JPH0313731B2 - - Google Patents

Info

Publication number
JPH0313731B2
JPH0313731B2 JP58133033A JP13303383A JPH0313731B2 JP H0313731 B2 JPH0313731 B2 JP H0313731B2 JP 58133033 A JP58133033 A JP 58133033A JP 13303383 A JP13303383 A JP 13303383A JP H0313731 B2 JPH0313731 B2 JP H0313731B2
Authority
JP
Japan
Prior art keywords
ions
targets
target
magnetic
iron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58133033A
Other languages
Japanese (ja)
Other versions
JPS6025204A (en
Inventor
Masahiko Naoe
Shozo Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58133033A priority Critical patent/JPS6025204A/en
Priority to US06/630,514 priority patent/US4690744A/en
Priority to EP84304963A priority patent/EP0132398B1/en
Priority to DE8484304963T priority patent/DE3480039D1/en
Publication of JPS6025204A publication Critical patent/JPS6025204A/en
Publication of JPH0313731B2 publication Critical patent/JPH0313731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • H01J27/14Other arc discharge ion sources using an applied magnetic field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 1 産業上の利用分野 本発明は磁気テープ、磁気デイスク等の磁気記
録媒体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application The present invention relates to a method for manufacturing magnetic recording media such as magnetic tapes and magnetic disks.

2 従来技術 従来、この種の磁気記録媒体は、ビデオ、オー
デイオ、デイジタル等の各種電気信号の記録に幅
広く利用されている。これらは、基体上に被着形
成された磁性層(磁気記録層)の面内長手方向に
おける磁化を用いる方式として発達してきた。こ
れら公知の磁気記録媒体の磁性層には、γ−
Fe2O3等の酸化鉄系強磁性粉、Co含有Fe等のメ
タル磁性粉の如き磁性体が含有されている。又、
高密度化のために垂直磁気記録方式も検討されて
いる。
2. Prior Art Conventionally, this type of magnetic recording medium has been widely used for recording various electrical signals such as video, audio, and digital signals. These have been developed as a system that uses magnetization in the in-plane longitudinal direction of a magnetic layer (magnetic recording layer) formed on a substrate. The magnetic layer of these known magnetic recording media contains γ-
It contains magnetic substances such as iron oxide ferromagnetic powder such as Fe 2 O 3 and metal magnetic powder such as Co-containing Fe. or,
Perpendicular magnetic recording systems are also being considered for higher density.

3 発明の目的 本発明の目的は、公知の磁性体とは全く異なる
組成及び組織の磁性体を用い、高抗磁力、高磁
化、高耐食性の磁性層を有する磁気記録媒体の製
造方法を提供することにある。
3. Purpose of the Invention The purpose of the present invention is to provide a method for manufacturing a magnetic recording medium having a magnetic layer with high coercive force, high magnetization, and high corrosion resistance, using a magnetic material having a composition and structure completely different from known magnetic materials. There is a particular thing.

4 発明の構成 即ち、本発明は、鉄を主成分とする一対のター
ゲツトを互いに対向せしめ、これらの対向ターゲ
ツト間に窒素ガスを供給し、窒素分圧10-3Torr
として、プラズマ雰囲気中で窒化鉄イオンを発生
させ、該窒化鉄イオンを加速電界で加速した後
に、該イオンがスパツタ部の外側へ出る側のター
ゲツトと該ターゲツトの外側近傍に配されたスク
リーングリツドを有していてこれらのターゲツト
及びグリツドは夫々所定の電位に保持されてイオ
ン化粒子を通過させるための小孔がこれらのター
ゲツト及びグリツドに形成されているところの導
出部から、スパツタ部外に該窒化鉄イオンを導出
し、導出された窒化鉄イオンを基体上に導いて、
Hcが400エルステツド以上、600エルステツド以
下のアモルフアス窒化鉄を主成分として含有した
磁性層を形成することを特徴とする磁気記録媒体
の製造方法に係るものである。
4. Structure of the Invention That is, in the present invention, a pair of targets containing iron as a main component are made to face each other, and nitrogen gas is supplied between these opposing targets so that the nitrogen partial pressure is 10 -3 Torr.
After generating iron nitride ions in a plasma atmosphere and accelerating the iron nitride ions in an accelerating electric field, the iron nitride ions are placed on a target on the side where the ions exit to the outside of the sputtering part and on a screen grid placed near the outside of the target. These targets and grids are each held at a predetermined potential, and a small hole is formed in these targets and grids to allow the ionized particles to pass through. Deriving iron nitride ions, guiding the derived iron nitride ions onto the substrate,
The present invention relates to a method of manufacturing a magnetic recording medium, characterized in that a magnetic layer containing as a main component amorphous iron nitride with Hc of 400 Oe or more and 600 Oe or less is formed.

本発明で使用するアモルフアス窒化鉄(Fe1-x
Nx)は、その組織中には相分離の生じていない
(即ち単一相でグレインバウンダリのない)アモ
ルフアス状態となつているものであり、後述する
ように磁性体としての要求性能を充二分に満たし
ている。この観点から、上記Fe1-xNxの組成はX
≧0.4であるのが望ましく、x<0.4では窒素量が
少なくてアモルフアスとなり難くなる傾向があ
る。
Amorphous iron nitride (Fe 1-x
Nx) is in an amorphous state with no phase separation (that is, a single phase and no grain boundaries) in its structure, and as described later, it satisfies the required performance as a magnetic material. Satisfied. From this point of view, the composition of the above Fe 1-x Nx is
It is desirable that ≧0.4, and when x<0.4, the amount of nitrogen tends to be small and it becomes difficult to form amorphous amorphous.

5 実施例 以下、本発明の実施例を図面について詳細に説
明する。
5 Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本例による磁気記録媒体の構成を説明す
る。
First, the configuration of the magnetic recording medium according to this example will be explained.

第1図の磁気記録媒体は、基体(例えばアルミ
ニウム、ポリエチレンテレフタレート等)S上
に、上記のアモルフアスFe1-xNxを主成分とする
磁気記録層14を設けたものからなつている。こ
こで、「主成分」とは、Fe1-xNxが実質的に100%
を占め場合以外にも、他の第2成分(例えばNi、
Al、Ti、V、Cr、Mn、Cu、W、Pt、Zr、Nb、
Moなどの金属、F、Ne、P、S、As、Seなど
の非金属、さらにC、Si、Geなどの半金属等)
も含んでいてよいことを意味する。上記Fe1-xNx
は特にx≧0.4であるのがよく、例えばFe60N40
Fe50N50(x=0.4〜0.5)からなつている。この
Fe1-xNxは相分離のないアモルフアス窒化鉄であ
り、磁気記録にとつて充分な抗磁力(Hc)=600
〜400Oeを示し、かつ高飽和磁化(例えば
12KGauss)を示すものである。しかも、Fe1-x
Nxは窒素の含有によつて耐食性にも優れたもの
となつている。
The magnetic recording medium shown in FIG. 1 consists of a substrate S (for example, aluminum, polyethylene terephthalate, etc.) provided with a magnetic recording layer 14 containing the above-mentioned amorphous Fe 1-x Nx as a main component. Here, "main component" means that Fe 1-x Nx is substantially 100%
In addition to the case where the
Al, Ti, V, Cr, Mn, Cu, W, Pt, Zr, Nb,
metals such as Mo, nonmetals such as F, Ne, P, S, As, Se, semimetals such as C, Si, Ge, etc.)
This means that it may also include. Above Fe 1-x Nx
It is particularly good that x≧0.4, for example, Fe 60 N 40 ~
It consists of Fe 50 N 50 (x=0.4-0.5). this
Fe 1-x Nx is amorphous iron nitride with no phase separation, and has a coercive force (Hc) of 600, which is sufficient for magnetic recording.
~400 Oe, and high saturation magnetization (e.g.
12KGauss). Moreover, Fe 1-x
Nx also has excellent corrosion resistance due to the nitrogen content.

第2図は、他の磁気記録媒体、例えば磁気デイ
スクを示し、上記のアモルフアスFe1-xNxからな
る磁性膜14が基体Sの表、裏に設けられてい
る。
FIG. 2 shows another magnetic recording medium, for example, a magnetic disk, in which a magnetic film 14 made of the amorphous Fe 1-x Nx described above is provided on the front and back sides of a substrate S.

次に、上記の磁気記録媒体の製造方法を第3図
〜第8図について説明する。
Next, a method of manufacturing the above magnetic recording medium will be explained with reference to FIGS. 3 to 8.

第3図に示す装置は基本的には、対向ターゲツ
トスパツタ部Aと、このスパツタ部からイオン化
粒子を導出するイオンビーム導出部Bとからなつ
ている。
The apparatus shown in FIG. 3 basically consists of a facing target sputter section A and an ion beam extraction section B that extracts ionized particles from this sputter section.

スパツタ部Aにおいて、1は真空槽、2は真空
槽1内に所定のガス(Ar+N2)を導入してガス
圧力を10-3〜10-4Torr程度に設定するガス導入
管である。真空槽1の排気系は図示省略した。タ
ーゲツト電極は、ターゲツトホルダー4により
Fe製の一対のターゲツトT1,T2を互いに隔てて
平行に対向配置した対向ターゲツト電極として構
成されている。これらのターゲツト間には、外部
の磁界発生手段(マグネツトコイル)3による磁
界が形成される。なお、図中の5は冷却水導入
管、6は同導出管であり、13は加速用の電極で
ある。
In the sputter section A, 1 is a vacuum chamber, and 2 is a gas introduction pipe for introducing a predetermined gas (Ar+N 2 ) into the vacuum chamber 1 and setting the gas pressure to about 10 -3 to 10 -4 Torr. The exhaust system of the vacuum chamber 1 is not shown. The target electrode is held by the target holder 4.
It is constructed as a facing target electrode in which a pair of Fe targets T 1 and T 2 are placed facing each other in parallel with each other. A magnetic field is formed between these targets by external magnetic field generating means (magnetic coil) 3. In the figure, 5 is a cooling water inlet pipe, 6 is a cooling water outlet pipe, and 13 is an acceleration electrode.

このように構成されたスパツタ装置において、
平行に対向し合つた両ターゲツトT1,T2の各表
面と垂直方向に磁界を形成し、この磁界により陰
極降下部(即ち、第4図に明示する如く、ターゲ
ツトT1−T2間に発生したプラズマ雰囲気7と各
ターゲツトT1及びT2との間に領域8,9)での
電界で加速されたスパツタガスイオンのターゲツ
ト表面に対する衝撃で放出されたγ電子をターゲ
ツト間の空間にとじ込め、対向した他方のターゲ
ツト方向へ移動させる。他方のターゲツト表面へ
移動したγ電子は、その近傍の陰極降下部で反射
される。こうして、γ電子はターゲツトT1−T2
間において磁界に束縛されながら往復運動を繰返
すことになる。この往復運動の間に、γ電子は中
性の雰囲気ガスと衝突して雰囲気ガスのイオンと
電子とを生成させ、これらの生成物がターゲツト
からのγ電子の放出と雰囲気ガスのイオン化を促
進させる。従つて、ターゲツトT1−T2間の空間
には高密度のプラズマが形成され、これに伴つて
ターゲツト物質が充分にスパツタされることにな
る。
In the sputtering device configured in this way,
A magnetic field is formed in a direction perpendicular to the surfaces of both targets T 1 and T 2 facing each other in parallel, and this magnetic field creates a gap between the cathode fall area (i.e., between targets T 1 and T 2 as clearly shown in FIG. 4). Between the generated plasma atmosphere 7 and each target T1 and T2 , the γ electrons emitted by the impact of the sputtering gas ions accelerated by the electric field on the target surface are transferred to the space between the targets. Lock it in and move it towards the other target. The γ electrons that have moved to the other target surface are reflected by the cathode fall section nearby. Thus, the γ electrons reach the target T 1 −T 2
In between, the reciprocating motion is repeated while being constrained by a magnetic field. During this reciprocating motion, the γ electrons collide with the neutral atmospheric gas to generate ions and electrons of the atmospheric gas, and these products promote the release of γ electrons from the target and the ionization of the atmospheric gas. . Therefore, a high-density plasma is formed in the space between the targets T1 and T2 , and the target material is sputtered sufficiently.

この対向ターゲツトスパツタ装置は、他の飛翔
手段に比べて、高速スパツタによる高堆積速度の
製膜が可能であり、また基体がプラズマに直接曝
されることがなく、低い基体温度での製膜が可能
である。
Compared to other flying methods, this facing target sputtering device enables film formation at a high deposition rate using high-speed sputtering, and the substrate is not directly exposed to plasma, allowing film formation at low substrate temperatures. is possible.

第3図の装置で注目されるべき構成は、スパツ
タ部Aにおいてターゲツトから叩き出されたFe
と反応ガス(N2)とが反応してイオン化された
粒子、即ちFe1-xNxのイオンを効率良く外部へ導
出するための導出部Bを有していることである。
即ち、この導出部Bは、ターゲツトT2の外側近
傍に配されたスクリーングリツドGを有し、これ
らのターゲツトT2及びグリツドGは夫々所定の
電位に保持されると同時に、イオン化粒子10を
通過させるための小孔11,12が夫々対応した
数及びパターンに形成されている。これは、第5
図及び第6図に夫々明示した。各小孔11,12
は例えば2mmφであつて5mmの間隔を置いて形成
され、グリツドGの厚みは1mmであつてよい。
The structure of the device shown in Fig. 3 that should be noted is that the Fe ejected from the target in the spatter section A
It has a derivation part B for efficiently deriving to the outside the particles ionized by the reaction between the reactant gas (N 2 ) and the reaction gas (N 2 ), that is, Fe 1-x Nx ions.
That is, this derivation part B has a screen grid G arranged near the outside of the target T 2 , and the target T 2 and the grid G are each held at a predetermined potential, and at the same time, the ionized particles 10 are Small holes 11 and 12 for passage are formed in corresponding numbers and patterns, respectively. This is the fifth
These are clearly shown in Fig. 6 and Fig. 6, respectively. Each small hole 11, 12
For example, the grids G may have a diameter of 2 mm and be formed at intervals of 5 mm, and the thickness of the grid G may be 1 mm.

第7図は、上記装置を動作させる際の電気回路
系を概略的に示すが、加速電極13に加速電圧
Vpを印加した状態で、両ターゲツトT1,T2に負
電圧Vtを与え、かつグリツドGを接地している。
また、イオンビーム導出部B側に配した基板Sも
接地している。第8図は各部のポテンシヤル分布
を示し、Vpは0〜200Vに、Vtは500〜1000Vに
設定される。
FIG. 7 schematically shows an electric circuit system for operating the above device.
With Vp applied, a negative voltage Vt is applied to both targets T 1 and T 2 , and grid G is grounded.
Further, the substrate S disposed on the side of the ion beam deriving section B is also grounded. FIG. 8 shows the potential distribution of each part, where Vp is set to 0 to 200V and Vt is set to 500 to 1000V.

このような条件で上記装置を動作させると、ス
パツタ部A(真空度10-4Torr以下)において発生
したプラズマ中のイオンは下部ターゲツトT2
陰極降下部9(第4図参照)で加速電極13によ
つて加速された後、ターゲツトT2−グリツドG
間の電界によつて減速されながら上記小孔11,
12を通過し、基板Sとプラズマとの間に電位差
に相当するエネルギーを以つて導出される。導出
されたイオンビーム10は、導出部B(真空度
10-5Torr以上)に形成される電界E(第3図参
照)の作用で効果的に集束せしめられ、上記エネ
ルギーを以つて基板Sに入射することになる。こ
うして加速電極(又は陽極)13に加える陽極電
圧Vpを変化させることにより、基板S上への堆
積イオン(Fe1-xNx)のエネルギーを制御しなが
ら、グリツドGの作用で効率良くイオンビーム1
0を引出し、基板S上へ導びくことができる。ま
た、基板Sのある側は10-5Torr以上の高真空に
引かれているので、クリーンで不純物の少ない磁
性膜を堆積させることができる。
When the above apparatus is operated under these conditions, ions in the plasma generated in the sputter section A (vacuum level 10 -4 Torr or less) are accelerated at the cathode fall section 9 (see Fig. 4) of the lower target T2 . 13, the target T 2 -grid G
The small hole 11, while being decelerated by the electric field between
12, and is led out with energy corresponding to the potential difference between the substrate S and the plasma. The derived ion beam 10 is transported to the deriving section B (degree of vacuum).
It is effectively focused by the action of an electric field E (see FIG. 3) which is formed at a magnitude of 10 -5 Torr or more, and the light is incident on the substrate S with the above-mentioned energy. In this way, by changing the anode voltage Vp applied to the accelerating electrode (or anode) 13, the energy of the ions (Fe 1-x Nx) deposited on the substrate S is controlled, and the ion beam 1 is efficiently controlled by the action of the grid G.
0 can be extracted and guided onto the substrate S. Furthermore, since the side on which the substrate S is located is drawn to a high vacuum of 10 -5 Torr or more, a clean magnetic film with few impurities can be deposited.

なお、イオンビームを引出す側に配されたター
ゲツトT2及びグリツドGの小孔11,12は必
要以上に大きくしない方がよいが、あまり大きく
するとスパツタ部Aと導出部Bとのガス圧差によ
つて基板S側へ不要なガスがリークして堆積膜の
純度低下が生じ易く、或いはターゲツトT2及び
グリツドGの強度面でも望ましくなく、しかもタ
ーゲツト面積が減少してスパツタ効率も低下し易
くなることが考えられる。
Note that it is better not to make the small holes 11 and 12 of the target T 2 and the grid G arranged on the side from which the ion beam is extracted more than necessary, but if they are made too large, the difference in gas pressure between the sputter section A and the extraction section B may cause As a result, unnecessary gas leaks to the substrate S side, which tends to cause a decrease in the purity of the deposited film, which is also undesirable in terms of the strength of the target T 2 and the grid G, and furthermore, the target area decreases and the sputtering efficiency tends to decrease. is possible.

以上に説明した方法及び装置によつて、例えば
第1図に示す如く、基板S上に厚さ例えば2000Å
のFe1-xNx磁性膜14を有する磁気テープ、磁気
デイスク等の磁気記録媒体を作成することができ
る。この磁気記録媒体は、特に高密度の面内長手
磁気記録用や垂直磁気記録用として好適な磁性膜
14を有したものとなつている。
By using the method and apparatus described above, for example, as shown in FIG.
It is possible to create a magnetic recording medium such as a magnetic tape or a magnetic disk having the Fe 1-x Nx magnetic film 14. This magnetic recording medium has a magnetic film 14 suitable for particularly high-density in-plane longitudinal magnetic recording or perpendicular magnetic recording.

次に、上記の磁化膜(Fe1-xNx)について、実
験結果に基いて更に詳述する。
Next, the above magnetized film (Fe 1-x Nx) will be described in more detail based on experimental results.

(A) Fe1-xNx膜の構造 形成された膜は、すべてアモルフアス状であ
り、構造は窒素ガス混合率、基板温度(Ts)お
よびイオン加速電圧(Vp)に依存して変化した。
(A) Structure of Fe 1-x Nx film The formed films were all amorphous, and the structure changed depending on the nitrogen gas mixture ratio, substrate temperature (Ts), and ion acceleration voltage (Vp).

第9図に、全圧Ptotal=5×10-4Torr、Vp=
20V(一定)の条件で作製した膜の結晶構造と、
PN2、Tsの関係を示す(但、基板は(111)Si基
板)。Ts=200℃の場合、形成される結晶相はPN2
の上昇とともに、α−Feとγ′−Fe4Nの混相→
γ′−Fe4N単相→ε−Fe3Nとζ−Fe2Nの混相→
ζ−Fe2Nと変化し、膜の窒化度が高まつていく。
また、α−Fe、γ′−Fe4Nの混相膜には、面間隔
1.9〜2.0Åを持つ不明の結晶相(U.K.)が存在し
ていた。Tsが200℃以上に上昇すると、各領域間
の境界は高PN2側に移動する。Tsが200℃以下の
場合にも、Tsが減少すると膜の窒化度が減少す
る傾向が見られ、Ts=80℃、PN24×10-5Torr
では、α−Fe相のみが形成された。
In Figure 9, total pressure Ptotal=5×10 -4 Torr, Vp=
The crystal structure of the film produced under 20V (constant) conditions,
The relationship between P N2 and Ts is shown (however, the substrate is a (111) Si substrate). When Ts=200℃, the crystal phase formed is P N2
As the value increases, a mixed phase of α−Fe and γ′−Fe 4 N →
γ′−Fe 4 N single phase→ε−Fe 3 N and ζ−Fe 2 N mixed phase→
ζ−Fe 2 N, and the degree of nitridation of the film increases.
In addition, the interplanar spacing is
An unknown crystalline phase (UK) with 1.9-2.0 Å was present. When Ts rises above 200°C, the boundaries between each region move toward the high P N2 side. Even when Ts is below 200°C, there is a tendency for the degree of nitridation of the film to decrease as Ts decreases; Ts = 80°C, P N2 4 × 10 -5 Torr
In this case, only the α-Fe phase was formed.

(B) Fe1-xNx膜の飽和磁化 膜の飽和磁化(4πMs)は、磁気天秤によつて
測定した。
(B) Saturation magnetization of Fe 1-x Nx film The saturation magnetization (4πMs) of the film was measured using a magnetic balance.

第10図にPtotal=5×10-5Torr、Vp=20V
(一定)の条件で作製した膜の4πMsのPN2および
Ts依存性を示す。4πMsは、膜の結晶構、造がα
−Fe+γ′−Fe4N+U.K.(Unknown)の混相の場
合およびγ′相単相の領域で、純鉄の4πMs
(21.6KG)を上回る値を示し、特に両領域の境界
近傍では約25KGと非常に高い値となつている。
この高い4πMsは、γ′相およびU.K.相に起因して
いると言える。
In Figure 10, Ptotal=5×10 -5 Torr, Vp=20V
P N2 and 4πMs of the film prepared under (constant) conditions
Shows Ts dependence. 4πMs is the crystal structure of the film, the structure is α
In the mixed phase case of −Fe+γ′−Fe 4 N+U.K. (Unknown) and in the region of single γ′ phase, 4πMs of pure iron
(21.6KG), and the value is particularly high near the boundary between the two areas, approximately 25KG.
This high 4πMs can be attributed to the γ′ phase and UK phase.

ところが、第10図において、窒素分圧PN2
高めていくと、抗磁力(Hc)が更に大きくなり、
磁気記録にとつて充分な600〜400Oe(例えば
500Oe)のものが得られることが分かつた。これ
と同時に、N2量と共に一旦飽和磁化(4πMs)は
低下するが、更にPN2を増やすと再び上昇し、
12KGauss以上の望ましい値が得られることも分
つた。これは、PN2の増大(全圧の上昇)に伴な
つて、堆積粒子のイオンの割合が増大し、形成さ
れる堆積膜の結晶性が低下してアモルフアス状と
なるものと考えられる。
However, as shown in Figure 10, as the nitrogen partial pressure P N2 increases, the coercive force (Hc) further increases,
600 to 400 Oe, which is sufficient for magnetic recording (e.g.
500Oe) was found to be obtainable. At the same time, the saturation magnetization (4πMs) decreases once with the amount of N2 , but increases again when P N2 is further increased.
It was also found that a desirable value of 12 KGauss or higher could be obtained. This is considered to be because as P N2 increases (total pressure increases), the proportion of ions in the deposited particles increases, and the crystallinity of the deposited film that is formed decreases, making it amorphous.

第11図は、上記のアモルフアスFe1-xNxのヒ
ステリシス曲線(公知の試料振動型磁力計で測
定)を示すが、磁気記録にとつて好適な特性を有
することが分かる。
FIG. 11 shows a hysteresis curve (measured with a known sample vibrating magnetometer) of the above amorphous Fe 1-x Nx, and it can be seen that it has characteristics suitable for magnetic recording.

また、上記のFe1-xNx膜は、窒素の含有によつ
て耐食性が充分となつており、この点でも優れた
ものである。
Further, the Fe 1-x Nx film described above has sufficient corrosion resistance due to the nitrogen content, and is excellent in this respect as well.

なお、上述した例は種々変形が可能である。 Note that the above-described example can be modified in various ways.

例えば、第3図において、グリツドGを複数枚
セツトし、イオンビームの制御を種々に行なうこ
ともできる。
For example, in FIG. 3, a plurality of grids G can be set to control the ion beam in various ways.

6 発明の効果 本発明は上述した如く、鉄を主成分とする一対
のターゲツトを互いに対向せしめ、これらの対向
ターゲツト間に窒素ガスを供給し、窒素分圧
10-3Torrとして、プラズマ雰囲気中で窒化鉄イ
オンを発生させ、該窒化鉄イオンを加速電界で加
速した後に、夫々所定の電位に保持されてイオン
化粒子を通過させるための小孔が形成されたター
ゲツト及びグリツドからなる導出部から、スパツ
タ部外に該窒化鉄イオンを導出し、Hcが400エル
ステツド以上、600エルステツド以下のアモルフ
アス窒化鉄を主成分として含有した磁性層を形成
しているので、アモルフアス窒化鉄特有の高Hc、
高磁化、耐食性を発揮せしめた高性能の磁気記録
媒体を提供できる。
6. Effects of the Invention As described above, the present invention includes a pair of targets whose main component is iron, which are opposed to each other, and nitrogen gas is supplied between these opposing targets to increase the nitrogen partial pressure.
Iron nitride ions were generated in a plasma atmosphere at 10 -3 Torr, and after accelerating the iron nitride ions in an accelerating electric field, each was held at a predetermined potential to form a small hole through which ionized particles could pass. The iron nitride ions are led out of the sputter part from the lead-out part consisting of the target and the grid to form a magnetic layer mainly containing amorphous iron nitride with an Hc of 400 Oersteds or more and 600 Oersteds or less. High Hc peculiar to iron nitride,
A high-performance magnetic recording medium exhibiting high magnetization and corrosion resistance can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであつて、第
1図、第2図は磁気記録媒体の二例の各断面図、
第3図はイオンビーム発生装置の断面図、第4図
は対向ターゲツトスパツタの原理図、第5図はイ
オンビーム導出側のターゲツト及びグリツドの平
面図、第6図は第5図のX−X線断面図、第7図
は上記装置の電気回路系を示す図、第8図は各部
のポテンシヤル分布図、第9図は堆積膜の結晶構
造と窒素分圧、基板温度との関係を示す図、第1
0図は堆積膜の飽和磁化及び抗磁力と窒素分圧と
の関係を示すグラフ、第11図は堆積膜のヒステ
リシス曲線図である。 なお、図面に示した符号において、2……ガス
導入管、3……マグネツトコイル、10……イオ
ンビーム、11,12……小孔、13……陽極
(加速電極)、14……磁性(化)膜、T1,T2
…ターゲツト、G……スクリーングリツド、A…
…スパツタ部、B……イオンビーム導出部、S…
…基板(基体)、である。
The drawings show embodiments of the present invention, and FIGS. 1 and 2 are cross-sectional views of two examples of magnetic recording media,
Fig. 3 is a cross-sectional view of the ion beam generator, Fig. 4 is a principle diagram of opposed target sputtering, Fig. 5 is a plan view of the target and grid on the ion beam extraction side, and Fig. 6 is the X-- An X-ray cross-sectional view, Figure 7 shows the electric circuit system of the above device, Figure 8 shows the potential distribution of each part, and Figure 9 shows the relationship between the crystal structure of the deposited film, nitrogen partial pressure, and substrate temperature. Figure, 1st
FIG. 0 is a graph showing the relationship between the saturation magnetization and coercive force of the deposited film and nitrogen partial pressure, and FIG. 11 is a hysteresis curve diagram of the deposited film. In addition, in the symbols shown in the drawings, 2...Gas introduction tube, 3...Magnetic coil, 10...Ion beam, 11, 12...Small hole, 13...Anode (acceleration electrode), 14...Magnetic (chemical) membrane, T 1 , T 2 ...
...Target, G...Screen grid, A...
...Spatter part, B...Ion beam extraction part, S...
...substrate (substrate).

Claims (1)

【特許請求の範囲】[Claims] 1 鉄を主成分とする一対のターゲツトを互いに
対向せしめ、これらの対向ターゲツト間に窒素ガ
スを供給し、窒素分圧10-3Torrとして、プラズ
マ雰囲気中で窒化鉄イオンを発生させ、該窒化鉄
イオンを加速電界で加速した後に、該イオンがス
パツタ部の外側へ出る側のターゲツトと該ターゲ
ツトの外側近傍に配されたスクリーングリツドを
有していてこれらのターゲツト及びグリツドは
夫々所定の電位に保持されてイオン化粒子を通過
させるための小孔がこれらのターゲツト及びグリ
ツドに形成されているところの導出部から、スパ
ツタ部外に該窒化鉄イオンを導出し、導出された
窒化鉄イオンを基体上に導いて、Hcが400エルス
テツド以上、600エルステツド以下のアモルフア
ス窒化鉄を主成分として含有した磁性層を形成す
ることを特徴とする磁気記録媒体の製造方法。
1 A pair of targets containing iron as a main component are made to face each other, and nitrogen gas is supplied between these opposing targets to create a nitrogen partial pressure of 10 -3 Torr to generate iron nitride ions in a plasma atmosphere. After ions are accelerated by an accelerating electric field, the ions have a target on the side where the ions exit to the outside of the sputtering part and a screen grid placed near the outside of the target, and these targets and grids are each set to a predetermined potential. The iron nitride ions are led out of the sputtering part from the lead-out part where small holes are formed in these targets and grids for allowing the retained ionized particles to pass through, and the led-out iron nitride ions are deposited on the substrate. A method for manufacturing a magnetic recording medium, comprising: forming a magnetic layer containing as a main component amorphous iron nitride having an Hc of 400 Oersteds or more and 600 Oersteds or less.
JP58133033A 1983-07-20 1983-07-20 Megnetic recording medium Granted JPS6025204A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58133033A JPS6025204A (en) 1983-07-20 1983-07-20 Megnetic recording medium
US06/630,514 US4690744A (en) 1983-07-20 1984-07-13 Method of ion beam generation and an apparatus based on such method
EP84304963A EP0132398B1 (en) 1983-07-20 1984-07-20 A method and apparatus for ion beam generation
DE8484304963T DE3480039D1 (en) 1983-07-20 1984-07-20 A method and apparatus for ion beam generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133033A JPS6025204A (en) 1983-07-20 1983-07-20 Megnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6025204A JPS6025204A (en) 1985-02-08
JPH0313731B2 true JPH0313731B2 (en) 1991-02-25

Family

ID=15095233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133033A Granted JPS6025204A (en) 1983-07-20 1983-07-20 Megnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6025204A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752179B2 (en) * 1989-08-10 1998-05-18 三洋電機株式会社 Perpendicular magnetic recording medium and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6025204A (en) 1985-02-08

Similar Documents

Publication Publication Date Title
Terada et al. Synthesis of iron-nitride films by means of ion beam deposition
EP0132398B1 (en) A method and apparatus for ion beam generation
US4354909A (en) Process for production of magnetic recording medium
US4391697A (en) High rate magnetron sputtering of high permeability materials
US5403457A (en) Method for making soft magnetic film
US4003813A (en) Method of making a magnetic oxide film with high coercive force
EP0122030A1 (en) A magnetic recording member and a manufacturing method for such a member
JPH0313731B2 (en)
JPH035644B2 (en)
Matsuoka et al. rf and dc discharge characteristics for opposed‐targets sputtering
JPH033743B2 (en)
JPH0352641B2 (en)
JPS60106966A (en) Confronting target type sputtering apparatus
JPH0648526B2 (en) Method of manufacturing magnetic head
JPS59147422A (en) Formation of magnetic layer
JPS58199862A (en) Magnetron type sputtering device
EP0190854A2 (en) Method for producing a perpendicular magnetic recording medium
JPH031810B2 (en)
Matsushita et al. Preparation and magnetic properties of BaM films with excellent crystallinity by Xe sputtering
JPS60101721A (en) Formation of barium ferrite layer
JPS62241138A (en) Production of magnetic recording medium
JP2752179B2 (en) Perpendicular magnetic recording medium and method of manufacturing the same
JPS5887271A (en) Method and device for planar magnetron sputtering
JPS6131529B2 (en)
Iwatsubo et al. Magnetic and structural properties of Fe films deposited by ion-beam sputtering with a high-energy assisted process