化鉄ζ−Fe2Nの結晶化が進
む。
Further, in the above-described manufacturing method, the crystallization of paramagnetic iron nitride ζ-Fe 2 N proceeds due to the interaction between the ion irradiation in the low kinetic energy region from the plasma generation chamber and an appropriate substrate temperature.

(ヘ)実施例 第1図は本実施例で用いられるイオンアシスト蒸着法
による垂直磁気記録媒体の製造装置の概略断面図であ
る。
(F) Embodiment FIG. 1 is a schematic cross-sectional view of an apparatus for manufacturing a perpendicular magnetic recording medium by an ion-assisted vapor deposition method used in this embodiment.

図中、(1)は排気系(2)により内部が1×10-6To
rr以下の高真空に保たれた真空槽であり、該真空槽
(1)の内部にはるつぼ(3)、基板ホルダー(4)及
びプラズマ生成室()が配設されている。前記るつぼ
(3)内には蒸発源である鉄(6)が収納されている。
前記基板ホルダー(4)の下面には非磁性の基板(7)
が装着されており、該基板(7)の真下に前記るつぼ
(3)が配置されている。また、前記基板ホルダー
(4)の内部にはヒータ(図示せず)が装着されてお
り、該ヒータにより前記基板(7)の温度が制御され
る。前記プラズマ生成室()は内部にフィラメント
(8)及びアノード(9)が装着されており、周面には
ソレノイドコイル(10)が巻回されている。前記フィラ
メント(8)には直流電源(11a)により20〜30Aの電流
が流れており、前記アノード(9)には直流電源(11
b)により100Vの正の電圧が印加されている。また、前
記プラズマ生成室()のプラズマ(12)放出側の開口
部には電気的に接地された多孔形状のグリッド(13)が
装着されており、該グリッド(13)によりプラズマ生成
室()の内外には気圧差が生じる。(14)は前記プラ
ズマ生成室()の内部に窒素ガスを導入するためのガ
ス導入管である。
In the figure, (1) is 1 × 10 -6 To inside by exhaust system (2).
This is a vacuum chamber maintained at a high vacuum of rr or less. A crucible (3), a substrate holder (4), and a plasma generation chamber ( 5 ) are provided inside the vacuum chamber (1). The crucible (3) contains iron (6) as an evaporation source.
A non-magnetic substrate (7) is provided on the lower surface of the substrate holder (4).
Is mounted, and the crucible (3) is arranged directly below the substrate (7). Further, a heater (not shown) is mounted inside the substrate holder (4), and the temperature of the substrate (7) is controlled by the heater. The plasma generation chamber ( 5 ) has a filament (8) and an anode (9) mounted inside, and a solenoid coil (10) is wound around the peripheral surface. A current of 20 to 30 A flows through the filament (8) by a DC power supply (11a), and a DC power supply (11
According to b), a positive voltage of 100 V is applied. A porous grid (13) that is electrically grounded is attached to an opening of the plasma generation chamber ( 5 ) on the plasma (12) emission side, and the grid (13) allows the plasma generation chamber ( 5 ) There is a pressure difference between inside and outside. (14) is a gas introduction pipe for introducing nitrogen gas into the inside of the plasma generation chamber ( 5 ).

上述の本実施例の製造装置では、ガス導入管(14)を
通ってプラズマ生成室()内に導入された中性の窒素
分子は、フィラメント(8)から放出されアノード
(9)によって加速された熱電子と衝突することにより
イオン化される。このイオン化により発生した低エネル
ギーの窒素イオンと電子とは、窒素プラズマ(12)とな
り、ソレノイドコイル(10)により形成された磁場匂配
とグリッド(13)による気圧差とによってプラズマ生成
室()の開口部から外部に放射状に放出される。この
放出された窒素プラズマ(12)はるつぼ(3)からの鉄
の蒸気(14)と同時に基板(7)に照射される。このた
め、前記基板(7)に到達した窒素イオンの正の電荷は
電子によって中和され、前記基板(7)はチャージアッ
プしない。また、前記窒素イオン及び電子の運動エネル
ギーは100eV以下と小さいので基板(7)上に形成され
た窒化鉄(FeN)磁性薄膜は熱解離を生じない。
In the above-described production apparatus of the present embodiment, neutral nitrogen molecules introduced into the plasma generation chamber ( 5 ) through the gas introduction pipe (14) are released from the filament (8) and accelerated by the anode (9). It is ionized by colliding with the emitted thermoelectrons. The low-energy nitrogen ions and electrons generated by the ionization become nitrogen plasma (12), and the plasma generation chamber ( 5 ) is formed by the magnetic field scent formed by the solenoid coil (10) and the pressure difference by the grid (13). Is radially emitted to the outside from the opening. The released nitrogen plasma (12) irradiates the substrate (7) simultaneously with the iron vapor (14) from the crucible (3). Therefore, the positive charges of the nitrogen ions reaching the substrate (7) are neutralized by the electrons, and the substrate (7) does not charge up. Since the kinetic energy of the nitrogen ions and electrons is as small as 100 eV or less, the iron nitride (FeN) magnetic thin film formed on the substrate (7) does not undergo thermal dissociation.

上述の製造装置を使用して下記の条件でフィルム基板
上にFeN磁性薄膜を形成した。
Using the above-described manufacturing apparatus, a FeN magnetic thin film was formed on a film substrate under the following conditions.

−成膜条件− 背圧 1×10-6torr以下 窒素ガス圧力 2×10-4torr 成膜速度 750〜1750Å/min 窒素イオン電流密度 2.0mA/cm2 鉄蒸気の入射角 90° フィルム基板温度 100℃ 窒素イオンの運動エネルギー 100eV以下 上述の成膜条件で形成されたFeN磁性薄膜の磁気特性
の成膜速度依存性を第2図、第3図及び第4図に示す。
第2図は飽和磁化Msの成膜速度依存性と、垂直方向と面
内方向との残留磁化比Br⊥/Br″の成膜速度依存性とを
示す図、第3図は垂直磁気異方性磁界Hkの成膜速度依存
性を示す図、第4図は垂直保磁力Hc⊥の成膜速度依存性
を示す図である。
−Deposition conditions− Back pressure 1 × 10 −6 torr or less Nitrogen gas pressure 2 × 10 −4 torr Deposition rate 750 to 1750Å / min Nitrogen ion current density 2.0mA / cm 2 Incident angle of iron vapor 90 ° Film substrate temperature 100 ° C. Nitrogen ion kinetic energy 100 eV or less FIG. 2, FIG. 3 and FIG. 4 show the dependency of the magnetic properties of the FeN magnetic thin film formed under the above-described film forming conditions on the film forming speed.
FIG. 2 is a graph showing the dependence of the saturation magnetization Ms on the deposition rate, and the dependence of the residual magnetization ratio Br⊥ / Br ″ between the perpendicular direction and the in-plane direction on the deposition rate. FIG. 4 is a graph showing the dependency of the directional magnetic field Hk on the film forming speed, and FIG.

第2図、第3図及び第4図から判るように成膜速度を
1750Å/minから減少させていくに従い、垂直方向と面内
方向との残留磁化比Br⊥/Br″、垂直磁気異方性磁界H
k、垂直保持力Hc⊥等の垂直磁化特性が向上し、成膜速
度が1000Å/minでは、飽和磁化Msが290emu/cc、垂直方
向と面内方向との残留磁化比Br⊥/Br″が1.2、垂直磁気
異方性磁界Hkが2800Oe、垂直保磁力Hc⊥が450Oeという
良好な垂直磁化特性が得られた。
As can be seen from FIGS. 2, 3 and 4,
As it decreases from 1750Å / min, the remanent magnetization ratio Br⊥ / Br ″ between the perpendicular direction and the in-plane direction, and the perpendicular magnetic anisotropic magnetic field H
k, the perpendicular magnetization characteristics such as the perpendicular coercive force Hc 向上 are improved, and when the deposition rate is 1000Å / min, the saturation magnetization Ms is 290 emu / cc, and the residual magnetization ratio Br⊥ / Br ″ between the perpendicular direction and the in-plane direction is 1.2, good perpendicular magnetization characteristics with perpendicular magnetic anisotropy magnetic field Hk of 2800 Oe and perpendicular coercive force Hc⊥ of 450 Oe were obtained.

第5図は上述の成膜条件の成膜速度1750Å/minで形成
されたFeN磁性薄膜の結晶構造を示す走査型電子顕微鏡
写真、第6図は上述の成膜条件の成膜速度1000Å/minで
形成されたFeN磁性薄膜の結晶構造を示す走査型電子顕
微鏡写真である。
FIG. 5 is a scanning electron micrograph showing the crystal structure of the FeN magnetic thin film formed at the film forming rate of 1750 ° / min under the above-described film forming conditions, and FIG. 6 is a film forming rate of 1000 ° / min under the above-described film forming conditions. 5 is a scanning electron micrograph showing a crystal structure of a FeN magnetic thin film formed by the method of Example 1.

第5図及び第6図から判るように成膜速度1750Å/min
で形成されたFeN磁性薄膜には柱状構造の結晶構造が見
られなかったのに対し、良好な垂直磁化特性が得られた
成膜速度1000Åで形成されたFeN磁性薄膜では、垂直方
向に延びる柱状構造の結晶構造が形成される。
As can be seen from FIGS. 5 and 6, the film formation rate is 1750Å / min.
No columnar crystal structure was observed in the FeN magnetic thin film formed in step 1. A crystalline structure of the structure is formed.

第7図は上述の成膜条件の成膜速度1750Å/minで形成
されたFeN磁性薄膜のX線回折による組成分析の結果を
示す図、第8図は上述の成膜条件の成膜速度1000Å/min
で形成されたFeN磁性薄膜のX線回折による組成分析の
結果を示す図である。
FIG. 7 is a diagram showing the result of composition analysis by X-ray diffraction of a FeN magnetic thin film formed at a film forming speed of 1750 ° / min under the above film forming conditions, and FIG. 8 is a film forming speed of 1000 ° under the above film forming conditions. / min
FIG. 6 is a view showing the result of composition analysis of the FeN magnetic thin film formed by X-ray diffraction by X-ray diffraction.

第7図及び第8図から判るように成膜速度1750Å/min
で形成されたFeN磁性薄膜の回折パターンがγ′−Fe4N
とε−Fe2〜3Nというフェロ磁性相の混合パターンで
あるのに対し、良好な垂直磁化特性が得られた成膜速度
1000Å/minで形成されたFeN磁性薄膜ではζ−Fe2Nのみ
の回折パターンを示した。
As can be seen from FIGS. 7 and 8, the deposition rate is 1750Å / min.
The diffraction pattern of the FeN magnetic thin film formed by γ'-Fe 4 N
Whereas a mixed pattern of the ferromagnetic phase of the ε-Fe 2~3 N, deposition rate good vertical magnetization characteristics were obtained
The FeN magnetic thin film formed by 1000 Å / min showed a diffraction pattern of only ζ-Fe 2 N.

第9図は良好な垂直磁化特性か得られた成膜速度1000
Å/minで形成されたFeN磁性薄膜のメスバウア分光によ
る組成分析の結果を示す図であり、この図から上記FeN
磁性薄膜の組成が下記の通り判明した。
Fig. 9 shows a film formation rate of 1000 with good perpendicular magnetization characteristics.
FIG. 9 is a diagram showing the results of composition analysis of FeN magnetic thin films formed at Å / min by Mossbauer spectroscopy, and FIG.
The composition of the magnetic thin film was found as follows.

−FeN磁性薄膜の組成− 常磁性(室温) ζ−Fe2N 62% 常磁性(室温) ε−Fe2〜3N 22% 強磁性(室温) α−Fe 8% 強磁性(室温) γ′−Fe4N 8% また、このFeN磁性薄膜の磁化が強磁性のα−Feと
γ′−Fe4Nに帰属していることが判る。
-FeN composition of the magnetic thin film - paramagnetic (room temperature) ζ-Fe 2 N 62% paramagnetic (room temperature) ε-Fe 2~3 N 22% ferromagnetic (room temperature) α-Fe 8% ferromagnetic (room temperature) gamma ' -Fe 4 N 8% Further, it is seen that the magnetization of the FeN magnetic thin film is attributed to γ'-Fe 4 N and alpha-Fe ferromagnetic.

また、上述の成膜条件で形成されたFeN磁性薄膜の窒
素含有量を電子分光法により調べると、成膜速度を減少
させていくに従い窒素含有量は増加し、良好な垂直磁化
特性が得られた成膜速度1000Å/minでの窒素含有量が23
atm%であることが判った。
In addition, when the nitrogen content of the FeN magnetic thin film formed under the above-described film forming conditions was examined by electron spectroscopy, the nitrogen content increased as the film forming speed was reduced, and good perpendicular magnetization characteristics were obtained. Nitrogen content at a deposition rate of 1000Å / min
atm%.

次に、上述の成膜条件において、成膜速度を1000Å/m
inに固定し基板温度を40℃〜240℃まで変化させて形成
されたFeN磁性薄膜の磁気特性の基板温度依存性を第10
図及び第11図に示す。第10図は飽和磁化Msの基板温度依
存性と垂直方向と面内方向との残留磁化比Br⊥/Br″の
基板温度依存性とを示す図、第11図は垂直磁気異方性磁
界Hkの基板温度依存性を示す図である。
Next, under the above-described film forming conditions, the film forming speed was set to 1000Å / m
The substrate temperature dependence of the magnetic properties of the FeN magnetic thin film formed by fixing the substrate at in and changing the substrate temperature from 40 ° C to 240 ° C
This is shown in the figure and FIG. FIG. 10 shows the substrate temperature dependence of the saturation magnetization Ms and the substrate temperature dependence of the residual magnetization ratio Br⊥ / Br ″ between the perpendicular direction and the in-plane direction. FIG. 11 shows the perpendicular magnetic anisotropy magnetic field Hk FIG. 4 is a diagram showing the substrate temperature dependence of the present invention.

第10図及び第11図から判るように、垂直方向と面内方
向との残留磁化比Br⊥/Br″、垂直磁気異方性磁界Hk等
の垂直磁化特性は基板温度100℃近傍で形成されたFeN磁
性薄膜が最も良好な値を示している。
As can be seen from FIGS. 10 and 11, the perpendicular magnetization characteristics such as the perpendicular magnetization and the in-plane residual magnetization ratio Br⊥ / Br ″ and the perpendicular magnetic anisotropic magnetic field Hk are formed at a substrate temperature of around 100 ° C. The FeN magnetic thin film shows the best value.

上述の基板温度100℃、成膜速度1000Å/minの条件で
形成した実施例のFeN磁性薄膜は、基板(7)上面に対
して垂直方向に成長した微細柱状構造のフェロ磁性のα
−Fe相及びγ′−Fe4N相の結晶の周りで、プラズマ生成
室()からの100eV以下の低い運動エネルギー領域で
のイオン照射と100℃の基板温度との相互作用により常
磁性のζ−Fe2Nが結晶化することにより前記α−Fe相と
γ′−Fe4N相との相分離に磁気的分離効果が起こり、こ
れが前記微細柱状構造による形状異方性と相乗すること
により優れた垂直磁気異方性を示す。
The FeN magnetic thin film of the example formed under the conditions of the above-mentioned substrate temperature of 100 ° C. and a film formation rate of 1000 ° C./min has a ferromagnetic α of a fine columnar structure grown vertically to the upper surface of the substrate (7).
Around -Fe phase and γ'-Fe 4 N phase crystal, the interaction with the substrate temperature of ion irradiation and 100 ° C. in the following low kinetic energy region 100eV from the plasma generation chamber (5) of paramagnetic Crystallization of ζ-Fe 2 N causes a magnetic separation effect in the phase separation between the α-Fe phase and the γ′-Fe 4 N phase, which synergizes with the shape anisotropy due to the fine columnar structure. Shows more excellent perpendicular magnetic anisotropy.

また、比較例として、第12図に示す通常の真空蒸着装
置を用いて下記の条件で、基板(7)上にFeN磁性薄膜
を形成した。
As a comparative example, a FeN magnetic thin film was formed on the substrate (7) using the ordinary vacuum evaporation apparatus shown in FIG. 12 under the following conditions.

−成膜条件− 背圧 1×10-6torr以下 窒素ガス圧力 2×10-4torr 成膜速度 1000Å/min 窒素イオン電流密度 0mA/cm2 鉄蒸気の入射角 90° フィルム基板温度 100℃ 窒素イオンの運動エネルギー 0eV 下表に上述の実施例(成膜速度1000Å/min、基板温度
100℃)で形成したFeN磁性薄膜と上述の比較例で形成し
たFeN磁性薄膜の磁気特性を示す。
−Deposition conditions− Back pressure 1 × 10 −6 torr or less Nitrogen gas pressure 2 × 10 −4 torr Deposition rate 1000Å / min Nitrogen ion current density 0mA / cm 2 Incident angle of iron vapor 90 ° Film substrate temperature 100 ° C Nitrogen Ion kinetic energy 0 eV The following table shows the above examples (film deposition rate 1000Å / min, substrate temperature
The magnetic properties of the FeN magnetic thin film formed at 100 ° C.) and the FeN magnetic thin film formed in the above comparative example are shown.

また、上述の比較例で形成されたFeN磁性薄膜の走査
型電子顕微鏡での観察では柱状構造の結晶構造は見られ
ず、またX線回折による組成分析ではα−Feの回折パタ
ーンのみが見られた。
In addition, the observation of the FeN magnetic thin film formed in the above comparative example with a scanning electron microscope does not show a crystal structure of a columnar structure, and the composition analysis by X-ray diffraction shows only a diffraction pattern of α-Fe. Was.

また、他の比較例として第1図の製造装置において基
板ホルダー(4)を所定角度傾けて鉄を斜め蒸着して基
板(7)上にFeN磁性薄膜を形成した。このFeN系磁性薄
膜は第13図に示すように基板上面に対して斜め上方に成
長した柱状構造の結晶構造を有しており、窒素含有量は
16atm%である。しかし乍ら、この比較例のFeN磁性薄膜
は垂直方向と面内方向の残留磁化比Br⊥/Br″は0.30程
度であり、ほとんど垂直磁気異方性を有していない。
尚、上述の第5図、第6図及び第13図の走査型電子顕微
鏡写真では1cm=1660Åの倍率である。
As another comparative example, a FeN magnetic thin film was formed on a substrate (7) by obliquely depositing iron while tilting the substrate holder (4) at a predetermined angle in the manufacturing apparatus of FIG. This FeN-based magnetic thin film has a columnar crystal structure grown obliquely above the upper surface of the substrate as shown in FIG. 13, and has a nitrogen content of
It is 16 atm%. However, the FeN magnetic thin film of this comparative example has a perpendicular magnetization and an in-plane residual magnetization ratio Br⊥ / Br ″ of about 0.30, and has almost no perpendicular magnetic anisotropy.
In the scanning electron micrographs shown in FIGS. 5, 6, and 13, the magnification is 1 cm = 1660 °.

(ト)発明の効果 本発明に依れば、量産性に適し、且つ垂直磁気異方性
に優れた垂直磁気記録媒体及びその製造方法を提供し得
る。
(G) Effects of the Invention According to the present invention, it is possible to provide a perpendicular magnetic recording medium suitable for mass productivity and excellent in perpendicular magnetic anisotropy, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第11図は本発明に係り、第1図は製造装置の
概略断面図、第2図、第3図及び第4図は夫々FeN磁性
薄膜の磁気特性の成膜速度依存性を示す図、第5図及び
第6図は夫々FeN磁性薄膜の結晶構造を示す走査型電子
顕微鏡写真、第7図及び第8図は夫々FeN磁性薄膜のX
線回折パターンを示す図、第9図はFeN磁性薄膜のメス
バウアスペクトルを示す図、第10図及び第11図は夫々Fe
N磁性薄膜の磁気特性の基板温度依存性を示す図であ
る。第12図は製造装置の概略断面図、第13図はFeN磁性
薄膜の結晶構造を示す走査型電子顕微鏡写真である。 ()……プラズマ生成室、(7)……基板、(12)…
…窒素プラズマ、(14)……鉄の蒸気。
1 to 11 relate to the present invention, FIG. 1 is a schematic sectional view of a manufacturing apparatus, and FIGS. 2, 3, and 4 each show the dependency of the magnetic properties of a FeN magnetic thin film on the deposition rate. FIGS. 5 and 6 are scanning electron micrographs showing the crystal structure of the FeN magnetic thin film, respectively. FIGS. 7 and 8 are X-ray images of the FeN magnetic thin film, respectively.
FIG. 9 shows a Mossbauer spectrum of a FeN magnetic thin film, and FIGS. 10 and 11 show Fe diffraction, respectively.
FIG. 3 is a diagram showing the substrate temperature dependence of the magnetic properties of an N magnetic thin film. FIG. 12 is a schematic sectional view of the manufacturing apparatus, and FIG. 13 is a scanning electron micrograph showing the crystal structure of the FeN magnetic thin film. ( 5 ) Plasma generating chamber (7) Substrate (12)
... nitrogen plasma, (14) ... iron vapor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−25204(JP,A) 特開 昭57−130405(JP,A) 特開 平1−105331(JP,A) 特開 昭59−228705(JP,A) 特開 昭63−241718(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-25204 (JP, A) JP-A-57-130405 (JP, A) JP-A-1-105331 (JP, A) JP-A-59-130 228705 (JP, A) JP-A-63-241718 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性の基板上に、常磁性窒化鉄ζ−Fe2N
を主体とし、該常磁性窒化鉄ζ−Fe2Nがフェロ磁性のα
−Fe相及びγ′−Fe4N相と相分離されており、結晶構造
が前記基板上面に対して垂直方向に延びる柱状構造であ
る垂直磁気異方性を有するFeN系磁性薄膜を被着形成し
たことを特徴とする垂直磁気記録媒体。
A paramagnetic iron nitride 、 -Fe 2 N is formed on a non-magnetic substrate.
And the paramagnetic iron nitride ζ-Fe 2 N is ferromagnetic α
-Fe phase and gamma prime-Fe 4 are N-phase and phase separation, deposited and formed a FeN-based magnetic thin film having perpendicular magnetic anisotropy is columnar structures extending in the vertical direction crystal structure to the substrate top surface A perpendicular magnetic recording medium characterized in that:
【請求項2】加熱された非磁性の基板上に該基板上面と
直交する方向から鉄の蒸気を蒸着すると同時に、該蒸着
部に窒素イオン及び電子を含有する窒素プラズマを照射
することにより前記基板上に、常磁性窒化鉄ζ−Fe2Nを
主体とし、該常時性窒化鉄ζ−Fe2Nがフェロ磁性のα−
Fe相及びγ′−Fe4N相と相分離されている垂直磁気異方
性を有するFeN系磁性薄膜を被着形成することを特徴と
する垂直磁気記録媒体の製造方法。
2. The method according to claim 1, further comprising: evaporating iron vapor on the heated non-magnetic substrate from a direction perpendicular to the upper surface of the substrate; and irradiating the vapor deposition section with nitrogen plasma containing nitrogen ions and electrons. Above, the main component is paramagnetic iron nitride ζ-Fe 2 N, and the normal iron nitride ζ-Fe 2 N is ferromagnetic α-
A method of manufacturing a perpendicular magnetic recording medium characterized by the FeN-based magnetic thin film having perpendicular magnetic anisotropy that is Fe phase and gamma prime-Fe 4 N phase and the phase separation be deposited and formed.
JP1208130A 1989-08-10 1989-08-10 Perpendicular magnetic recording medium and method of manufacturing the same Expired - Fee Related JP2752179B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1208130A JP2752179B2 (en) 1989-08-10 1989-08-10 Perpendicular magnetic recording medium and method of manufacturing the same
US07/564,256 US5173370A (en) 1989-08-10 1990-08-08 Magnetic recording medium having a magnetic thin film with both paramagnetic phase and ferromagnetic phase iron nitride with paramagnetic phase zeta Fe2 N as its largest component
EP90115388A EP0415155B1 (en) 1989-08-10 1990-08-10 A perpendicular magnetic recording medium and method of forming the same
DE69023835T DE69023835T2 (en) 1989-08-10 1990-08-10 Vertical magnetic recording medium and method for the production thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1208130A JP2752179B2 (en) 1989-08-10 1989-08-10 Perpendicular magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0371420A JPH0371420A (en) 1991-03-27
JP2752179B2 true JP2752179B2 (en) 1998-05-18

Family

ID=16551134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208130A Expired - Fee Related JP2752179B2 (en) 1989-08-10 1989-08-10 Perpendicular magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2752179B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268794B2 (en) 2000-10-30 2007-09-11 Yamaha Corporation Method of printing label on optical disk, optical disk unit, and optical disk

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130405A (en) * 1981-02-05 1982-08-12 Semiconductor Energy Lab Co Ltd Magnetic recording medium
JPS6025204A (en) * 1983-07-20 1985-02-08 Konishiroku Photo Ind Co Ltd Megnetic recording medium
JP2735836B2 (en) * 1987-04-15 1998-04-02 三洋電機株式会社 Thin film formation method

Also Published As

Publication number Publication date
JPH0371420A (en) 1991-03-27

Similar Documents

Publication Publication Date Title
US4382110A (en) Magnetic recording medium
EP0132398B1 (en) A method and apparatus for ion beam generation
EP0122030B1 (en) A magnetic recording member and a manufacturing method for such a member
JP2665365B2 (en) Method for producing iron nitride having high magnetism
JPH061551B2 (en) Method of manufacturing magnetic recording medium
JP2752179B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
EP0415155B1 (en) A perpendicular magnetic recording medium and method of forming the same
JPH0770058B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH0545670B2 (en)
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JP2686139B2 (en) Magnetic recording medium and method of manufacturing the same
JPH035644B2 (en)
JPS5836908A (en) Manufacture of magnetic body of thin nitride film
JPH03280214A (en) Perpendicular magnetic recording medium and its production
US20040052935A1 (en) Magnetic thin film and production method therefor
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JP2735836B2 (en) Thin film formation method
JPH08316083A (en) Production of magnetic recording medium
JPH07101498B2 (en) Magnetic recording material and manufacturing method thereof
JPH033743B2 (en)
JPS62241138A (en) Production of magnetic recording medium
JPS5840248B2 (en) Magnetic recording medium and its manufacturing method
JPH0679369B2 (en) Magnetic recording material and manufacturing method thereof
JPH0279219A (en) Production of magnetic recording medium
JPH04209312A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees