JPH0371420A - Perpendicular magnetic recording medium and its production - Google Patents

Perpendicular magnetic recording medium and its production

Info

Publication number
JPH0371420A
JPH0371420A JP20813089A JP20813089A JPH0371420A JP H0371420 A JPH0371420 A JP H0371420A JP 20813089 A JP20813089 A JP 20813089A JP 20813089 A JP20813089 A JP 20813089A JP H0371420 A JPH0371420 A JP H0371420A
Authority
JP
Japan
Prior art keywords
substrate
fen
thin film
magnetic
perpendicular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20813089A
Other languages
Japanese (ja)
Other versions
JP2752179B2 (en
Inventor
Seiichiro Takahashi
誠一郎 高橋
Minoru Kume
久米 実
Kotaro Matsuura
松浦 宏太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1208130A priority Critical patent/JP2752179B2/en
Priority to US07/564,256 priority patent/US5173370A/en
Priority to EP90115388A priority patent/EP0415155B1/en
Priority to DE69023835T priority patent/DE69023835T2/en
Publication of JPH0371420A publication Critical patent/JPH0371420A/en
Application granted granted Critical
Publication of JP2752179B2 publication Critical patent/JP2752179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a perpendicular magnetic recording medium having an iron nitride magnetic layer having perpendicular magnetic anisotropy which can be produced at fast production speed by depositing a FeN-type magnetic thin film on the substrate, the thin film essentially comprising paramagnetic iron nitride xsi-Fe2N with the crystalline structure of column structure which grows in the perpendicular direction to the surface plane. CONSTITUTION:The FeN magnetic thin film is formed under conditions of substrate temp. at 100 deg.C and film forming speed of 1,000Angstrom /min, and the obtd. film consists of a fine columnar structure growing in the perpendicular direction to the substrate plane. Paramagnetic xsi-Fe2N crystallizes surrounding the crystals of ferromagnetic alpha-Fe phase and gamma'-FeN phase by the interaction of substrate temp. at 100 deg.C and irradiation of ions having low kinetic energy less than 100eV emitted from a plasma generating room 5. By this method, magnetic separation effect is caused in phase separation of the alpha-Fe phase and the gamma'-Fe4N phase. This effect and the shape anisotropy due to the columnar structure give excellent perpendicular magnetic anisotropy. Thereby, the obtd. perpendicular magnetic recording medium is suitable for massproduction.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は窒化鉄または窒化鉄系合金からなる強磁性金属
薄膜を磁性層とする垂直磁気記録媒体及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a perpendicular magnetic recording medium whose magnetic layer is a ferromagnetic metal thin film made of iron nitride or an iron nitride alloy, and a method for manufacturing the same.

(ロ)従来の技術 東北大の岩崎らにより発表された垂直磁気記録は、記録
密度が高くなるほど自己減磁作用が抑制されるため本質
的に高密度記録に適した記録方式である。垂直磁気記録
用の媒体としては、スパッタ法もしくは真空蒸着法で作
製したCo−Cr膜が発表されている。
(b) Conventional technology The perpendicular magnetic recording announced by Iwasaki et al. of Tohoku University is essentially a recording method suitable for high-density recording because self-demagnetization is suppressed as the recording density increases. As a medium for perpendicular magnetic recording, a Co--Cr film produced by a sputtering method or a vacuum evaporation method has been announced.

Co−Cr膜は磁気異方性、飽和磁化ともに大きく垂直
記録媒体として優れているが、Coはコスト的に高価な
ため問題がある。上述の欠点を解消したものとして、例
えば特開昭59−228705号(1(OIFIO/1
8)に開示されているように、安価なFeをベースにし
たFeN系垂直磁気記録媒体が提案されている。これは
大方晶系窒化鉄(ε−Feem。
Although a Co--Cr film has large magnetic anisotropy and saturation magnetization and is excellent as a perpendicular recording medium, Co has a problem because it is expensive. For example, Japanese Patent Application Laid-Open No. 59-228705 (1 (OIFIO/1)
8), an inexpensive FeN-based perpendicular magnetic recording medium based on Fe has been proposed. This is orthogonal iron nitride (ε-Feem).

N)を主体とする媒体であり、鉄、7’−Fe4N、t
−F、em−2N、ζ−Fe2NのようなFeまたはそ
の窒化物の中から選ばれた少なくとも1つの粉末、粉末
焼結体、バルクを原料として、Ar気流中、Arと窒素
の混合気流中、もしくはAr、窒素、水素の混合気流中
で物理蒸着(スパッタ法、真空蒸着法)を行うことによ
り形成される。
N), iron, 7'-Fe4N, t
- At least one powder, powder sintered body, or bulk selected from Fe or its nitrides such as -F, em-2N, and ζ-Fe2N is used as a raw material in an Ar gas flow or a mixed gas flow of Ar and nitrogen. Alternatively, it is formed by physical vapor deposition (sputtering method, vacuum evaporation method) in a mixed gas flow of Ar, nitrogen, and hydrogen.

しかし乍ら、上述のような六方晶系窒化鉄を主体とする
薄膜磁性体では、磁性層を高速で形成することが出来ず
、量産性に適した磁気記録媒体ではなかった。
However, with the thin film magnetic material mainly composed of hexagonal iron nitride as described above, the magnetic layer cannot be formed at high speed, and the magnetic recording medium is not suitable for mass production.

(ハ)発明が解決しようとする課題 本発明は上記従来例の欠点に鑑み為されたものであり、
高速で形成可能な垂直磁気異方性を有する窒化鉄系の磁
性層を有する垂直磁気記録媒体及びその製造方法を提供
することを目的とするものである。
(c) Problems to be Solved by the Invention The present invention has been made in view of the drawbacks of the above-mentioned conventional examples.
It is an object of the present invention to provide a perpendicular magnetic recording medium having an iron nitride-based magnetic layer having perpendicular magnetic anisotropy that can be formed at high speed, and a method for manufacturing the same.

(ニ)課題を解決するための手段 本発明の垂直磁気記録媒体は、非磁性の基板上に常磁性
窒化鉄ζ−FetNを主体とし、結晶構造が前記基板上
面に対して垂直方向に延びる柱状構造である垂直磁気異
方性を有するFeN系磁性薄膜を被着形成したことを特
徴とする。
(d) Means for Solving the Problems The perpendicular magnetic recording medium of the present invention is mainly composed of paramagnetic iron nitride ζ-FetN on a non-magnetic substrate, and has a columnar crystal structure extending perpendicularly to the upper surface of the substrate. It is characterized in that a FeN-based magnetic thin film having perpendicular magnetic anisotropy is deposited thereon.

また、本発明の垂直磁気記録媒体の製造方法は、加熱さ
れた非磁性の基板上に該基板上面と直交する方向から鉄
の蒸気を蒸着すると同時に、該蒸着部に窒素イオン及び
電子を含有する窒素プラズマを照射することにより前記
基板上に常磁性窒化鉄ζ−Fe*Nを主体とする垂直磁
気異方性を有するFeN系磁性薄膜を被着形成すること
を特徴とする。
Further, in the method for manufacturing a perpendicular magnetic recording medium of the present invention, iron vapor is deposited onto a heated non-magnetic substrate from a direction perpendicular to the upper surface of the substrate, and at the same time, nitrogen ions and electrons are contained in the deposited portion. The present invention is characterized in that an FeN-based magnetic thin film having perpendicular magnetic anisotropy and mainly composed of paramagnetic iron nitride ζ-Fe*N is deposited on the substrate by irradiating nitrogen plasma.

(ホ)作 用 上記構造の垂直磁気記録媒体では、常磁性窒化鉄ζ−F
e2Nの結晶化に伴いフェロ磁性のα−Fe相及びγ’
−Fe2N相との相分離に磁気的分離効果が起こり、こ
れが基板上面に対して垂直方向に延びた微細柱状構造に
よる形状異方性と相乗することにより垂直磁気異方性の
優れたFeN系磁性薄膜が形成される。
(e) Effect In the perpendicular magnetic recording medium with the above structure, paramagnetic iron nitride ζ-F
As e2N crystallizes, ferromagnetic α-Fe phase and γ'
-A magnetic separation effect occurs during phase separation with the Fe2N phase, and this synergy with the shape anisotropy due to the fine columnar structure extending perpendicularly to the top surface of the substrate results in FeN-based magnetism with excellent perpendicular magnetic anisotropy. A thin film is formed.

また、上述の製造方法では、プラズマ生成室からの低い
運動ヱネルギー領域でのイオン照射と適当な基板温度と
の相互作用により常磁性窒化鉄ζ−F e *Nの結晶
化が進む。
Furthermore, in the above-described manufacturing method, crystallization of paramagnetic iron nitride ζ-Fe*N progresses due to interaction between ion irradiation from the plasma generation chamber in a low kinetic energy region and an appropriate substrate temperature.

(へ)実施例 第1図は本実施例で用いられるイオンアシスト蒸着法に
よる垂直磁気記録媒体の製造装置の概略断面図である。
(F) Embodiment FIG. 1 is a schematic cross-sectional view of an apparatus for manufacturing a perpendicular magnetic recording medium by the ion-assisted vapor deposition method used in this embodiment.

図中、(1)は排気系(2)により内部がlXl0−’
T o r r以下の高真空に保たれた真空槽であり、
該真空槽(1)の内部にはるつぼ(3)、基板ホルダー
(4)及びプラズマ生成室(且)が配設されている。前
記るつぼ(3)内には蒸発源である鉄(6)が収納され
ている。前記基板ホルダー(4)の下面には非磁性の基
板(7)が装着されており、該基板(7)の真下に前記
るつぼ(3)が配置されている。
In the figure, (1) is internally lXl0-' due to the exhaust system (2).
It is a vacuum chamber maintained at a high vacuum below T o r r,
A crucible (3), a substrate holder (4), and a plasma generation chamber (and) are arranged inside the vacuum chamber (1). Iron (6), which is an evaporation source, is housed in the crucible (3). A non-magnetic substrate (7) is mounted on the lower surface of the substrate holder (4), and the crucible (3) is placed directly below the substrate (7).

また、前記基板ホルダー(4)の角部にはヒータ(図示
せず)が装着されており、該ヒータにより前記基板(7
)の温度が制御される。前記プラズマ生成室(5)は内
部にフィラメント(8)及びアノード(9)が装着され
ており、周面にはソレノイドコ・イル(10)が巻回さ
れている。前記フィラメント(8)には直流電源(ll
a)により20〜30Aの電流が流れており、前記アノ
ード(9)には直流電源(11b)により100vの正
の電圧が印加されている。
Further, a heater (not shown) is attached to a corner of the substrate holder (4), and the heater causes the substrate (7) to
) temperature is controlled. A filament (8) and an anode (9) are installed inside the plasma generation chamber (5), and a solenoid coil (10) is wound around the circumferential surface. The filament (8) is connected to a DC power source (ll
A current of 20 to 30 A is flowing through a), and a positive voltage of 100 V is applied to the anode (9) by a DC power source (11b).

また、前記プラズマ生成室(互)のプラズマ(12)放
出側の開口部には電気的に接地された多孔形状のグリッ
ド(13)が装着されており、該グリッド(13)によ
りプラズマ生成室(5)の内外には気圧差が生じる。(
14)は前記プラズマ生成室(互)の内部に窒素ガスを
導入するためのガス導入管である。
Further, an electrically grounded porous grid (13) is attached to the opening on the plasma (12) emission side of the plasma generation chamber (12), and the grid (13) allows the plasma generation chamber (12) to 5) There is a difference in air pressure between the inside and the outside. (
14) is a gas introduction pipe for introducing nitrogen gas into the plasma generation chamber.

上述の本実施例の製造装置では、ガス導入管(14)を
通ってプラズマ生成室(互)内に導入された中性の窒素
分子は、フィラメント(8〉から放出されアノード(9
)によって加速された熱電子と衝突することによりイオ
ン化される。このイオン化により発生した低エネルギー
の窒素イオンと電子とは、窒素プラズマ(12)となり
、ソレノイドコイル(10)により形成された磁場匂配
とグリッド(13)による気圧差とによってプラズマ生
成室(5)の開口部から外部に放射状に放出される。こ
の放出された窒素プラズマ(12)はるつぼ(3)から
の鉄の蒸気(14)と同時に基板(7)に照射される。
In the manufacturing apparatus of this embodiment described above, the neutral nitrogen molecules introduced into the plasma generation chamber through the gas introduction pipe (14) are emitted from the filament (8>) and are passed through the anode (9).
) is ionized by collision with thermal electrons accelerated by The low-energy nitrogen ions and electrons generated by this ionization become nitrogen plasma (12), which is generated in a plasma generation chamber (5) by the magnetic field generated by the solenoid coil (10) and the pressure difference caused by the grid (13). is emitted radially to the outside from the opening. This emitted nitrogen plasma (12) is irradiated onto the substrate (7) at the same time as the iron vapor (14) from the crucible (3).

このため、前記基板(7)に到達した窒素イオンの正の
電荷は電子によって中和され、前記基板(7)はチャー
ジアップしない。また、前記窒素イオン及び電子の運動
エネルギーは100eV以下と小さいので基板(7)上
に形成された窒化鉄(FeN)磁性薄膜は熱解離を生じ
ない。
Therefore, the positive charge of the nitrogen ions reaching the substrate (7) is neutralized by electrons, and the substrate (7) is not charged up. Furthermore, since the kinetic energy of the nitrogen ions and electrons is as small as 100 eV or less, the iron nitride (FeN) magnetic thin film formed on the substrate (7) does not undergo thermal dissociation.

上述の製造装置を使用して下記の条件でフィルム基板上
にFeN磁性薄膜を形成した。
An FeN magnetic thin film was formed on a film substrate using the above manufacturing apparatus under the following conditions.

−成膜条件− 背圧        lXl0−@torr以下窒素ガ
ス圧力      2X10−’torr戊膜速度成膜
  750〜1750A/ m i n窒素イオン電流
密度    2 、0 m A / c m ’鉄蒸気
の入射角           90”フィルム基板温
度         ioo℃窒素イオンの運動エネル
ギー 100eV以下上述の成膜条件で形成されたFe
N磁性薄膜の磁気特性の成膜速度依存性を第2図、第3
図及び第4図に示す。第2図は飽和磁化Msの成膜速度
依存性と、垂直方向ヒ面内方向この残留磁化比Br土/
 B r 、の成膜速度依存性とを示す図、第3図は垂
直磁気異方性磁界Hkの成膜速度依存性を示す図、第4
図は垂直保磁力Hc 、Lの成膜速度依存性を示す図で
ある。
-Film forming conditions- Back pressure 1Xl0-@torr or less Nitrogen gas pressure 2X10-'torr Film-forming rate 750-1750A/min Nitrogen ion current density 2, 0 mA/cm' Incident angle of iron vapor 90 "Film substrate temperature: ioo℃Nitrogen ion kinetic energy: 100eV or less Fe formed under the above film formation conditions
Figures 2 and 3 show the dependence of the magnetic properties of the N magnetic thin film on the deposition rate.
It is shown in FIG. Figure 2 shows the dependence of the saturation magnetization Ms on the deposition rate and the residual magnetization ratio Br soil/in the perpendicular direction and the in-plane direction.
FIG. 3 is a diagram showing the dependence of the perpendicular magnetic anisotropy field Hk on the deposition rate; FIG.
The figure shows the dependence of the perpendicular coercive force Hc, L on the film formation rate.

第2図、第3図及び第4図から判るように成膜速度を1
75 OA/m i nから減少させていくに従い、垂
直方向と面内方向との残留磁化比Br上/ B r 、
、垂直磁気異方性磁界Hk、垂直保持力He上等の垂直
磁化特性が向上し、成膜速度が1000A/minでは
、飽和磁化Msが290e m u / e c、垂直
方向と面内方向との残留磁化比Br上/ B r 、が
1.2、垂直磁気異方性磁界Hkが28000e、垂直
保磁力He土が4500eという良好な垂直磁化特性が
得られた。
As can be seen from Figures 2, 3, and 4, the deposition rate was increased to 1.
As it decreases from 75 OA/min, the residual magnetization ratio Br in the vertical direction and in the in-plane direction increases / Br,
, perpendicular magnetic anisotropy magnetic field Hk, perpendicular coercive force He, and other perpendicular magnetization characteristics are improved, and at a deposition rate of 1000 A/min, the saturation magnetization Ms is 290 e m u / e c, both in the perpendicular direction and in-plane direction. Good perpendicular magnetization characteristics were obtained, with a remanent magnetization ratio Br/Br of 1.2, a perpendicular magnetic anisotropy field Hk of 28000e, and a perpendicular coercivity He soil of 4500e.

第5図は上述の成膜条件の成膜速度1750A/ m 
i nで形成されたFeN磁性薄膜の結晶構造を示す走
査型電子顕微鏡写真、第6図は上述の成膜条件の成膜速
度1000A/minで形成されたFeN磁性薄膜の結
晶構造を示す走査型電子顕微鏡写真である。
Figure 5 shows a film forming rate of 1750 A/m under the above film forming conditions.
Figure 6 is a scanning electron micrograph showing the crystal structure of the FeN magnetic thin film formed under the above-mentioned film forming conditions at a deposition rate of 1000 A/min. This is an electron micrograph.

第5図及び第6図から判るように成膜速度1750人/
 m i nで形成されたFeN磁性薄膜には柱状構造
の結晶構造が見られなかったのに対し、良好な垂直磁化
特性が得られた成膜速度1000入で形成されたFeN
磁性薄膜では、垂直方向に延びる柱状構造の結晶構造が
形成される。
As can be seen from Figures 5 and 6, the deposition rate was 1750 people/
No columnar crystal structure was observed in the FeN magnetic thin film formed at min, whereas the FeN magnetic thin film formed at a deposition rate of 1000 mm, which yielded good perpendicular magnetization characteristics,
In the magnetic thin film, a columnar crystal structure extending in the vertical direction is formed.

第7図は上述の成膜条件の成膜速度1750A/ m 
i nで形成されたFeN磁性薄膜のX線回折による組
成分析の結果を示す図、第8図は上述の成膜条件の成膜
速度1ooo人/ m i nで形成されたFeN磁性
薄膜のX線回折による組成分析の結果を示す図である。
Figure 7 shows a film forming rate of 1750 A/m under the above film forming conditions.
Figure 8 shows the results of compositional analysis by X-ray diffraction of the FeN magnetic thin film formed under the above-mentioned film formation conditions. FIG. 3 is a diagram showing the results of compositional analysis by line diffraction.

第7図及び第8図から判るように成膜速度1750人/
 m i nで形成されたFeN磁性薄膜の回折パター
ンが7−’−Fe4Nとε−F e t〜2Nというフ
ェロ磁性相の混合パターンであるのに対し、良好な垂直
磁化特性が得られた成膜速度1000A / m i 
nで形成されたFeN磁性薄膜ではζ−Fe*Nのみの
回折パターンを示した。
As can be seen from Figures 7 and 8, the deposition rate was 1750 people/
The diffraction pattern of the FeN magnetic thin film formed by min is a mixed pattern of ferromagnetic phases of 7-'-Fe4N and ε-Fet~2N, whereas the Film speed 1000A/mi
The FeN magnetic thin film formed with n showed a diffraction pattern of only ζ-Fe*N.

第9図は良好な垂直磁化特性か得られた成膜速度100
0A/ m i nで形成されたFeN磁性薄膜のメス
バウア分光による組成分析の結果を示す図であり、この
図から上記FeN磁性薄膜の組成が下記の通り判明した
Figure 9 shows the film formation rate of 100 that resulted in good perpendicular magnetization characteristics.
FIG. 2 is a diagram showing the results of composition analysis by Mössbauer spectroscopy of a FeN magnetic thin film formed at 0 A/min, and from this diagram, the composition of the FeN magnetic thin film was found as follows.

−FeN磁性薄膜の組成− 常磁性(室温)  ζ−Fe2N    62%常磁性
(室温)   t−Fe、−2N   22%強磁性(
室温)  α−Fe      8%強磁性(室温) 
 γ’  FetN     8%また、このFeN磁
性薄膜の磁化が強磁性のα−Feとγ’−Fe2Nに帰
属していることが判る。
-Composition of FeN magnetic thin film- Paramagnetic (room temperature) ζ-Fe2N 62% paramagnetic (room temperature) t-Fe, -2N 22% ferromagnetic (
(room temperature) α-Fe 8% ferromagnetic (room temperature)
γ' FetN 8% It can also be seen that the magnetization of this FeN magnetic thin film belongs to ferromagnetic α-Fe and γ'-Fe2N.

また、上述の成膜条件で形成されたFeN磁性薄膜の窒
素含有量を電子分光法により調べると、成膜速度を減少
させていくに従い窒素含有量は増加し、良好な垂直磁化
特性が得られた成膜速度1000A/m i nでの窒
素含有量が23atm%であることが判った。
Furthermore, when the nitrogen content of the FeN magnetic thin film formed under the above-mentioned film-forming conditions was investigated by electron spectroscopy, the nitrogen content increased as the film-forming rate decreased, and good perpendicular magnetization characteristics were obtained. It was found that the nitrogen content was 23 atm % at a film formation rate of 1000 A/min.

次に、上述の成膜条件において、成膜速度を1000A
/ m i nに固定し基板温度を40℃〜240℃ま
で変化させて形成されたFeN磁性薄膜の磁気特性の基
板温度依存性を第10図及び第11図に示す。第10図
は飽和磁化Msの基板温度依存性と垂直方向と面内方向
との残留磁化比Br上/ B r 、の基板温度依存性
とを示す図、第11図は垂直磁気異方性磁界Hkの基板
温度依存性を示す図である。
Next, under the above film forming conditions, the film forming rate was set to 1000 A.
FIGS. 10 and 11 show the dependence of the magnetic properties on the substrate temperature of FeN magnetic thin films formed by fixing the temperature at / min and varying the substrate temperature from 40° C. to 240° C. Fig. 10 is a diagram showing the substrate temperature dependence of the saturation magnetization Ms and the substrate temperature dependence of the remanent magnetization ratio Br/Br in the perpendicular direction and in-plane direction, and Fig. 11 is a diagram showing the dependence of the saturation magnetization Ms on the substrate temperature. FIG. 3 is a diagram showing the substrate temperature dependence of Hk.

第10図及び第11図から判るように、垂直方向と面内
方向との残留磁化比Br上/ B r 、、垂直磁気異
方性磁界Hk等の垂直磁化特性は基板温度100℃近傍
で形成されたFeN磁性薄膜が最も良好な値を示してい
る。
As can be seen from Figures 10 and 11, perpendicular magnetization characteristics such as the remanent magnetization ratio Br in the vertical direction and the in-plane direction Br/Br, and the perpendicular magnetic anisotropy field Hk are formed at a substrate temperature of around 100°C. The FeN magnetic thin film shown in Fig. 1 shows the best value.

上述の基板温度100℃、成膜速度1000A/ m 
i nの条件で形成した実施例のFeN磁性薄膜は、基
板(7)上面に対して垂直方向に成長した微細柱状構造
のフェロ磁性のα−Fe相及びγ′−F e 4N相の
結晶の周りで、プラズマ生成室(5)からの100eV
以下の低い運動エネルギー領域でのイオン照射と100
℃の基板温度との相互作用により常磁性のζ−Fe*N
が結晶化することにより前記α−Fe相とγ’−Fe4
N相との相分離に磁気的分離効果が起こり、これが前記
微細柱状構造による形状異方性と相乗することにより優
れた垂直磁気異方性を示す。
Above substrate temperature 100°C, film formation rate 1000A/m
The FeN magnetic thin film of the example formed under the conditions of i. around 100 eV from the plasma generation chamber (5)
Ion irradiation in the low kinetic energy region below and 100
Paramagnetic ζ-Fe*N due to interaction with substrate temperature of °C
is crystallized to form the α-Fe phase and γ'-Fe4
A magnetic separation effect occurs during phase separation with the N phase, and this synergy with the shape anisotropy due to the fine columnar structure provides excellent perpendicular magnetic anisotropy.

また、比較例として、第12図に示す通常の真空蒸着装
置を用いて下記の条件で、基板(7)上にFeN磁性薄
膜を形成した。
Further, as a comparative example, a FeN magnetic thin film was formed on the substrate (7) using a normal vacuum evaporation apparatus shown in FIG. 12 under the following conditions.

一成膜条件一 背E         lXl0−”torr以下窒素
ガス圧力      2×10引torr戊膜速度  
      1000A/min窒素イオン電流密度 
  Om A / c m ”鉄蒸気の入射角    
       90”フィルム基板温度       
  ioo℃窒素イオンの運動エネルギー     O
eV下表に上述の実施例(成膜速度1000Å/min
、基板温度100℃)で形成したFeN磁性薄膜と上述
の比較例で形成したFeN磁性薄膜の磁気特性を示す。
Film forming conditions: E lXl0-” torr or less Nitrogen gas pressure 2×10 torr Filming speed
1000A/min nitrogen ion current density
Om A/cm ”Angle of incidence of iron vapor
90” film substrate temperature
ioo°C Kinetic energy of nitrogen ions O
eV The table below shows the above examples (deposition rate 1000 Å/min
The magnetic properties of the FeN magnetic thin film formed at a substrate temperature of 100° C. and the FeN magnetic thin film formed in the above-mentioned comparative example are shown.

以下余白 また、上述の比較例で形成されたFeN磁性薄膜の走査
型電子顕微鏡での観察では柱状構造の結晶構造は見られ
ず、またX線回折による組成分析ではα−Feの回折パ
ターンのみが見られた。
Margin below In addition, when the FeN magnetic thin film formed in the above-mentioned comparative example was observed with a scanning electron microscope, no columnar crystal structure was observed, and when the composition was analyzed by X-ray diffraction, only the α-Fe diffraction pattern was observed. It was seen.

また、他の比較例として第1図の製造装置において基板
ホルダー(4)を所定角度傾けて鉄を斜め蒸着して基板
(7)上にFeN磁性薄膜を形成した。このFeN系磁
性薄膜は第13図に示すように基板上面に対して斜め上
方に成長じた柱状構造の結晶構造を有しており、窒素含
有量は16atm%である。しかし乍ら、この比較例の
FeN磁性薄膜は垂直方向と面内方向の残留磁化比Br
上/ B r 、は0.30程度であり、はとんど垂直
磁気異方性を有していない。尚、上述の第5図、第6図
及び第13図の走査型電子顕微鏡写真では1crn=1
660人の倍率である。
As another comparative example, a FeN magnetic thin film was formed on the substrate (7) by tilting the substrate holder (4) at a predetermined angle and depositing iron obliquely in the manufacturing apparatus shown in FIG. As shown in FIG. 13, this FeN-based magnetic thin film has a columnar crystal structure grown obliquely upward from the upper surface of the substrate, and has a nitrogen content of 16 atm %. However, the FeN magnetic thin film of this comparative example has a residual magnetization ratio Br in the vertical direction and in the in-plane direction.
The upper /B r is about 0.30, and has almost no perpendicular magnetic anisotropy. In addition, in the above-mentioned scanning electron micrographs of FIGS. 5, 6, and 13, 1crn=1
This is a multiple of 660 people.

(ト)発明の効果 本発明に依れば、量産性に適した垂直磁気記録媒体及び
その製造方法を提供し得る。
(G) Effects of the Invention According to the present invention, it is possible to provide a perpendicular magnetic recording medium suitable for mass production and a method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第11図は本発明に係り、第1図は製造装置
の概略断面図、第2図、第3図及び第4図は夫々FeN
磁性薄膜の磁気特性の成膜速度依存性を示す図、第5図
及び第6図は夫々FeN磁性薄膜の結晶構造を示す走査
型電子顕微鏡写真、第7図及び第8図は夫々FeN磁性
薄膜のX線回折パターンを示す図、第9図はFeN磁性
薄膜のメスバウアスペクトルを示す図、第10図及び第
11図は夫々FeN磁性薄膜の磁気特性の基板温度依存
性を示す図である。第12図は製造装置の概略断面図、
第13図はFeN磁性薄膜の結晶構造を示す走査型電子
顕微鏡写真である。 (5)・・・プラズマ生成基、(7)・・・基板、(1
2)・・・窒素プラズマ、(14)・・・鉄の蒸気。
1 to 11 relate to the present invention, FIG. 1 is a schematic cross-sectional view of a manufacturing apparatus, and FIGS. 2, 3, and 4 are FeN
Figures 5 and 6 are scanning electron micrographs showing the crystal structure of FeN magnetic thin films. Figures 7 and 8 are scanning electron micrographs showing the deposition rate dependence of magnetic properties of magnetic thin films. FIG. 9 is a diagram showing the Mössbauer spectrum of the FeN magnetic thin film, and FIGS. 10 and 11 are diagrams showing the substrate temperature dependence of the magnetic properties of the FeN magnetic thin film. FIG. 12 is a schematic cross-sectional view of the manufacturing equipment;
FIG. 13 is a scanning electron micrograph showing the crystal structure of the FeN magnetic thin film. (5)...Plasma generation group, (7)...Substrate, (1
2)...Nitrogen plasma, (14)...Iron vapor.

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性の基板上に常磁性窒化鉄ζ−Fe_2Nを
主体とし、結晶構造が前記基板上面に対して垂直方向に
延びる柱状構造である垂直磁気異方性を有するFeN系
磁性薄膜を被着形成したことを特徴とする垂直磁気記録
媒体。
(1) A FeN-based magnetic thin film mainly composed of paramagnetic iron nitride ζ-Fe_2N and having perpendicular magnetic anisotropy, whose crystal structure is a columnar structure extending perpendicularly to the upper surface of the substrate, is coated on a nonmagnetic substrate. 1. A perpendicular magnetic recording medium characterized in that it has an adhesive layer.
(2)加熱された非磁性の基板上に該基板上面と直交す
る方向から鉄の蒸気を蒸着すると同時に、該蒸着部に窒
素イオン及び電子を含有する窒素プラズマを照射するこ
とにより前記基板上に常磁性窒化鉄ζ−Fe_2Nを主
体とする垂直磁気異方性を有するFeN系磁性薄膜を被
着形成することを特徴とする垂直磁気記録媒体の製造方
法。
(2) Depositing iron vapor onto a heated non-magnetic substrate from a direction perpendicular to the upper surface of the substrate, and at the same time irradiating the vapor deposition area with nitrogen plasma containing nitrogen ions and electrons. 1. A method for manufacturing a perpendicular magnetic recording medium, which comprises depositing a FeN-based magnetic thin film having perpendicular magnetic anisotropy mainly composed of paramagnetic iron nitride ζ-Fe_2N.
JP1208130A 1989-08-10 1989-08-10 Perpendicular magnetic recording medium and method of manufacturing the same Expired - Fee Related JP2752179B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1208130A JP2752179B2 (en) 1989-08-10 1989-08-10 Perpendicular magnetic recording medium and method of manufacturing the same
US07/564,256 US5173370A (en) 1989-08-10 1990-08-08 Magnetic recording medium having a magnetic thin film with both paramagnetic phase and ferromagnetic phase iron nitride with paramagnetic phase zeta Fe2 N as its largest component
EP90115388A EP0415155B1 (en) 1989-08-10 1990-08-10 A perpendicular magnetic recording medium and method of forming the same
DE69023835T DE69023835T2 (en) 1989-08-10 1990-08-10 Vertical magnetic recording medium and method for the production thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1208130A JP2752179B2 (en) 1989-08-10 1989-08-10 Perpendicular magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0371420A true JPH0371420A (en) 1991-03-27
JP2752179B2 JP2752179B2 (en) 1998-05-18

Family

ID=16551134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208130A Expired - Fee Related JP2752179B2 (en) 1989-08-10 1989-08-10 Perpendicular magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2752179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336293B2 (en) 2000-10-30 2008-02-26 Yamaha Corporation Scanning optical media during label printing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130405A (en) * 1981-02-05 1982-08-12 Semiconductor Energy Lab Co Ltd Magnetic recording medium
JPS6025204A (en) * 1983-07-20 1985-02-08 Konishiroku Photo Ind Co Ltd Megnetic recording medium
JPH01105331A (en) * 1987-04-15 1989-04-21 Sanyo Electric Co Ltd Production of magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130405A (en) * 1981-02-05 1982-08-12 Semiconductor Energy Lab Co Ltd Magnetic recording medium
JPS6025204A (en) * 1983-07-20 1985-02-08 Konishiroku Photo Ind Co Ltd Megnetic recording medium
JPH01105331A (en) * 1987-04-15 1989-04-21 Sanyo Electric Co Ltd Production of magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336293B2 (en) 2000-10-30 2008-02-26 Yamaha Corporation Scanning optical media during label printing
US7336292B2 (en) 2000-10-30 2008-02-26 Yamaha Corporation Optical media label printing using different power levels

Also Published As

Publication number Publication date
JP2752179B2 (en) 1998-05-18

Similar Documents

Publication Publication Date Title
EP0132398B1 (en) A method and apparatus for ion beam generation
EP0122030B1 (en) A magnetic recording member and a manufacturing method for such a member
JPS62232101A (en) Manufacture of iron nitride magnetic material
JPH0371420A (en) Perpendicular magnetic recording medium and its production
US5173370A (en) Magnetic recording medium having a magnetic thin film with both paramagnetic phase and ferromagnetic phase iron nitride with paramagnetic phase zeta Fe2 N as its largest component
JPS63181305A (en) Manufacture of iron oxide vertically magnetized thin film
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JPH035644B2 (en)
JPH03280214A (en) Perpendicular magnetic recording medium and its production
JPS59162622A (en) Vertical magnetic recording material and its production
US20040052935A1 (en) Magnetic thin film and production method therefor
Terada et al. Magnetic properties of Pr‐Co and Nd‐Co thin films deposited by ion beam sputtering
JPS60236113A (en) Magnetic recording material and its production
US20030209189A1 (en) Magnetic material and method for preparation thereof
JP2686139B2 (en) Magnetic recording medium and method of manufacturing the same
JPS5840248B2 (en) Magnetic recording medium and its manufacturing method
JPS6024369A (en) Method and device for generating ion beam
JP2001237136A (en) Fe-N SOFT MAGNETIC THIN-FILM AND METHOD OF FORMING THE SAME
JPH04259204A (en) Manufacture of magnetic recording medium
JPS62114118A (en) Magnetic recording material and its production
JPS6224432A (en) Production of magnetic recording medium
JPS62241138A (en) Production of magnetic recording medium
JPH0313731B2 (en)
JPH04209312A (en) Magnetic recording medium
JPH0352641B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees